P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution & Affiliated to Anna University, Chennai)

SIVAKASI - 626140

B.E. – CIVIL ENGINEERING

UG REGULATION-2012

CURRICULUM AND SYLLABI

[1st To 8th Semester]

THIS IS THE FINAL VERSION OF THE SYLLABUS AS RATIFIED AND APPROVED BY THE ACADEMIC COUNCIL OF THE COLLEGE IN THE MEETINGS HELD ON 7/7/2012, 1/6/2013 & 12/4/2014

DEAN(ACADEMIC)

PROGRAMME EDUCATIONAL OBJECTIVES OF B.E - CIVILENGINEERING:

- ❖ Graduates will be successful in professional career by continuously acquiring the fundamentals and core in Civil Engineering.
- ❖ Graduates will be able to get technical knowledge to analyze and design the real life problems in Civil Engineering.
- Graduates will engage in lifelong learning by pursuing higher studies and Research.
- ❖ Graduates will exhibit good ethical and communication skills, lead a team with good leadership traits and good interpersonal relationship.

PROGRAMME OUTCOMES OF B.E - CIVIL ENGINEERING:

- a. Apply knowledge of mathematics, physical sciences and Civil Engineering fundamentals.
- b. Able to identify, formulate, analyze and solve for Civil Engineering problems.
- c. Able to design and realize civil structures to meet desired needs within practical constraints such as economical, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
- d. Able to investigate and conduct experiments, as well as to analyze and interpret data.
- e. Use of techniques, skills and modern engineering tools necessary for engineering practice.
- f. Contextual knowledge to assess societal, health, safety, legal and cultural issues related to Engineering.
- g. Realize the impact of Civil Engineering solutions in a global, economic and environmental context.
- h. Apply ethical principles and commitment to professional ethics and responsibility.
- i. Function as an individual and as a member or leader in multidisciplinary teams.
- j. Communicate effectively with the engineering community and society at large.
- k. Knowledge and understanding of management and business practices and their limitations.
- 1. Recognize the need and have the ability to engage in life-long learning.

REGULATIONS FOR UG PROGRAMME (B.E/B.Tech) CANDIDATE ADMITTED DURING THE ACADEMIC YEAR 2012 - 2013 AND ONWARDS

[UG Regulation-2012]

I. CONDITIONS FOR ADMISSION

Candidates for admission to the first year of the four year B.E / B.Tech Degree course shall be required to have passed

i) The higher secondary examination (academic stream) conducted by the Government of Tamilnadu with Mathematics, Physics and Chemistry

(or)

ii) The higher secondary examination(Vocational stream offering the vocational groups of Engineering and Technology)conducted by the Government of tamilnadu

(or)

iii) An examination of any university or authority, accepted by the Anna University as equivalent thereto

(or)

iv) Any other examinations as notified by the Government of Tamilnadu

LATERAL ENTRY ADMISSION (YEAR 2013 - 2014 AND ONWARDS)

Candidate who have passed the Diploma in Engineering / Technology conducted by the State Board of Technical Education and training are eligible for admission to the third semester under lateral entry scheme of the B.E / B.TECH degree programmes.

Any other conditions as notified by the Government of Tamilnadu

2. BRANCHES OF STUDY

Branches will be offered at the time of admission to the course. The following are the courses offered in this college.

- 1) B.E-Civil Engineering
- 2) B.E-Mechanical Engineering
- 3) B.E-Electrical and Electronics Engineering
- 4) B.E-Electronics and Communication Engineering
- 5) B.E-Computer Science and Engineering
- 6) B.Tech-Information Technology

7) B.Tech-Bio-Technology

3. STRUCTURE OF PROGRAMMES

- 3.1 Every programme shall have a curriculum with well-defined syllabi comprising theory and practical courses such as:
 - i) General core courses comprising Mathematics, Basic sciences, Engineering Sciences, Humanities and Engineering.
 - ii) Core courses of Engineering/ Technology.
 - iii) Elective courses for specialization in related fields.
 - iv) Workshop practice, computer practice, engineering graphics, laboratory work, industrial training, seminar presentation, project work, industrial visit, etc.,
 - v) NSS/RRC/ISTE/CISCO/IEEE/YRC/SPORTS activities for character development.
- 3.2 The subjects of study shall be both theory and practical and shall be in accordance with the prescribed syllabus.
- 3.3 Each semester curriculum shall normally have a blend of lecture courses not exceeding 6 and practical courses not exceeding 4.
- 3.4 A student who has passed all the subjects prescribed in the curriculum for the award of the degree shall not be permitted to-enroll to improve his/her marks in a subject or the aggregate marks.
- 3.5 The medium of instruction, examination and project report shall be in English, expect for courses on language other than English.

4. DURATION OF THE PROGRAMME

The duration of the programme for the degree of B.E/B.TECH programme shall be four academic years with semester pattern for HSC students and three years for lateral entry students. The number of working days will be 90 days (which includes the days for conducting unit tests.), 450 hours, or 540 periods of each 50 minutes duration for semester pattern. The number of working days is to be calculated excluding study holidays, Government holidays, and end-semester examination days. The head of the department shall ensure that every teacher imparts instruction as per the number of period specified in the syllabus and that the teacher teaches the full content of the specified syllabus for the course being taught.

5. SYSTEMS OF EXAMINATION

Performance in each course of study shall be evaluated based on i) Continuous internal assessment throughout the semester and ii) an end semester examination.

Theory

End semester examination will be conducted in all the theory subjects of study at the end of each semester for all the courses. The maximum marks of each subject shall be 100, out of which the continuous internal assessment will carry 25 marks, while the end semester examination will carry 75 marks.

To derive the internal mark the following guidelines are to be followed:

1) Test (3 Nos) {Each test is to be conducted for 60 marks} : 60 marks

2) Assignment /Seminar/mini project

a) Assignment 2 Nos (or)

b) 1 Assignment +1 Seminar (or) : 30 marks

c) Mini project

d) Attendance* : 10 marks

100 marks

Total 100 marks should be reduced to 25 marks

*Attendance (10 marks)

Percentage of attendance	Marks				
75	2				
76-80	4				
81-85	6				
86-90	8				
91 and above	10				

Practical

The practical classes for all the practical/lab component courses will be assessed continuously and marks will be entered in the prescribed Performa. The progress of classes will be monitored by a committee formed by the concerned head of the departments/ professor in-charge of the course to ensure that the concerned staff conducts the laboratory experiments as specified in the syllabus. The maximum marks for the practical/lab component courses shall be 100, out of which the continues internal assessment will carry 25 marks, while the end semester practical examination will carry 75 marks. If any practical course contains Part A Part B components, the maximum marks for each part of the lab will be 50 marks, while the end semester practical examination will carry 37.5 marks. The internal and external examiners shall conduct the end semester practical examination and award marks. To derive the internal mark the following guidelines are to be followed.

i) Continuous Assessment : 50 marksii) Test (minimum one) : 40 marksiii) Attendance : 10 marks

Total 100 marks should be reduced to 25 marks

*Attendance (10) marks

Percentage of attendance	Marks
75	2
76-80	4
81-85	6
86-90	8
91 and above	10

Project work and Viva-voce

For the project work and vivo-voce examination the maximum marks shall be 200 comprising 150 marks for internal assessment and 150 for the end semester examination. The award of the end semester marks for 150 shall be evaluated by both the internal and external examiners. Out of 150 the project report shall carry a maximum of 50 marks (same mark must be awarded to every student of the project group) while the viva-voce **examination shall carry 100 marks** (awarded to each student of the project group based on the individual performance in the viva-vice examination).

For internal mark:

Work assessed by Guide/Supervisor : 50 % weight Work assessed by Committee : 50 % weight

(Committee consists of 3 members one among them is the Guide/Supervisor)

6. REQUIREMENTS FOR EXAMINATION AND ATTENDANCE

A candidate who has fulfilled by the following conditions shall be deemed to have satisfied the requirements for completions of a semester.

- 6.1 i. A candidate will be permitted to appear for the examination for any semester, only if he/she secures not less than 75% of attendance in the number of working days during that semester, if it shall be open to chairman of the academic council or any authority delegated with such powers (by the governing body) to grant condonation (based on the recommendation of the head of the department) to a candidate who has failed to secure 75% of the attendance for valid reasons and has secured not less than 66% of the attendance. Such exemptions can be allowed only TWO times during his/her entire course of study.
 - ii Candidate representing university in State/National/International /Inter University sports events, co and extra-curricular activities, paper or project presentation with prior permission form the head of the institution are given exemption up to 10% of the required attendance and such candidates shall be permitted to appear for the current semester examinations.
 - iii his/her conduct and progress have been certified to be satisfactory by the concerned head of the department.
 - iv Condonation can be allowed only two times during his/her entire course of study.
- 6.2 Candidates who do not complete the semester (as per clause 6.1) will not be permitted to write the end semester examination and are not permitted go to next

semester. They are required to repeat the incomplete semester in the next academic year.

7. PROCEDURE FOR AWARDING MARKS FOR INTERNAL ASSESSMENT

i. Every teacher is required to maintain an 'ATTENDANCE AND ASSESSMENT RECORD' which consists of attendance marked in each lecture or practical or project work class, the test marks and the record of class work (Topic Covered) for each course. This should be submitted to the Head of the departments periodically (at least 3 times in a semester) for checking the syllabus coverage and the records of test marks and attendance. The Head of the department shall affix the signature and date after due verification at the end of the semester. This record should be verified by the Head of the Institution who will keep this document in safe custody (for five years).

ii. Theory Courses (25 Marks):

(a) Unit Tests [60% Weight]

Three tests each carrying sixty (60) marks shall be conducted by the department / Institution. The total marks obtained in all tests put together out of 180, shall be reduced to 60 marks and rounded to nearest integer (this implies equal weight to all the three tests). However retest at the discretion of the head of the department may be conducted for the deserving candidates.

(b) Assignment / Seminar / Miniproject [30% weight]

i) Assignment

Two assignments each carrying 15 marks and requiring work of average 5 to 6 hours of study and written work of average 5 to 6 hours shall be given to be carried out by each student in a separate assignment folder, duly indexed with headings, date of submission, Marks, remarks and signature of faculty with date etc.

ii) Assignment and seminar

A student has to carry out one assignment and one seminar carrying 15 marks each. An assignment normally requires work of average 5 to 6 hours of study and written work of average 5 to 6 hours which has to submitted in a separate assignment folder, duly indexed with headings, date of submission, Marks, remarks and signature of faculty with date etc.,

The student has to make one technical seminar on current topics related to the specialization. The students are expected to submit a report of his / her presentation. The seminar will be assessed by the course tutor with common parameters as described by the department.

iii) Mini Project

A student has to carry out mini project carrying 30 marks either in hardware or software with the approval of the head of the department. The student has to submit a report before the end of the semester. Mini project will be assessed based on the model presentation and report as decided by the department.

(c) Attendance [10% weight]

Attendance (10) marks

Percentage of attendance	marks
75	2
76-80	4
81-85	6
86-90	8
91 and above	10

The internal marks are valid for two more attempts in addition to the current attempt for the candidates admitted from the academic year 2012 to 2013 and onwards. if a candidates scores a minimum of 50% marks in the end semester examination, after three attempts(first attempt + two more attempts), he / she would be declared as passed in that examination.

iii. Practical Subjects [25 marks)

Every practical exercise / experiment shall be evaluated based on conduct of exercise / experiment and records maintained. There shall be at least one test. The criteria for determining the internal assessment marks are:

Experiment / Record / Average Practical classes' performance : 50 % Weight Practical Test : 40% Weight Attendance : 10 % Weight

Total 100 marks should be reduced to 25 Marks.

iv. Project Work

There shall be three assessments during the semester by a review committee. The students shall make presentation on the progress made before the committee. The Head of the Institution shall constitute the review committee for each branch of study. The criteria for arriving the internal assessment marks for the project work evaluated for 50 marks are:

Work accessed by the Project Guide : 50% weight Assessment by a three (3)-member internal review committee : 50% weight

(Guide will be one of the members of the committee)

The internal marks are valid for two more attempts in addition to the current attempt for the candidates admitted from the academic year 2012-2013 and onwards. If a candidate scores a minimum of 50% marks only in the end semester examination, after three attempts (First attempt + two more attempts), he / she would be declared as a passed candidate in that examinations.

8. PROCEDURE FOR COMPLETING THE COURSE

- (i) A candidate who has for some reason discontinued the course can join the course of study of any semester only at the time of its normal commencement in the institution for regular students upon satisfying all the following conditions.
 - (a) he/she should have completed the course of study of the previous semester.
 - (b) he/she should be eligible to register for the examination and satisfy rule 8(iii).
 - (c) he/she should have registered for all the examination of the previous semesters.
- (ii) A candidate will be permitted to proceed from one semester to the next higher semester only if he/she has satisfied the regulation for eligibility to appear for the end semester examination in the concerned semester, subject to the condition that the candidate should register for all the arrear subjects of lower semesters along with the current (higher) semester subject.
- (iii) A candidate should have completed B.E/B.Tech, degree course within a period of SEVEN (or 14 semesters) consecutive academic years (Six consecutive years or 12 semesters for lateral entry students) from the date of admission to the course, even if the candidate discontinues and rejoins subsequently, to be eligible for the award of the degree. The minimum and maximum period for completion of the U.G. Programmes (B.E/B.Tech) are given below.

B.E /B.Tech. (Full Time)	Minimum Number of Semester	Maximum Number of Semesters
HSC Candidates	8	14
Lateral Entry Candidates	6	12

9. REQUIREMENTS TO APPEAR FOR END SEMESTER EXAMINATION

A candidate shall normally be permitted to appear for the end semester examination of the current semester if he/she has satisfied the semester completion requirements (Subject to clause 6.1) and has registered for examination in all course of that semester. Registration is mandatory for current semester examination as well as appear examination failing which the candidate will not be permitted to move to the higher semester.

10. PASSING MINIMUM AND CLASSIFICATION OF SUCCESSFUL CANDIDATE

- (i) For each subject the examination will be conducted for 100 marks. A candidate who secures not less than 50% of the total marks in the end semester examinations and internal assessment put together in both theory and practical courses, including project work, subject to securing a minimum of 50% in the end-semester examination, wherever applicable, shall be declared to have passed the examination in that subject. When the marked secured for 100 is converted to 75, minimum 37 marks must be secured for pass. If any programme, during any semester, conducts the laboratory in two parts, say part a A and Part B, a candidate should register and appear for both parts in the end semester practical examination. If a candidate for any reason is absent in any one part of the practical examination, despite his/her presence in the other part, he/she is declared as fail in both parts A and B (marked as absent in end semester examination) and should appear again for both part A and B in the next attempt. For a pass, a candidate should secure a minimum of 50% in each part and final mark secured is the sum of marks secured in Part A and B.
- (ii) A candidate who successfully completes the course requirements and has passed all the prescribed examinations in all the eight semester within a maximum period of seven years reckoned from the commencement of the first semester to which the candidate was admitted is eligible to get the degree.
- (iii) A candidate who qualifies for the degree by passing the examination in all subject of the entire course in first attempt within a period of four consecutive academic years from the date of admission to the course and secures a CGPA of not less than 8.5 for the entire course shall be declared to have passed the examination for the degree in FIRST CLASS WITH DISTINCTION. For this purpose, the withdrawal from examination will not be construed as an appearance. Further, the authorized break of study will not be counted for the purpose of classification.
- (iv) A candidate transferred from other institution, who qualifies for the degree by passing the examination in all subjects of the entire course in first attempt within a period of four consecutive academic years from the date of admission to the course and secures a CGPA of not less than 8.5 for the entire course shall be declared to have passed the examination for the degree in FIRST CLASS WITH DISTINCTION. For this purpose, the withdrawal from examination will not be construed as an appearance. Further, the authorized break of study will not be counted for the purpose of classification.
- (v) A candidate who qualifies for the award of the degree having passed the examination in all the subject of the course in the semester first to eight within a maximum period of ten consecutive semester after his/her commencement of study in the first semester and secures a CGPA of not less than 6.5 for the entire course shall be

declared to have to have passed the examination for the degree in FIRST CLASS. For this purpose, the authorized break of the study will not be counted for the purpose of classifications.

- (vi) All other successful candidates shall be declared to have passed the examination for the degree in SECOND CLASS.
- (vii) A candidate who is absent in semester examination in a course/ project work after having registered for the same shall be considered to have appeared in that examination for the purpose of classification.

11. ISSUE OF MARK SHEET

Individual mark sheet for each semester will be issued, through the head of the department concerned, after the publication of the result.

The mark sheet will contain credit, grade, grade point and result status for the course concerned.

12. MALPRACTICE

If a student indulges in malpractices in any of the end semester examination, he/she shall be liable for punitive action as prescribed by the Anna University, Chennai from time to time.

13. REVALUATION

- (i) Copies of answer script for the theory course(s) can be obtained from the Office of the Controller of Examinations on payment of a prescribed fee specified for this purpose through proper application.
- (ii) A candidate can apply for revaluation of his/her examination answer paper in a theory course, within a week from the declaration of results, on payment of a prescribed fee through proper application to the Office of the Controller of Examinations, as per the norms given by the Chairman Academic Council. Revaluation is not permitted for practical course and for project work.
- (iii) Re totaling is permissible for all arrear and current theory subjects.

14. ELIGIBILITY FOR THE AWARD OF DEGREE

A candidate shall be declared eligible for the award of the B.E/B.Tech. degree provided the candidate has

(i) Successfully completed the course requirements and has passed all the prescribed examinations in all the 8 semesters within a maximum period of 7 years (6)

semesters within a maximum period of 6 years for lateral entry candidates) from the commencement of first semester (third semester for lateral entry) to which the candidate was admitted.

(ii) The syndicate of the university must have approved the award of degree.

15. CLASS COMMITTEE

- 15.1 A class committee consists of teachers of the concerned class, student representatives and a chairperson who is not teaching the class. It is the like the "QUALITY CIRCLE" (more commonly used in industries) with the overall goal of improving he teaching-learning process. The functions of the class committee include.
 - * Solving problems experienced by students in the class room and in the laboratories.
 - * Clarifying the regulations of the degree programme and details of rules therein.
 - * Informing the student representatives the academic schedule including the dates of assessments and the syllabus coverage for each assessment.
 - * Informing the student representatives the details of regulations regarding weight used for each assessment. In the case of practical course (laboratory/drawing/project work/seminar etc.,) the breakup of marks for each experiment/exercise/module of work, should be clearly discussed in the class committee meeting and informed to the students.
 - * Analyzing the performance of the students of the class after each test and finding the ways and means of solving problems, if any.
 - * Identifying the weak students, if any, and requesting the teachers concerned to provided some additional or guidance of coaching to such weak students.
- 15.2 The class committee for a class under a particular branch is normally constituted by the head of the department. However, if the students of different branches are mixed in each class of the first semester (generally common to all branches), the class committee is to be constituted by the head of the institution.
- 15.3 The class committee shall be constituted on the first working day of any semester or earlier.
- 15.4 At least 6 student representatives (usually 3 boys and 3 girls) shall be included in the class committee.

- 15.5 The chairperson of the class committee any invite the faculty adviser(s) and the head of the department to the meeting of the class committee.
- 15.6 The head of the institution may participate in any class committee of the institution.
- 15.7 The chairperson is required to prepare the minutes of every meeting, submit the same to the head of the institution within two days of the meeting and arrange to circulate among the concerned students and teachers. If there are some points in the minutes requiring action by the authorities concerned. The same shall be brought to the notice of the authority by the head of the institutions.
- 15.8 The first meeting of the class committee shall be held within one week from the date of commencement of the semester, in order to inform the students about the nature and weight of assessments within the framework of the regulations. Two or three subsequent meetings may be held at suitable intervals, During these meetings the student members representing the entire class, shall meaningfully interact and express the opinions and suggestions of the class students to improve the effectiveness of the teaching-learning process.

16. FACULTY ADVISER

To help the students in planning their courses of study and for general advice on the academic programme, the Head of the Department of the student will attach a certain number of students to a teacher of the Department who shall function as Faculty Adviser for those students throughout their period of study. Such Faculty Adviser shall advise the students and monitor the courses taken by the students, check the attendance and progress of the students attached to him / her and counsel them periodically. If necessary, the faculty adviser may also discuss with or inform the parents about the progress of the students.

17. COURSE COMMITTEE FOR COMMON COURSES

Each common theory course offered to more than one discipline or group of students shall have a "Course Committee" comprising all the teachers teaching the common course with one of them nominated as Course Coordinator. The nomination of the Course Coordinator shall be made by the Head of the Department /Head the Institution depending upon whether all the teachers teaching the common course belong to a single department or to several departments. The "Course committee" shall meet as often as possible and ensure uniform evaluation of the tests and arrive at a common scheme of evaluation for the tests. Wherever it is feasible, the course committee may also prepare a common question paper for the test(s).

18. PROVISION FOR WITHDRAWAL FROM EXAMINATION

- (i) A candidate may, for valid reasons, be granted permission to withdraw from appearing for the examination in any course or courses of only one semester examination during the entire duration of the degree programme. Also only one application for withdrawal is permitted for that semester examination in which withdrawal is sought. Withdrawal from appearing for the examination in any course or courses in the middle of the examination is not permitted.
- (ii) Withdrawal application shall be valid only if the candidate is, otherwise, eligible to write the examination and if it is made prior to the commencement of the last examination in that semester and duly recommended by the Head of Department and approved by the Head of the Institution.
- (iii) Withdrawal shall not be construed as an appearance for the eligibility of a candidate for first class with distinction.
- (iv) Withdrawal is possible only if the candidate satisfies the attendance requirements [as per clause 6.1]

19. TEMPORARY BREAK OF STUDY FROM A PROGRAMME

- (i) A candidate is not normally permitted to temporarily break the study. However if a candidate intends to temporarily discontinued the programme in the middle for valid reasons (such as accident or hospitalization due to prolonged ill health) and to rejoin the programme in a later than the last date for registering for the semester examinations of the semester in question, through the head of the department starting the reasons thereof.
- (ii) The candidate permitted to rejoin the programme after the break shall be governed by the rules and regulations in force at the time of rejoining.
- (iii) The duration specified for passing all the course for the purpose of classification vide clause 10(iii), 10(iv) and 10(v) shall be increased by the period of such break of study permitted.
- (iv) The period for completion of the programme reckoned from, the commencement of the first/third semester to which the candidate was admitted shall not exceed the maximum period specified in clause 8(iii) irrespective of the period of break of study in order that he/she may be eligible for the award of the degree (vide clause 14).

(v) If any student is detained for want of requisite attendance, progress and good conduct, the period spent in that semester shall not be considered as permitted 'break of study' and clause 19(iii) is not applicable for this case.

20. RANK OF STUDENT

A candidate who qualifies for the degree by passing the examination in all subjects of the entire course in first attempt within a period of four (three for lateral entry) consecutive academic years from the date of admission to the course can be given his/her position in the class as rank. The rank is determined from III semester to VIII semester examination CGPA. Student transferred from other institution to P.S.R. Engineering College are not eligible for rank.

21. PROCUDURE FOR USING SCRIBER

If candidate is physically handicapped (in case of accidents/ill health) at the time of examination, he/she may be permitted to use a scriber to write the examination. In such case 30 minutes, extra time will be permitted. The scriber shall be a non-engineering student/graduate.

22. INDUSTRIAL VISIT

Every student is required to undergo one industrial visit, starting from the third semester of the progremme. Every teacher shall take the students are least for one industrial visit in a year.

23. PERSONALITY AND CHARACTER DEVELOPMENT

All students shall enroll, on admission, in any one of their personality and character development programmes (NSS/YRC/RRC/ISTE/IEEE/CISCO). The training shall include classes to hygiene and health awareness and training in first aid.

- NATIONAL SERVICE SCHEME (NSS) will have social service activities in and around the college/institution.
- YOUTH RED CROSS (YRC) will have activities related to social service in and around college/institution.
- RED RIBBON CLUB (RRC) will have activities to improve health awareness among the people in and around the college campus.
- INDIAN SOCIETY FOR TECHNICAL EDUCATION (ISTE) will have activities to improve students technical skill and career development.
- INSTITUTION OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) will have activities to enhance professional students innovative skill.
- COMPUTER INFORMATION SYSTEM COMPANY (CISCO) will have activities to enhance professional student's innovative skill with help of enhanced human network.

While the training activities will normally be during weekends, the camp will normally be during vacation period.

24. DISCIPLINE

Every student is required to observe and decorous behavior both inside and outside the college and not to indulge in any activity, which will tend to bring down the prestige of the college. In the event act indiscipline being reported, the principal shall constitute a disciplinary committee consisting of three heads of department of which on should be from the faculty of the student, to inquire into acts in discipline. The disciplinary action is subject to review by the university in case the student represents to the university. Any expulsion of the student from the college shall be with prior concurrence from director of technical education/university.

25. CREDIT SYSTEM

The letter grade and the grade point are awarded base on percentage of marks secure by a candidate in individual course as detailed below:

Range of Total Marks	Letter Grade	Grade Points (GP)
90 to 100	S	10
80 to 89	A	9
70 to 79	В	8
60 to 69	С	7
55 to 59	D	6
50 to 54	Е	5
0 to 49	U	0
INCOMPLETE	I	0

[&]quot;U" denotes failure in the course.

After results are declared, grade sheets will be issued to each student which will contain the following details:

- The list of subjects enrolled the semester and the grades scored.
- The grade point average (GPA) for the semester and
- The cumulative grade point average (CGPA) of all subject enrolled from first semester onwards.

GPA is the ratio of the sum of the products of the number of credits of course registered and the points corresponding to the grades scored in that course, taken for all the course, to the sum of the number of credits of all the course in the semester.

[&]quot;I" denotes incomplete as per clause 6.1 and hence prevention from writing end semester examination

[&]quot;W" denotes withdrawal from the course.

 $GPA = \underbrace{Sum \text{ of } [C \text{ x } GP]}_{Sum \text{ of } C}$

Where C - Credit of a particular course

GP - Grade point obtained by the student in the respective course

CGPA will be calculated in a similar manner, considering all the course enrolled from first semester, "U", "T", and "W" grades will be excluded for calculating GPA and CGPA.

Each course is normally assigned certain number of credits with 1 credit per lecturer period per week, 1 credit per tutorial period per week, 1 credit for 2 periods of laboratory or practical or seminar or project work per week (2 credits for 3 or 4 periods of practical).

26. REVISION OF REGULATION AND CURRICULUM

The college may from time to time revise, amend of change the regulations, scheme of examinations and syllabus, if found necessary.

----- End -----

REGULATION – 2012 B.E. CIVIL ENGINEERING CURRICULUM & SYLLABI

Full time candidates admitted during 2012-2013 and onwards

S.No.	Sub.		Internal	Final	Total	Hı	rs &	Cred	its	Pre requisite / Corequisite (CR)
	Code	Subject Name	Marks	Exam Marks	Marks	L	Т	P	C	
		SEMESTE	R I							
Theory	7									
1	12F1Z1	Technical English-I	25	75	100	3	1	0	4	
2	12F1Z2	Engineering Mathematics-I	25	75	100	3	1	0	4	
3	12F1Z3	Engineering Physics-I	25	75	100	3	0	0	3	
4	12F1Z4	Engineering Chemistry-I	25	75	100	3	0	0	3	
5	12F1Z5	Computing Fundamentals and C Programming	25	75	100	3	0	0	3	
6	12F1Z6	Engineering Graphics	25	75	100	3	1	0	4	
Practic	al									
7	12F1Z7	Physics and Chemistry Laboratory - 1	25	75	100	0	0	3	2	12F1Z3-Engineering Physics-I (CR) 12F1Z4-Engineering Chemistry-I (CR)
8	12F1Z8	Computer Practice Laboratory -1	25	75	100	0	0	3	2	12F1Z5-Computing Fundamentals and C Programming (CR)
9	12F1Z9	Engineering Practices Laboratory	25	75	100	0	0	3	2	
		Total			900	18	3	9	27	

S.No.	Sub. Code	Subject Name	Internal Marks	Final Exam Marks	Total Marks	H L	rs & C	Credi P	ts C	Pre requisite / Corequisite (CR)
		SEMESTER								
Theory	,									
1	12F2Z1	Technical English-II	25	75	100	3	1	0	4	12F1Z1-Technical English-I
2	12F2Z2	Engineering Mathematics-II	25	75	100	3	1	0	4	12F1Z2-Engineering Mathematics-I

3	12F2Z3	Engineering Physics-II	25	75	100	3	0	0	3	12F1Z3-Engineering Physics-I
4	12F2Z4	Engineering Chemistry-II	25	75	100	3	0	0	3	12F1Z4-Engineering Chemistry-I
5	12F2Y5	Engineering Mechanics (For Non-Circuit branches)	25	75	100	3	1	0	4	12F1Z2-Engineering Mathematics-I
6	12F2Y6	Basic Electrical and Electronics Engineering (For Non-Circuit branches)	25	75	100	3	1	0	4	
Practic	al							•	•	
7	12F2Z7	Physics and Chemistry Laboratory - II	25	75	100	0	0	3	2	12F1Z7-Physics and Chemistry Laboratory – I 12F2Z3- Engineering Physics-II (CR) 12F2Z4- Engineering Chemistry-II (CR)
8	12F2X7	Computer Aided Drafting and Modeling Laboratory (For Non Circuit Branches)	25	75	100	0	0	3	2	12F1Z8-Computer Practice Laboratory -1
9	12F2Z8	Computer Practice Laboratory - II	25	75	100	0	0	3	2	12F1Z8-Computer Practice Laboratory -1
		Total			900	18	4	9	28	

	Sub.		Internal	Final			ts	Pre requisite / Corequisite (CR)		
S.No.	Code	Subject Name	Marks	Exam Marks	Marks	L	T	P	C	
		SEMESTER								
Theory	7									
1	12MA31	Transforms and Partial Differential Equations	25	75	100	3	1	0	4	12F2Z2-Engineering Mathematics-II
2	12GE31	Environmental Science and Engineering	25	75	100	3	0	0	3	12F2Z4- Engineering Chemistry-II
3	12CE31	Applied Geology	25	75	100	3	0	0	3	12F1Z4-Engineering Chemistry-I
4	12CE32	Mechanics of Solids	25	75	100	3	1	0	4	12F2Y5-Engineering Mechanics
5	12CE33	Mechanics of Fluids	25	75	100	3	1	0	4	12F2Y5-Engineering Mechanics
6	12CE34	Building Materials and Construction Techniques	25	75	100	4	0	0	4	12F2Y6- Basic Electrical and Electronics Engineering.
7	12CE35	Surveying - I	25	75	100	3	0	0	3	
Practic	al									
8	12CE36	Survey Practical – I	25	75	100	0	0	4	2	12CE35- Surveying-I(CR)

9	12CE37	Computer Aided Building Drawing	25	75	100	0	0	4	2	12F2X7- Computer Aided Drafting and ModelingLaboratory
10	12HS31	Professional English - I	25	75	100	0	0	2	1	12F2Z1- Technical English-II
		Total			1000	22	3	10	30	

	Sub.		Internal	Final	Total	Hı	rs &	Cred	lits	Pre requisite / Corequisite (CR)
S.No.	Code	Subject Name	Marks	Exam Marks	Marks	L	T	P	C	
		SEMESTER								
Theory										
1	12MA42	Numerical Methods	25	75	100	3	1	0	4	12MA31- Transforms and Partial Differential Equations
2	12CE41	Geotechnical Engineering - I	25	75	100	3	0	0	3	12CE31- Applied Geology
3	12CE42	Strength of Materials	25	75	100	3	1	0	4	12CE32- Mechanics of Solids
4	12CE43	Applied Hydraulic Engineering	25	75	100	3	1	0	4	12CE33- Mechanics of Fluids
5	12CE44	Surveying – II	25	75	100	3	0	0	3	12CE35- Surveying-I
6	12CE45	Highway Engineering	25	75	100	3	0	0	3	12CE34- Building Materials and Construction Techniques
Practica	al					1			l	Teeminques
7	12CE46	Strength of Materials Laboratory	25	75	100	0	0	3	2	12CE42- Strength of Materials(CR) 12CE32- Mechanics of Solids
8	12CE47	Hydraulic Engineering Laboratory	25	75	100	0	0	3	2	12CE43- Applied Hydraulic Engineering(CR) 12CE33- Mechanics of Fluids
9	12CE48	Survey Practical – II	25	75	100	0	0	4	2	12CE44- Surveying – II(CR) 12CE35- Surveying-I
10	12HS41	Professional English - II	25	75	100	0	0	2	1	12HS31- Professional English-I
		Total		_	1000	18	3	12	28	

	Sub.		Internal	Final	Total	Hı	rs &	Cred	its	Pre requisite / Corequisite (CR)
S.No.	Code	Subject Name	Marks	Exam Marks	Marks	L	Т	P	C	
		SEMESTE								
Theory										
1	12CE51	Irrigation Engineering	25	75	100	3	0	0	3	12CE43- Applied Hydraulic Engineering
2	12CE52	Structural Analysis - I	25	75	100	3	1	0	4	12CE42- Strength of Materials
3	12CE53		25	75	100	3	0	0	3	12CE34- Building Materials and Construction
3		Concrete Technology								Techniques
4	12CE54	Environmental Engineering -I	25	75	100	3	0	0	3	12GE31-EnvironmentalScienceandEngineering
5	12CE55	Geotechnical Engineering -II	25	75	100	3	0	0	3	12CE41- Geotechnical Engineering - I
6	12CE56	Design of RC Elements	25	75	100	3	1	0	4	12CE42- Strength of Materials
Practica	ıl									
7	12CE57	Concrete and Highway Engineering Lab	25	75	100	0	0	3	2	12CE53- Concrete Technology(CR)
0	12CE58		25	75	100	0	0	3	2	12CE55- Geotechnical Engineering –II(CR)
8		Soil Mechanics Laboratory								12CE41- Geotechnical Engineering - I
9	12CE59		25	75	100	-	-	-	2	12CE44- Surveying – II
9		Survey Camp								12CE35- Surveying-I
10	12HS51	English for Employment - I	25	75	100	0	0	2	1	12HS41- Professional English - II
		Total			1000	18	2	8	27	

	Sub.		Internal	Final	Total	Hı	rs &	Cred	its	Pre requisite / Corequisite (CR)
S.No.	Code	Subject Name	Marks	Exam Marks	Marks	L	T	P	C	
		SEMESTER	VI							
Theory										
1	12MG52	Principles of Management	25	75	100	3	0	0	3	
2	12CE61	Structural Analysis – II	25	75	100	3	1	0	4	12CE52- Structural Analysis - I
3	12CE62	Design of Steel Structures	25	75	100	3	1	0	4	12CE56- Design of RC Elements
1	12CE63	Construction Planning & Scheduling	25	75	100	3	0	0	3	12CE34- Building Materials and Construction
4										Techniques

5	12CE64	Environmental Engineering-II	25	75	100	3	0	0	3	12CE54- Environmental Engineering -I
6	12CE65	Railways, Airports and Harbour Engineering	25	75	100	3	0	0	3	12CE45- Highway Engineering
Practic	al									
7	12CE66	Environmental and Irrigation Engineering Drawing	25	75	100	0	0	4	2	12CE64- Environmental Engineering-II(CR) 12CE54- Environmental Engineering –I 12CE51- Irrigation Engineering
8	12CE67	Environmental Engineering Laboratory	25	75	100	0	0	3	2	12CE64- Environmental Engineering-II(CR) 12CE54- Environmental Engineering –I
9	12HS61	English for Employment - II	25	75	100	0	0	2	1	12HS51- English for Employment - I
		Total			900	18	2	9	25	

	Sub.		Internal	Final	Total	Hı	s &	Cred	its	Pre requisite / Corequisite (CR)
S.No.	Code	Subject Name	Marks	Exam Marks	Marks	L	T	P	C	
		SEMESTER	VII							
Theory										
1	12CE71	Design of Reinforced Concrete & Brick Masonry Structures	25	75	100	3	1	0	4	12CE56- Design of RC Elements
2	12CE72	Estimation and Quantity Surveying	25	75	100	3	0	0	3	12CE63- Construction Planning & Scheduling
3	12CE73	Basics of Dynamics and Aseismic Design	25	75	100	3	0	0	3	12CE62- Design of Steel Structures
4	12CE74	Prestressed Concrete Structures	25	75	100	3	0	0	3	12CE56- Design of RC Elements
5	E1	Elective – I	25	75	100	3	0	0	3	
6	E2	Elective – II	25	75	100	3	0	0	3	
Practica	al									
7	12CE75	Computer Aided Design and Drafting Laboratory	25	75	100	0	0	4	2	12CE71- Design of Reinforced Concrete & Brick Masonry Structures(CR) 12CE56- Design of RC Elements
8	12CE76	Design Project	25	75	100	0	0	4	2	
		Total			800	11	1	8	23	

	Course		Internal	Final	Total		Hrs &	c Credits	
S.No.	Code	Course Name	Marks	Exam Marks	Marks	L	T	P	C
		SEME	STER VIII						
Theory									
1	E3	Elective – III	25	75	100	3	0	0	3
2	E4	Elective – IV	25	75	100	3	0	0	3
Practica	als								
3	12CE81	Project Work	25	75	100	0	0	12	6
		Total			300	6	0	12	12

Credits (I &II Semesters) : 55 Credits (III &VIII Semesters) : 145 Total Credits (I to VIII Semesters): 200

LIST OF ELECTIVES

	Course		Internal	Final	Total	Hrs	&Cr	edit	S	Pre requisite / Corequisite (CR)
S.No.	Code	Course Name	Marks	Exam Marks	Marks	L	Т	P	C	
		VII – SEMESTER ELI	ECTIVES 1	[
1	12CE7A	Hydrology	25	75	100	3	0	0	3	12CE51- Irrigation Engineering
2	12CE7B	Remote Sensing Techniques and GIS	25	75	100	3	0	0	3	12F2Z3- Engineering Physics-II 12CE44- Surveying – II
3	12CE7C	Architecture	25	75	100	3	0	0	3	12CE63- Construction Planning & Scheduling
4	12MG71	Total Quality Management	25	75	100	3	0	0	3	12MG52- Principles of Management
5	12CE7D	Traffic Engineering and Management	25	75	100	3	0	0	3	12CE45- Highway Engineering
6	12CE7E	Water Resources Engineering	25	75	100	3	0	0	3	12CE51- Irrigation Engineering
7	12CE7F	Ground Improvement Techniques	25	75	100	3	0	0	3	12CE34- Building Materials and Construction Techniques

	Course		Internal	Final	Total	Hrs	&Cr	edit	S	Pre requisite / Corequisite (CR)
S.No.	Code	Course Name	Marks	Exam Marks	Marks	L	T	P	C	
		VII – SEMESTER ELE	CTIVES I	I						
1	12CE7G	Contract Laws And Regulations	25	75	100	3	0	0	3	12MG52- Principles of Management
2	12CE7H	Introduction to Soil Dynamics and Machine Foundations	25	75	100	3	0	0	3	12CE55- Geotechnical Engineering –II(CR) 12CE41- Geotechnical Engineering - I
3	12CE7I	Rock Engineering	25	75	100	3	0	0	3	12CE31- Applied Geology
4	12CE7J	Environmental Impact Assessment of Civil Engineering Projects	25	75	100	3	0	0	3	12CE64- Environmental Engineering-II 12CE54- Environmental Engineering –I
5	12CE7K	Industrial Waste Management	25	75	100	3	0	0	3	12CE64- Environmental Engineering-II 12CE54- Environmental Engineering –I
6	12CE7L	Air Pollution Management	25	75	100	3	0	0	3	12GE31-Environmental Science and Engineering
7	12CE7M	Municipal Solid Waste Management	25	75	100	3	0	0	3	12CE64- Environmental Engineering-II 12CE54- Environmental Engineering –I
8	12CE7N	Ecological Engineering	25	75	100	3	0	0	3	12GE31-Environmental Science and Engineering

S.No	Course		Internal	Final	Total	Hrs	s & (Cred	its	Pre requisite / Corequisite (CR)
	Code	Course Name	Marks	Exam Marks	Marks	L	T	P	C	
		VIII – SEMESTER E	LECTIVES	III						
1	12CE8A	Bridge Structures	25	75	100	3	0	0	3	12CE56-Design of RC Elements
2	12CE8B	Storage Structures	25	75	100	3	0	0	3	12CE62-Design of Steel Structures
3	12CE8C	Design of Plate and Shell Structures	25	75	100	3	0	0	3	12CE71-Design of Reinforced Concrete & Brick Masonry Structures
4	12CE8D	Tall Buildings	25	75	100	3	0	0	3	12CE34- Building Materials and Construction Techniques
5	12CE8E	Prefabricated Structures	25	75	100	3	0	0	3	12CE74-Prestressed Concrete Structure
6	12CE8F	Wind Engineering	25	75	100	3	0	0	3	

S.No	Course	Course Name	Internal	Final	Total	Hr	s & (Cred	lits	Pre requisite / Corequisite (CR)
	Code		Marks	Exam	Marks	L	T	P	C	
				Marks						
VIII –	SEMESTE	R ELECTIVES IV								
1	12CE8G	Computer Aided Design of Structure	25	75	100	3	0	0	3	12F1Z5- Computing Fundamentals and C
										Programming
2	12CE8H	Industrial Structures	25	75	100	3	0	0	3	12CE62-Design of Steel Structures
3	12CE8I	Smart Structures and Smart Materials	25	75	100	3	0	0	3	12CE34- Building Materials and Construction
										Techniques
4	12CE8J	Finite Element Techniques	25	75	100	3	0	0	3	12CE52- Structural Analysis – I
										12CE61- Structural Analysis - II
5	12CE8K	Repair and Rehabilitation of	25	75	100	3	0	0	3	12CE34- Building Materials and Construction
		Structures								Techniques

12F1Z1	TECHNICAL ENGLISH - I		L	T	P	C								
			3	1	0	4								
Programme:	B.E. Civil Engineering		I											
Category:	Core													
Prerequisites:														
Aim:	To improve English communication skill with relevance	to technic	cal co	ntext.										
Course	To Show the Basic knowledge of English Language	and gram	mar											
Objectives:	To develop error-free communication													
	To construct written communication with the mechanical communication	nics of W	riting	T										
	To summarize the text													
	To improve the basic knowledge of Business Committee	unication												
Course	1. Relate basic grammar and structure of a languag	e with re	elevar	ice to	o tec	hnical								
Outcomes:	vocabulary.													
	2. Analyze the technical English resources with reading	g skill.												
	3. Develop technical communication skill in writing.													
	4. Distinguish the sounds of English with Technical aud													
	5. Adapt Basic English language skill for effective oral	communi	catio	n.										

UNIT-I FOCUS ON LANGUAGE	12
General Vocabulary- prefix, suffix –Denotative & connotative- Parts of Sp	
Sentences- Conditionals Connectors Concord -TensesActive &Passive voice	• •
Clauses-Spelling& Punctuation-Cause & Effect-Correct use of words(parts of sp	
Tags-'wh'&'Yes/No'Type questions-Rearranging Jumbled Sentences-One-Word Su	, -
UNIT-II READING	12
Reading for gist/Identifying information/gap filling-Reading different types	
advertisement, instruction, manuals, report - Reading passage with multiple choice	questions/cloze
type passage/sentence matching/completing passage-Reading for flow chart completing passage-Reading flow chart cha	letion/matching
information/matching headings, Reading for sentence completion	
UNIT-III WRITING	12
Writing Sentences for Brevity, Clarity and Simplicity-Writing Topic ser	ntences/General
Information/Description Paragraph-structuring an Essay-Writing effective conclusions	
Process- Writing formal letter like Requisition letter, Placing an order, Qu	_
Acknowledgement letter, Enquiry Letter, Complaint Letter, Permission Letter.	·
UNIT-IV LISTENING	12
Listening for Learning-Word Stress and Pronunciation practices-Listening	for Specific
information-Note taking-Listening to announcements- Listening to News on the rad	-
UNIT-V SPEAKING	12
Introducing oneself-offering Suggestions and recommendations-Expressing opinio	ns suggestions-
(agreement/disagreement)-Role play- Purchase Manager& Customer, Customer	00
(voice) & Customer, Bank manager& Employee, Commenting on the basis of Di	
Verbal & Non-verbal cues in speech-Using Familiar Expressions in different situation	_
	: 60 PERIODS

TEXT BOOK(S)

1. Department of Humanities & Social Sciences, Anna University, 'English for Engineers and Technologists' Combined Edition (Volumes 1 & 2), Chennai: Orient Longman Pvt. Ltd., 2006.

	Cor	tinuous Assessment (2	25)	End Semester							
Evaluation	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Criteria & Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% and above	- 10, 85-90% - 8, 81-	84% - 6, 76-80%	% - 4, 75% - 2							
Grade Criteria	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail										

Course					Progr	am Ou	tcomes	(POs)					Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1									2	3	3		1			3	
CO2				1					3	3	3		1			3	
соз									1	2	2		1			3	
CO4									3	3	3		1			3	
CO5									2	3	3		1			3	

12F1Z2	ENGINEERING MATHEMATICS - I	L	T	1	P	C							
		3	1		0	4							
Programme:	B.E. Civil Engineering Sem:		I										
Category:	Core												
Prerequisites :													
Aim:	ne Course is aimed at Developing the basic mathematical skills of Engineering udent.												
Course Objectives:	 To develop the basic mathematical knowledge and computation to the areas of applied mathematics. To develop the skills of the students in the area Dimensional Geometry and Matrices. To make the student for appreciating the purpose of usi Eigen Vector to create a new domain in which it is exproblems that is being investigated in Spectral Theory. 	of C	alcul gen	us va	, Th	aree							
Course Outcomes:	 Develop the inverse of given matrix and reduce matrix equal Hamilton theorem Elaborate given function as a power series using Taylor's some and the same and the	eries.	ites.		·								

UNIT-I	MATRICES	12								
Characterist	Characteristic equation - Eigen Values and Eigen vectors of a real matrix - Properties of									
Eigen value	es - Problem solving using Cayley-Hamilton - Similarity Transfo.	rmation -								
Orthogonal	Orthogonal Transformation of a Symmetric matrix to diagonal form - Quadratic form -									
Orthogonal	Orthogonal reduction to canonical form									
UNIT-II THREE DIMENSIONAL GEOMETRY 12										
Introduction	– Sphere - Tangent Plane - Plane Section of a Sphere – Lines – Ske	w Lines -								
Coplanar Li	nes – Equation of Cylinder - Right Circular Cylinder.									
UNIT-III	DIFFERENTIAL CALCULUS	12								
Curvature -	Radius of curvature - Cartesian and Parametric Coordinates -	Circle of								
Curvature -	Involutes and Evolutes – Envelope - Evolutes as Envelope of its norma	ıl								
UNIT-IV	FUNCTIONS OF SEVERAL VARIABLES	12								
Partial Der	ivatives - Euler's Theorem for homogeneous function - Total De	rivative -								
differentiation	on of Implicit function – Jacobian - Taylor's Expansion - Maxima/M	linima for								
function of t	two variables - Method of Lagrange's multipliers									
UNIT-V	MULTIPLE INTEGRALS	12								
Double Integration - Cartesian and Polar co-ordinates - Change of order of Integration -										
Change of variable between Cartesian and polar co-ordinates – Triple integration – Area as a										
double integ	double integral – Volume as a triple integral									
	TOTAL: 60 P	ERIODS								

Page 28 B.E. - Civil Engineering

TEXT BOOK(S)

- 1. B.S.Grewal, 'Higher Engineering Mathematics', Thirty Sixth Edition, Khanna Publishers, Delhi, 2005.
- 2. Kreyszig, E., Advanced Engineering Mathematics, 8th edition, John Wiley Sons, 2001.
- 3. Dr.P.Kandasamy , Dr.K.Thilagavathy , Dr.K.Gunavathy , S. Chand & Company Ltd. Ram nagar, New Delhi.

REFERENCE(S)

- 1. Greenberg, M.D. Advanced Engineering Mathematics, Second Edition, Pearson Education Inc. (First Indian reprint), 2002
- 2. Venkataraman.M.K.,"Engineering Mathematics", Volume I and II Revised enlarged Fourth Edition, The National Publishing Cpompany, Chennai, 2004.
- 3. Veerarajan.T"Engineering Mathematics",Fourth Edition,Tata McGraw Hill publishing company Ltd,New Delhi,2005.

	Con	tinuous Assessment (25)	End Semester	
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]
Attendance Mark	91% and above	<u>-10, 85-90% - 8, 83</u>			
Grade Criteria	S(90-100), A(8	1-89), B(71-80), C(6	1-70), D(56-60)	, E(50-55), U (<5	50)-Fail

Course Outcomes	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3		1								3	3			3
CO2	3	3		2								2	3			3
CO3	2	2										2	2			2
CO4	1	1											2			3
CO5	3	3		1									3			2
CO6	2	2		1								3	3			2

12F1Z3	ENGINEERING PHYSICS – I		L	T	P	C								
			3	0	0	3								
Programm	B.E. Civil Engineering	SEM:	I											
e:		SENI.												
Category:	Core													
Prerequisi														
tes:														
Aim:	To endow the students with the fundamentals of Physics	To endow the students with the fundamentals of Physics and apply new ideas in the												
	field of Engineering and Technology.	* ** *												
Course	To study the properties, production of ultrasonic wa	aves and the	ir app	licati	ions i	n								
Objectives	engineering field.													
:	To study the principle, types and applications of l	LASER and	the j	princ	iple o	of								
	fiber optic communication and its applications.													
	To study the basic concepts of Quantum physics and	d Crystal phy	ysics.											
Course	1. Apply the ultrasonics principles to engineering application	itions.												
Outcomes:	2. Summarize the principles of different types of las	er and lase	r cha	racte	ristic	s,								
	industrial and medical applications of the laser.													
	3. Estimate the light propagation in optical fiber and ana	alyze its stru	cture	s, typ	es an	d								
	applications such as sensors, endoscope.													
	4.Interpret the Planck's theory in quantum phenomena ar	nd basic con	cepts	like										
	5. Compton scattering, Schrodinger equations and its app													
	6. Identify the cubic unit cells (SC, BCC, FCC) and HC	P, miller in	dices	and	crysta	al								
	defects.													

UNIT-I ULTRASONICS	9									
Introduction - Production - magnetostriction effect - magnetostriction generate	rpiezoelectric									
effect - piezoelectric generator- Detection of ultrasonic waves properties -	Cavitations -									
Velocity measurement – acoustic grating - Industrial applications – drilling, weld	ing, soldering									
and cleaning - SONAR - Non Destructive Testing - pulse echo system through	transmission									
and reflection modes - A,B and C –scan displays, Medical applications - Sonograms										
UNIT-II LASERS	9									
Introduction - Principle of Spontaneous emission and stimulated emission	n. Population									
inversion, pumping. Einsteins A and B coeffcients - derivation. Types of lasers -	He-Ne, CO2,									
Nd-YAG, Semiconductor lasers - Qualitative Industrial Applications - Lasers in	welding, heat									
treatment, cutting – Medical applications - Holography & uses.										
UNIT-III FIBER OPTICS & APPLICATIONS	9									
Principle and propagation of light in optical fibres – Numerical aperture and Acc	eptance angle									
- Types of optical fibres (material, refractive index, mode) – Double crucible tech	nique of fibre									
drawing - Fibre optical communication system (Block diagram) - Light sources	- Detectors -									
Fibre optic sensors – temperature & displacement - Endoscope.										
UNIT-IV QUANTUM PHYSICS	9									
Black body radiation – Planck's theory (derivation) – Deduction of Wien's dis	placement law									
and Rayleigh - Jeans' Law from Planck's theory - Compton effect. Theory and	experimental									
verification – Matter waves – Schrödinger's wave equation – Time independent and time										
dependent equations – Physical significance of wave function – Particle in a one dimensional										
box.										
UNIT-V CRYSTAL PHYSICS	9									

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures - Crystal defects – point, line and surface defects- Burger vector.

TOTAL:45 PERIODS

- 1. R. K. Gaur and S.C. Gupta, 'Engineering Physics' Dhanpat Rai Publications, New Delhi(2003)
- 2. M.N. Avadhanulu and PG Kshirsagar, 'A Text book of Engineering Physics', S.Chand and company, Ltd., New Delhi, 2005.

REFERENCE(S)

- 1. Serway and Jewett, 'Physics for Scientists and Engineers with Modern Physics',6th Edition, Thomson Brooks/Cole, Indian reprint (2007)
- 2. Rajendran, V and Marikani A, 'Engineering Physics' Tata McGraw Hill Publications Ltd, III Edition, New Delhi, (2004).
- 3. Palanisamy, P.K., 'Engineering Physics' Scitech publications, Chennai, (2007).
- 4. Jayakumar. S, 'Engineering Physics', R.K. Publishers, Coimbatore, (2003).
- 5. Chitra Shadrach and Sivakumar Vadivelu, 'Engineering Physics', Pearson Education, New Delhi, (2007).

Evaluation Criteria & Marks	Con	tinuous Assessment (25)	End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	1-89), B(71-80), C(6	1-70), D(56-60)	, E(50-55), U (<5	60)-Fail				

Course Outcomes	Program Outcomes (POs)												Program Specific Outcomes (PSOs				
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PSO1	PSO2	PSO3	PSO4		
CO1	3	3		1								3	3			3	
CO2	3	3		2								2	3			3	
CO3	2	2										2	3			3	
CO4	1	1											3			3	
CO5	3	3		1									3			3	

12F1Z4	ENGINEERING CHEMISTRY – I		3	0	0	3									
Programme:	B.E. Civil Engineering	Sem:		I											
Category:	Core	ore													
Prerequisites:															
Aim:	o impart a sound knowledge on the principles of chemistry involving the different oplication oriented topics required for all engineering branches.														
Course Objectives:	The student should be conversant with the principles of water characterization and treatment for potable and industrial purposes.														
	Industrial applications of surface chemistry	 Principles of polymer chemistry and engineering applications of polymers Industrial applications of surface chemistry Conventional and non-conventional energy sources and energy storage devices 													
Course Outcomes:	 Demonstrate the essential concept of water chemis applications of water technology Analyze the chemistry of polymers and composites Clarify the core concepts of surface chemistry Create the concepts of non-renewable energy sources Examine and pertain the chemistry of engineering m Identify the chemistry of Engineering materials like I Illustrate the structure and applications of engine materials 	and stora aterials lil Lubricants	ige de ke ab s and	evices rasivo	s es ctorie	es									

UNIT-I WATER TECHNOLOGY	9								
Hardness-Types and Estimation by EDTA method, Problems, Characteristics of	water,								
alkalinity – types of alkalinity and determination – hardness –types and estimation by	EDTA								
method (problems); Domestic water treatment -disinfection methods (Chlorination, ozo	nation.								
UV treatment) – Boiler feed water– requirements – disadvantages of using hard water in	boilers								
- internal conditioning (phosphate, calgon and carbonate conditioning methods) - e	xternal								
conditioning – demineralization process – desalination and reverse osmosis.									
UNIT-II POLYMERS AND COMPOSITES	9								
Polymers-definition – polymerization – types – addition and condensation Polymerization	ation –								
free radical polymerization mechanism - Plastics, classification-Preparation, properti	ies and								
uses of PVC, Teflon, polycarbonate, polyurethane, Nylon-6, 6, PET- Rubber -vulcaniza	tion of								
rubber, synthetic rubbers – buty1Rubber, SBR, Composites – definition, types polymer	matrix								
composites – FRP only.									
UNIT-III SURFACE CHEMISTRY	9								
Adsorption – types – adsorption of gases on solids – adsorption isotherms –Frendli									
Langmuir isotherms – adsorption of solutes from solution – role of adsorbents in ca	talysis,								
ion-exchange adsorption and pollution abatement.									
UNIT-IV NON-CONVENTIONAL ENERGY SOURCES AND STORAGE	9								
DEVICES									
Nuclear energy - fission and fusion reactions and light water nuclear reactor for									
generation (block diagram only) – breeder reactor – solar energy Conversion – Solar									
wind energy – fuel cells – hydrogen – oxygen fuel cell – Batteries – Alkaline batteries -	– lead–								
acid, nickel-cadmium and lithium batteries.									
UNIT-V ENGINEERING MATERIALS	9								
Refractories – classification – acidic, basic and neutral refractories – properties (refractories									
refractoriness under load, dimensional stability, porosity, thermal spalling) - manufac	ture of								

alumina, magnesite and zirconia bricks, Abrasives – natural and synthetic abrasives – quartz, corundum, emery, garnet, diamond, silicon carbide and boron carbide. Lubricants – mechanism of lubrication, liquid lubricants, - properties – viscosity index, flash and fire points, cloud and pour points, oiliness) – solid lubricants – graphite and molybdenum sulphide. Nanomaterials – introduction to nanochemistry – carbon nanotubes and their Applications

TOTAL: 45 PERIODS

TEXT BOOK(S)

- 1. A. Ravikrishnan, "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009.
- 2. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).

REFERENCE(S)

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).

	Con	tinuous Assessment (25)	End Semester	
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]
Attendance Mark	91% and above	e-10, 85-90% - 8, 83	1-84% - 6, 76-8	0% - 4, 75% - 2	
Grade Criteria	S(90-100), A(8	1-89), B(71-80), C(6)	1-70), D(56-60)	, E(50-55), U (<5	50)-Fail

Course Outcomes	Program Outcomes (POs)													ic s)		
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PSO1	PSO2	PSO3	PSO4
CO1	3	3		2			3					3	2			3
CO2	3	2		2								2	2			3
CO3				2			2					2	2			3
CO4	2	1		2			2					1	2			3
CO5	3	2		1								2	2			3
CO6	3	3		2			3					3	2			3
CO7	3	3		2			3					3	2			3

12F1Z5	COMPUTING FUNDAMENTALS AND PROGRAMMING	L	T	P	С					
	,									
Programme:	B.E. Civil Engineering		I							
Category:	Core									
Prerequisites:										
Aim:	To provide an awareness to Computing and Programming									
Course	To enable the student to learn the major components of a computer system									
Objectives:	To know the correct and efficient ways of solving problems									
	To learn to program in C									
Course	1. Determine the major components of computer and its functionalities.									
Outcomes:	2. Summarize evolution of computers generation and their classification.									
	3. Solve computing problems using algorithm and flowchart.									
	4. Develop small programs related to simple/ moderate mathematical and logical problems in 'C'.									
	5. Develop programs in C language using arrays, functions, structures & pointers.									

UNIT I	INTRODUCTION TO COMPUTERS	9				
Introduction	Introduction - Characteristics of Computers - Evolution of Computers - Computer					
Generation	s - Classification of Computers - Basic Computer organization -	Number				
Systems- C	Computer Software - Types of Software - Software Development Steps -	- Internet				
Evolution -	- Basic Internet Terminology- Internet Services.					
UNIT II	PROBLEM SOLVING	9				
Problem So	olving Using Computers- Planning the Computer Program – Purpose – Alg	gorithm –				
Flow Chart	s – Pseudo code.					
UNIT III	UNIT III INTRODUCTION TO C 9					
Overview	of C - Constants, Variables and Data Types - Operators and Expre	essions –				
Managing l	Input and Output operators – Decision Making - Branching and Looping.					
UNIT IV ARRAYS AND FUNCTIONS						
Arrays- Handling of Character Strings – User-defined Functions – Definitions – Declarations						
- Call by reference – Call by value.						
UNIT V	STRUCTURES AND POINTERS	9				
Structures and Unions – Pointers – Arrays – The Preprocessor – Developing a C Program :						
Some Guid	Some Guidelines					
	TOTAL: 45 PERIODS					

TEXT BOOK

- Ashok.N.Kamthane, "Computer Programming", Pearson Education (India) (2008).
 Behrouz A.Forouzan and Richard.F.Gilberg, "A Structured Programming Approach Using C", II Edition, Brooks-Cole Thomson Learning Publications, (2007).

REFERENCES

- 1. Pradip Dey, Manas Ghoush, "Programming in C", Oxford University Press. (2007).
- 2. Byron Gottfried, "Programming with C", 2nd Edition, (Indian Adapted Edition), TMH publications, (2006). (Unit II, III, IV, and V).
- 3. Stephen G.Kochan, "Programming in C", Third Edition, Pearson Education India, (2005).

- 4. Brian W.Kernighan and Dennis M.Ritchie, "The C Programming Language", Pearson Education Inc., (2005).
- 5. E.Balagurusamy, "Computing fundamentals and C Programming", Tata McGRaw-Hill Publishing Company Limited, (2008).
- 6. S.Thamarai Selvi and R.Murugan, "C for All", Anuradha Publishers, (2008).

Evaluation Criteria & Marks	Contin	uous Assessment (2	End	Total Marks						
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Semester Examination							
	15	7.5	2.5	75	100					
				[Min Pass:	[Min Pass:					
				37]	50]					
Attendance	010/ and above 10 96 000/ 9 91 950/ 6 76 900/ 4 750/ 2									
Mark	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2									
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course Outcomes	Program Outcomes (POs)									Program Specific Outcomes (PSOs)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2											3			2
CO2	3	2											3			2
CO3	3	3	2	1									3			2
CO4	3	2	1										3			2
CO5	2	2	3	2									3			2

12F1Z6	ENGINEERING GRAPHICS	L	T	P	C						
	3	1	0	4							
Programme:	B.E. Civil Engineering	I									
Category:	Core										
Prerequisites:											
Aim:	To develop Graphic skills of the students.										
Course	• To develop in student's graphic skill for communication of concepts, ideas and										
Objectives:	design of engineering products and expose them to existing national standards										
	related to technical drawings.										
Course	1. Create the convention model for engineering graphics.										
Outcomes:	2. Examine the plane curves and free hand sketching.										
	3. Outline the projections of points, lines and plane.										
	4. Outline the projections of simple solids and their sectional views										
	5. Development of surfaces.										
	6. Evaluate isometric and perspective projections.										

UNIT I PLANE CURVES AND FREE HAND SKETCHING

Conics – Construction of ellipse, Parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of squad and circle – Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES 15 hrs

Projection of points and straight lines located in the first quadrant – Determination of true lengths and true inclinations – Projection of polygonal surface and circular lamina inclined to both reference planes.

UNIT III | PROJECTION OF SOLIDS

15 hrs

15 hrs

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method.

UNIT IV | SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES | 15 hrs

Sectioning of above solids in simple vertical position by cutting planes inclined to one reference plane and perpendicular to the other – Obtaining true shape of section.

Development of lateral surfaces of simple and truncated solids – Prisms, pyramids, cylinders and cones – Development of lateral surfaces of solids with cylindrical cutouts, perpendicular to the axis.

UNIT V | ISOMETRIC AND PERSPECTIVE PROJECTIONS

15 hrs

Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones.

Perspective projection of prisms, pyramids and cylinders by visual ray method.

TOTAL= 75 PERIODS

TEXT BOOK

1. N.D. Bhatt, "Engineering Drawing" Charotar Publishing House, 46 Th Edition, (2003).

REFERENCES

- 1. K. V. Natrajan, "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai (2006).
- 2. M.S. Kumar, "Engineering Graphics", D.D. Publications, (2007).
- 3. K. Venugopal and V. Prabhu Raja, "Engineering Graphics", New Age International (P) Limited

(2008).

- 4. M.B. Shah and B.C. Rana, "Engineering Drawing", Pearson Education (2005).
- 5. K. R. Gopalakrishnana, "Engineering Drawing" (Vol.IandII), Subhas Publications (1998).
- 6. Dhananjay A.Jolhe, "Engineering Drawing with an introduction to AutoCAD" Tata McGraw Hill.
- 7. Publishing Company Limited (2008).Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, (2008).

	Contin	uous Assessment (2	25)	End	Total						
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Semester Examination	Marks						
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% and above –	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2									
Grade Criteria	S(90-100), A(80-	5(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fa									

Course				I	Progra	am O	utcon	nes (P	Os)				Program Specific				
Outcomes						Outcomes (PSOs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	3		3		3					1			2			3	
CO2	3		2		2					1			2			3	
CO3	3		2		3					1			2			3	
CO4	3		3		2					1			2			3	
CO5	3		3		3					1			2			3	
CO6	2		2		3					1			2			3	

12F1Z7	PHYSICS AND CHEMISTERY LABORATORY	· 1	L	T	P	C						
			0	0	3	2						
Programme:	B.E. Civil Engineering	Sem :]	[
Category:	Core	•										
Prerequisites/	12F1Z3-Engineering Physics-I (CR)											
Corequisites (CR):	12F1Z4-Engineering Chemistry-I (CR)											
Aim:	To impart fundamental knowledge in various physics and and train the students for systematic recording of experime physics and chemistry parameters.											
Course	The course should enable the students to:											
Objectives:	 To measure the wavelength of Laser, velocity of ultithickness of a thin wire and Refractive index of a prism. To determine the thermal conductivity and Young's materials. – light experiments To determine the total hardness of water sample and amion, HCl and dissolved oxygen present in given various methods 	modulu ount of	s of	the								
Course	1. Construct the wavelength of Laser and velocity of ultrase											
Outcomes:	 Determine the thickness of a thin wire and Refractive index of a prism – light experiments. Experiment with the thermal conductivity and Young's modulus of the materials. Determine the total hardness of unknown water sample. Estimate the amount of Ferrous ion, HCl, dissolved oxygen and copper ion present in given solutions using various methods. 											

LIST OF EXPERIMENTS

- 1. (a) Determination of a particle size using diode laser
 - (b) Determination of wavelength of the laser source
 - (c) Determination of acceptance angle and numerical aperture of an optical fiber
- 2. Determination of thickness of thin wire Air wedge method.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 4. Determination of dispersive power of the prism using spectrometer.
- 5. Determination of thermal conductivity of a bad conductor by Lee's disc method
- 6. Find the Young's Modulus of a Non Uniform Bending material.
- 7. Estimation of Total hardness of water by EDTA method
- 8. Estimation of copper in brass by EDTA method
- 9. Estimation of Ferrous ion by potetiometric titration
- 10. pH metry –Determination of strength of HCl by NaOH
- 11. Determination of DO in water (Winkler's Method)

TOTAL: 45 PERIODS

		Internal (25)		End Semester							
Evaluation Criteria &	Observation (45%)	Record (45%)	Attendance (10%)	Examination	Total Marks						
Marks	10	10	5	75	100						
				[Min Pass:	[Min Pass:						
				37]	50]						
Attendance Mark	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2										
Grade Criteria	S(90-100), A(8	(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail									

Course Outcomes		Program Outcomes (POs)												Program Outc									n Specif es (PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4								
CO1	3	2	1		2				1			1	3			3								
CO2	1	2	2						2			1	2			2								
CO3	2	1	3		2				2			2	2			2								
CO4	2	2	1		1				1			1	2			3								
CO5	3	2	1	2	2				2			2	3			3								

12F1Z8	COMPUTER PRACTICE LABORATORY	-I	L	T	P	C		
			0	0	3	2		
Programme:	B.E. Civil Engineering	Sem:	I					
Category:	Core							
Prerequisites/ Corequisites (CR):	12F1Z5- Computing Fundamentals And 'C' Program	ming (CI	R)					
Course Outcomes:	 Make use of MS-Office packages like, MS-Word Develop flowcharts & algorithms for computing Formulate problems and propose algorithms in C Effectively choose programming components tha Create programs using C language in advar pointers. 	problems t efficien	tly co	ompu	te.	Point.		

LIST OF EXPERIMENTS

1) Word Processing

- a) Create a word Document using Table creation, Table Formatting and Scientific notations
 - b) Create Mail Merge
 - c) Drawing Flowchart for the following
 - i) To find the largest of three numbers A,B, and C
 - ii) To find the sum of first 50 Natural numbers
 - iii) Factorial of given number using Recursion

2) Spreadsheet

a) Create Spreadsheet using the following features:

Tables, Charts, Formula, Formula Editor

Sorting, Import/Export Features.

3) **Power-point**

a) Create a Power point Presentation about your college.

"C" Programs

Aim:

To practice C programs for the following concepts:

- 4) Simple C Programs using Data types, Expression Evaluation
- 5) Program using Conditional and Looping Statements
- 6) Program using Arrays
- 7) Program using functions
- 8) Program using Switchcase Statement
- 9) Program using Strings
- 10) Program using Structures
- 11) Program using Unions
- 12) Program using Pointers

TOTAL: 45 PERIODS

		Internal (25)		End Semester									
Evaluation Criteria & Marks	Observation (45%)	Record (45%)	Attendance (10%)	Examination	Total Marks								
Marks	10	10 10		75	100								
				[Min Pass: 37]	[Min Pass: 50]								
Attendance Mark	91% and above	% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2											
Grade Criteria	S(90-100), A(81	0-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail											

Course Outcomes		Program Outcomes (POs)													s Specif	
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											PSO1	PSO2	PSO3	PSO4
CO1	3	1	2						2				3			3
CO2	3	2	2						2				2			2
CO3	3	2	3						2				3			3
CO4	2	3	2						2				2			2
CO5	3		2						2				3			3

	0	0											
D.E. Chill Employees													
B.E. Civil Engineering Sem:													
Core													
using wood working too ints using arc welding ed- ing lathe and drilling ma re joint, L joint and stepp ox, fluorescent lamp, far	ols quipm chine ped jo n and	ents ints regul	ator										
i i	ents with hands on experil, Mechanical, Electron lidentify the various countries wood working too ints using arc welding exing lathe and drilling material point, L joint and steppox, fluorescent lamp, far	ents with hands on experience vil, Mechanical, Electrical lidentify the various components using wood working tools ints using arc welding equipming lathe and drilling machine re joint, L joint and stepped joox, fluorescent lamp, fan and	ents with hands on experience on wil, Mechanical, Electrical and lidentify the various components to using wood working tools ints using arc welding equipments ing lathe and drilling machine re joint, L joint and stepped joints ox, fluorescent lamp, fan and regul	ents with hands on experience on various ril, Mechanical, Electrical and Electrical Electrical and Electrical Ele									

GROUP A	CIVIL	AND MECHANICAL

I.CIVIL ENGINEERING PRACTICE

Buildings:

(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- (a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- (b) Study of pipe connections requirements for pumps and turbines.
- (c) Preparation of plumbing line sketches for water supply and sewage works.
- (d) Hands-on-exercise:
 - Basic pipe connections Mixed pipe material connection Pipe Connections with different joining components.
- (e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:

- (a) Study of the joints in roofs, doors, windows and furniture.
- (b) Hands-on-exercise: Wood work, joints by sawing, planing and cutting.

II. MECHANICAL ENGINEERING PRACTICE

13

Welding:

- (a) Preparation of arc welding of butt joints, lap joints and tee joints.
- (b) Gas welding practice

Basic Machining:

- (a) Simple Turning and Taper turning
- (b) Drilling Practice

Sheet Metal Work:

- (a) Forming and Bending:
- (b) Model making Trays, funnels, etc.
- (c) Different type of joints.

Machine assembly practice:

- (a) Study of centrifugal pump
- (b) Study of air conditioner

Demonstration on:

- (a) Smithy operations, upsetting, swaging, setting down and bending. Example
- Exercise Production of hexagonal headed bolt.
- (b) Foundry operations like mould preparation for gear and step cone pulley.
- (c) Fitting Exercises Preparation of square fitting and vee fitting models.

GROUP B ELECTRICAL AND ELECTRONICS

III ELECTRICAL ENGINEERING PRACTICE

10

- 1. Residential house wiring using switches, fuse, indicator, lamp and energymeter.
- 2. Fluorescent lamp wiring.
- 3. Stair case wiring
- 4. Measurement of electrical quantities voltage, current, power and power factor in RLC circuit.
- 5. Measurement of energy using single phase energy meter.
- 6. Measurement of resistance to earth of electrical equipment.

IV ELECTRONICS ENGINEERING PRACTICE

13

- 1. Study of Electronic components and equipments Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CRO.
- 2. Study of logic gates AND, OR, EOR and NOT.
- 3. Generation of Clock Signal.
- 4. Soldering practice Components Devices and Circuits Using general purpose PCB.
- 5. Measurement of ripple factor of HWR and FWR.

TOTAL: 45 PERIODS

REFERENCES

- 1. K.Jeyachandran, S.Natarajan and S, Balasubramanian, "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. T.Jeyapoovan, M.Saravanapandian and S.Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt.Ltd, (2006)
- 3. H.S. Bawa, "Workshop Practice", Tata McGraw Hill Publishing Company Limited, (2007).
- 4. A.Rajendra Prasad and P.M.M.S. Sarma, "Workshop Practice", Sree Sai Publication, (2002).
- 5. P.Kannaiah and K.L.Narayana, "Manual on Workshop Practice", Scitech Publications, (1999).

		Internal (25)		End Semester							
Evaluation Criteria &	Observation (45%)	Record (45%)	Attendance (10%)	Examination	Total Marks						
Marks	10	10	5	75	100						
				[Min Pass:	[Min Pass:						
				37]	50]						
Attendance	010/ 1 1	10 07 000/ 0 0	01.040/ 6.764	200/ 4.750/ 2							
Mark	91% and above	1% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2									
Grade Criteria	S(90-100), A(8	90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail									

Course Outcomes		Program Outcomes (POs)													Specif es (PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2	3	3	3				3			2	2		3	2
CO2	2	2	3	3	3				3			2	2		2	3
CO3	2	2	3	3	3				3			1	2		3	2
CO4	2	1	3	3	3				3			2	3		2	3
CO5	2	2	3	3	3				3			2	2		3	2
CO6	2	2	3	3	3				3			3	3		2	3
CO7	2	2	3	3	3				3			2	2		3	2

12F2Z1	TECHNICAL ENGLISH - II	T	P	C											
		3	1	0	4										
Programme:	B.E. Civil Engineering Sem: II														
Category:	Core														
Prerequisites:	12F1Z1-Technical English-I														
Aim:	To improve English communication skill with relevance to technical context.														
Course	To show the basic knowledge of English Language for the specific purpose														
Objectives:	To construct written communication skill with	mechanics	s of V	Vritir	ng										
	To develop error-free messages														
	To infer the meaning of the text to gather inform	nation													
	To develop Business and technical Communication	ion skill													
``Course	1. Improve reading skill to distinguish different kin	ds of text.													
Outcomes:	2. Infer communication module used at workplace.														
	3. Determine specific information using listening sl														
	4. Adapt audience analysis method for an effective	mass com	ımun	icatio	on.										
	5. Evaluate sentence structure and a word.														

UNIT-I READING

12

Intensive reading and predicting content, Reading and interpretation, Reading comprehension exercises with questions on overall content – Discussions analyzing stylistic features (creative and factual description) – Reading comprehension exercises with texts including graphic communication— Exercises in interpreting non-verbal communication—Reading comprehension exercises with critical questions, multiple choice, Reading comprehension exercises with analytical questions on content – Evaluation of content questions.

UNIT-II WRITING

12

Writing a Report-Writing a Proposal-Writing a Feasibility Report-Writing Situational Report- Memo-Writing Agenda -Writing Minutes -Writing Manuals-Writing Thesis statements-Writing Recommendation, Checklist, Instruction-Writing Statement of Purpose-Writing Letter of Recommendation-Writing Statement of the Problem-Transcoding Flow Chart, Pie Chart, Bar Diagram, Line Graph

UNIT-III | LISTENING

12

Listening to gather Information- Listening to stories- Listening to a conversations/Interviews Listening to a News Report- Listening to a famous speeches, ceremonial speech, awareness programme and technical presentation- Intensive Listening to find exact information-Listening for gist-Listening to identify expressions used in Discussions-Listening to identify tonal Variations in Speeches

UNIT-IV | SPEAKING

12

Talking about General Contents, localities, home town, ambition in life, Future plan-Introducing others-Describing/Introducing function of a product/ machine, talking about pros and cons of the product-Communication for the Mass-Welcome Address, Special Address, Presidential Address, Vote of thanks -Speaking with good Pronunciation-Famous quotes, speeches- Public Speech-Speaking on the General Topic-Appropriate Communication-Answering to the Question, adding valuable points to the discussion, giving an appropriate reply, appropriate vocabulary according to the audience-Giving a specific information about Statistics used in Bar diagram, Pie Chart -Role-Play-Hr and applicant, Purchase Manager and Customer, Industrialist- Reporter, Employer- Employee, Managing

Director-HR		
UNIT-V	FOCUS ON LANGUAGE	12
Synonym-A	ntonym- Homonym-Tenses-Phrasal Verbs- Acronym- Abbreviations	s-Foreign
words-Conf	using Words-Analogy- Numerical Expressions- Purpose Statemen	nt- Error
Corrections-	Direct and Indirect Speech	
	TOTAL: 60 P	ERIODS

TEXT BOOK(S)

1. Department of Humanities and Social Sciences, Anna University, 'English for Engineers and Technologists' Combined Edition (Volumes 1 and 2), Chennai: Orient Longman Pvt. Ltd., 2006.

REFERENCES

- 1. Sharan J.Genrson and Steven M.Gerson "Technical Writing Process and Product" Pearson Education 2000.
- 2. Raymond V.Lesikar, John D. Pettit and Mary E.Flatley Lesikass BasicCommunication Tata McGraw Will 8th Edition 1999.
- 3. Stevel. E. Pauley, Daniel G.Riordan Technical Report Writing Today AITBS Publishing and Distributors, India 5th edition 2000.
- 4. Robert L.Shurter, Effective letters in business Third Ed. 1983.
- 5. Norman Whitby, Business Benchmark Pre-Intermediate to Intermediate, Students Book, Cambridge University Press, 2006.
- 6. Cambridge BEC Preliminary 1: Practice Tests from the University of Cambridge Local Examinations Syndicate, University of Cambridge Local Examinations Syndicate, PB, ISBN: 9780521753012
- 7. CambridgeBECPreliminary2Student'sBookwithAnswers: ExaminationpapersfromUniversity ofCambridgeESOL Examinations, Cambridge ESOL, PB, ISBN: 9780521544504

Evaluation Criteria & Marks	Cor	ntinuous Assessment (2	5)	End Semester							
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
	15	7.5	2.5	75	100						
				[Min Pass: 37]	[Min Pass: 50]						
Attendance	01% and above	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2									
Mark	91% and above -	- 10, 03-90% - 0, 01-04	1% - 0, 70-80% -	4, 13% - 2							
Grade Criteria	S(90-100), A(81	-89), B(71-80), C(61-70	0), D(56-60), E(50	0-55), U (<50)-Fail							

Course Outcomes		Program Outcomes (POs)													Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4			
CO1		2		3					3	3		3	1			3			
CO2									3	3		3	1			3			
CO3		3		2					3	3		3	1			3			
CO4										2		3	1			3			
CO5									3	3		3	1			3			

12F2Z2	ENGINEERING MATHEMATICS - II		L	T	P	C								
			3	1	0	4								
Programme:	B.E. Civil Engineering	Sem:			II									
Category:	Core													
Prerequisites:	12F1Z2-Engineering Mathematics-I													
Aim:		To analyse the engineering problems using the techniques and the mathematical kills acquired by studying vector calculus, Laplace transform, complex variables, rdinary differential equations.												
Course Objectives:	 To make the student acquire sound knowled ordinary differential equations that model eng To acquaint the student with the concepts of problems in all engineering disciplines. To develop an understanding of the standard to theory so as to enable the student to app application areas such as heat conduction, elast the of electric current. To make the student appreciate the purpose of new domain in which it is easier to handle investigated. 	ineering professions of vector echniques ly them ticity, fluid fusing tr	proble calcomments of control with id dy	ems. ulus ompl con nami	need ex v fider cs ar	ariable ace, in ad flow								
Course Outcomes:	 Apply Laplace transform to solve first and second with elementary forcing function. Classify Green's theorem to evaluate line is contours on the plane. Construct an analytic function using the propertied. Make use of Cauchy's residue theorem for applied to the complex integration. Develop a series solution to an ODE and recognitive properties. 	ntegrals es of anal cations in asics of a	alon ytic f Engi	g sir functi neeri tic fu	nple on ng.	closed								

UNIT-I LAPLACE TRANSFORM	12								
Laplace transform – Conditions for existence – Transform of elementary functions –Bas	ic properties –								
Transform of derivatives and integrals - Transform of unit step function and impuls	se functions –								
Transform of periodic functions. Definition of Inverse Laplace transform as conto	our integral –								
Convolution theorem (excluding proof) – Initial and Final value theorems – Solution of	linear ODE of								
second order with constant coefficients using Laplace transformation techniques									
UNIT-II VECTOR CALCULUS	12								
Gradient, Divergence and Curl – Directional derivative – Irrotational and Solenoidal	vector fields -								
Vector integration - Green's theorem in a plane, Gauss divergence theorem and ste	okes' theorem								
(excluding proofs) – Simple applications involving cubes and rectangular parallelepipeds									
UNIT-III ANALYTIC FUNCTIONS	12								
Functions of a complex variable - Analytic functions - Necessary conditions, Cauc	chy- Riemann								
equation and Sufficient conditions (excluding proofs) – Harmonic and orthogonal proper	ties of analytic								
function – Harmonic conjugate – Construction of analytic functions – Conformal mapp	ing : w = z+c,								
cz, 1/z, and bilinear transformation.									
UNIT-IV COMPLEX INTEGRATION	12								
Statement and application of Cauchy's theorem and Cauchy's integral formula, Taylor	or and Laurent								
expansion, Singularities, Classification, Residues, Cauchy's residue theorem, Contour in	tegration, Unit								
circle and semi-circular contours (excluding poles on real axis).									
UNIT-V ORDINARY DIFFERENTIAL EQUATIONS	12								
Higher order linear differential equations with constant coefficients - Method or	f variation of								

parameters – Cauchy's and Legendre's linear equations – Simultaneous first order linear equations with constant coefficients.

TOTAL: 60 PERIODS

TEXT BOOK(S)

- 1. B.S.Grewal, 'Higher Engineering Mathematics', Thirty Sixth Edition, Khanna Publishers, Delhi, 2005.
- 2. Kreyszig, E., Advanced Engineering Mathematics, 8th edition, John Wiley Sons, 2001

REFERENCE(S)

- 1. Greenberg, M.D. Advanced Engineering Mathematics, Second Edition, Pearson Education Inc. (First Indian reprint), 2002
- 2. Venkataraman.M.K.,"Engineering Mathematics", Volume I and II Revised enlarged Fourth Edition The National ?Publishing Cpompany, Chennai, 2004.
- 3. Veerarajan.T"Engineering Mathematics",Fourth Edition,Tata McGraw hill publishing company Ltd,New Delhi,2005.

	Con	tinuous Assessment (25)	End Semester		
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks	
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]	
Attendance Mark	91% and above	z – 10, 85-90% - 8, 81	-84% - 6, 76-80	0% - 4, 75% - 2		
Grade Criteria	S(90-100), A(8	1-89), B(71-80), C(61	-70), D(56-60)	, E(50-55), U (<5	0)-Fail	

Course Outcomes	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2		2								3	3			3
CO2	2	1		2								2	3			3
CO3	2	1		2								1	3			3
CO4	1	2		2								2	3			3
CO5	2	2										2	3			3
CO6	3	3										3	3			3

12F2Z3	ENGINEERING PHYSICS – II		L	Т	P	C								
			3	0	0	3								
Programme:	B.E. Civil Engineering	Sem:		Ι	I									
Category:	Core													
Prerequisites:	F1Z3-Engineeriong Physics – I													
Aim:	To endow the students with the fundamentals of Physic field of Engineering and Technology.	endow the students with the fundamentals of Physics and apply new ideas in the												
Course Objectives:	 To study the theories of conducting and semicon To study the properties and applications of ma materials. To understand the properties and applications modern engineering materials. 	gnetic and	l supe	er coi		Ū								
Course Outcomes:	 Illustrate the free electron theories (classical and carrier concentration in metals. Analyze the theory of conducting and semiconducting its applications. Explain the properties and applications of mag conducting materials. Summarize the properties of dielectric materials are electricity. Analyze the properties and applications of modern electricity. Extend the acquaintance of nano phase materials. 	ng materia	ıls, H terial oplica	all Ef s an tions	ffect d su – Fe	and								

UNIT-I CONDUC	CTING MATERIALS	9							
Conductors – classical	free electron theory of metals - Electrical and thermal con	nductivity -							
Wiedemann – Franz law	- Lorentz number - Draw backs of classical theory - Quantum the	eory – Fermi							
distribution function – E	Effect of temperature on Fermi Function - Density of energy sta	tes – carrier							
concentration in metals.									
UNIT-II SEMICO	NDUCTING MATERIALS	9							
Intrinsic semiconductor -	- carrier concentration derivation - Fermi level - Variation of Ferm	ni level with							
temperature – electrical	conductivity - band gap determination - extrinsic semiconducted	ors – carrier							
	n in n-type and p-type semiconductor - variation of Fermi								
temperature and impurity	y concentration - compound semiconductors - Hall effect -Deter	rmination of							
Hall coefficient – Applic	ations.								
UNIT-III MAGNET	FIC AND SUPERCONDUCTING MATERIALS	9							
Origin of magnetic mom	ent – Bohr magneton – Dia and para magnetism – Ferro magnetis	m – Domain							
theory – Hysteresis – so	oft and hard magnetic materials - anti - ferromagnetic materials	Ferrites –							
applications – magnetic i	recording and readout - storage of magnetic data - tapes, floppy a	nd magnetic							
	ductivity: properties - Types of super conductors - BCS								
superconductivity(Qualit	ative) - High Tc superconductors - Applications of superconductor	rs – SQUID,							
cryotron, magnetic levita	tion.								
UNIT-IV DIELECT	FRIC MATERIALS	9							
Electrical susceptibility	- dielectric constant - electronic, ionic, orientational and sp	pace charge							
polarization – frequency and temperature dependence of polarization – internal field – Claussius –									
Mosotti relation (derivat	Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials								
(capacitor and transformer) – ferroelectricity and applications.									
UNIT-V MODERN	N ENGINEERING MATERIALS	9							

Metallic glasses: preparation, properties and applications.

Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, advantages and disadvantages of SMA.

Nanomaterials: synthesis –plasma arcing – chemical vapour deposition – sol-gels – electrodeposition – ball milling - properties of nanoparticles and applications.

Carbon nanotubes: fabrication – arc method – pulsed laser deposition – chemical vapour deposition - structure – properties and applications.

TOTAL: 45 PERIODS

TEXT BOOK(S)

K.Rajagopal, "Engineering Physics, Printice – Hall of India Pvt. Ltd, Newdelhi, 2011.

Charles Kittel 'Introduction to Solid State Physics', John Wiley & sons, 7 edition, Singapore 2007 Charles P. Poole and Frank J.Ownen, 'Introduction to Nanotechnology', Wiley India(2007)

REFERENCE(S)

Rajendran, V, and Marikani A, 'Materials science' Tata McGraw Hill publications, (2004) New Delhi.

Jayakumar, S. 'Materials science', R.K. Publishers, Coimbatore, (2008).

Palanisamy P.K, 'Materials science', Scitech publications(India) Pvt. LTd., Chennai, second Edition(2007)

M. Arumugam, 'Materials Science' Anuradha publications, Kumbakonam, (2006).

Evaluation Criteria & Marks	Con	tinuous Assessment (25)	End Semester						
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2									
Grade Criteria	S(90-100), A(8	1-89), B(71-80), C(6	1-70), D(56-60)	, E(50-55), U (<5	(0)-Fail					

Course Outcomes	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	1	1	1	1		1					1	3			3
CO2	3	1	2	1	1		1					1	3			3
CO3	3	1	1	2	1		1					1	3			3
CO4	3	2	2	2	2		2					1	3			3
CO5	3	2	2	3	2		1					2	3			2
CO6	3	2	2	1	2		1					2	3			3

12F2Z4	ENGINEERING CHEMISTRY – II		L	T	P	C
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:			II	
Category:	Core					
Prerequisites:	12F1Z4 - Engineering Chemistry – I					
Aim:	To impart a sound knowledge on the principles of capplication oriented topics required for all engineering			ving	the d	ifferent
Course	The student should be conversant with the	ig oranene	٥.			
Objectives:	Principles electrochemistry, electrochemical cells	s & applic	ation	s.		
_	Principles of corrosion control	**				
	 Chemistry of fuels and combustion 					
	 Industrial importance of phase rule and alloys 					
	 Analytical techniques and their importance. 					
Course	1. Explain the operating principles and the reaction					
Outcomes:	2. Illustrate the principle and applications of different and demerits.	rent electr	odes	with	their	merits
	3. Explain the principles and application of corrosic	on control.				
	4. Describe the core concepts behind fuels and com					
	5. Describe the concepts of fuel purification process					
	6. Analyze the importance in phase rule and pertain	the chem	istry	of all	oys	

UNIT-I ELECTROCHEMISTRY	9
Electrochemical cells – reversible and irreversible cells – EMF – measurement of emf – Sing	le electrode
potential - Nernst equation (problem) - reference electrodes -Standard Hydrogen electrodes	
electrode - Ion selective electrode - glass electrode and measurement of pH - electrochemi	
significance – potentiometric titrations (redox - Fe ²⁺ vs dichromate and precipitation – Ag ⁺ vs C	1 titrations)
and conductometric titrations (acid-base – HCI vs NaOH) titrations	
UNIT-II CORROSION AND CORROSION CONTROL	9
Chemical corrosion - Pilling - Bedworth rule - electrochemical corrosion - different types	•
corrosion – differential aeration corrosion – factors influencing corrosion – corrosion control	
anode and impressed cathodic current methods - corrosion inhibitors - protective coatings	– paints –
constituents and functions – metallic coatings – electroplating (Au) and electroless (Ni) plating.	
UNIT-III FUELS AND COMBUSTION	9
Calorific value – classification – Coal – proximate and ultimate analysis metallurgical coke – r	
by Otto-Hoffmann method - Petroleum processing and fractions - cracking - catalytic cr	
methods-knocking – octane number and cetane number – synthetic petrol – Fischer Tropsch a	
processes – Gaseous fuels- water gas, producer gas, CNG and LPG, Flue gas analysis – Orsat	apparatus –
theoretical air for combustion.	
UNIT-IV PHASE RULE AND ALLOYS	9
Statement and explanation of terms involved – one component system – water system – conde	•
rule – construction of phase diagram by thermal analysis – simple eutectic systems (lead-silver s	
- alloys - importance, ferrous alloys - nichrome and stainless steel - heat treatment of steel,	non-ferrous
alloys – brass and bronze.	
UNIT-V ANALYTICAL TECHNIQUES	9
Beer-Lambert's law (problem) - UV-visible spectroscopy and IR spectroscopy - p	rinciples –
instrumentation (problem) (block diagram only) – estimation of iron by colorimetry – flame pl	notometry –
principle - instrumentation (block diagram only) - estimation of sodium by flame photometry	
absorption spectroscopy - principles - instrumentation (block diagram only) - estimation of	f nickel by
atomic absorption spectroscopy.	
TOTAL: 45	PERIODS

TEXT BOOK(S)

- 1. G.Chandramohan and P.Saravanan, "Engineering Chemistry" Sri Murugan Publications, Thanjavur (2015).
- 2. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 3. S.S.Dara "A text book of Engineering Chemistry" S.Chand & Co. Ltd., New Delhi (2006).

REFERENCE(S)

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).

	Con	tinuous Assessment (2	25)	End Semester								
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks							
	15	7.5	2.5	75	100							
				[Min Pass: 37]	[Min Pass: 50]							
Attendance	01% and above	010/ and above 10 96 000/ 9 91 950/ 6 76 900/ 4 750/ 2										
Mark	91% and above	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2										
Grade Criteria	S(90-100), A(80	0-89), B(70-79), C(60	-69), D(55-59),	E(50-54), U (<50))-Fail							

Course Outcomes		Program Outcomes (POs)													Program Specific Outcomes (PSOs)				
	PO1	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PSO2	PSO3	PSO4			
CO1	3	1	3	1								1	2			2			
CO2		2	1	1								1	2			2			
CO3	2	1		2								1	2			2			
CO4	1	2	1									1	2			2			
CO5	2	3	2									2	2			2			
CO6	3	2	3									3	2			2			

12F2Y5	ENGINEERING MECHANICS		L	T	P	C
			3	1	0	4
Programme:	B.E. Civil Engineering	Sem:	III			
Category	Core					
Prerequisites:	12F1Z2-Engineering Mathematics-I					
AIM:	To impart a sound knowledge on the applied physics law applications.	s in differe	ent er	ngine	ering	
Course	To familiarize the vectorial and scalar representation of f	orces and	mom	ents,	static	;
Objectives:	equilibrium of articles and rigid bodies both in two dimen	nsions and	also	in th	ree	
	dimensions.					
	To understand the laws of motion, the kinematics of moti	ion and the	e inte	rrelat	ionsh	nip.
	To learn the principle of work and energy.					
Course	1. Illustrate the laws of mechanics, Lame's theorem, 1	oarallelogr	am la	aw,	triang	gular
Outcomes:	law of forces and principle of transmissibility					
	2. Describe the types of supports and equilibrium of rig					
	3. Explain the parallel axis theorem and perpendict	ılar axis	theor	em a	and 1	olar
	moment of inertia	1. 1	. 1 41.	. • •	1 - 4 !	1
	4. Solve the displacement, velocity and acceleration provided with work energy equation of particles	coblems ar	na the	eir re	iatior	ısnıp
	5. Explain the various Frictional forces and general Describe the concepts of fuel purification processes	plane mot	ion o	of rig	id bo	odies

UNIT-I	BASICS & STATICS OF PARTICLES	12								
Introduction – Uni	ts and Dimensions – Laws of Mechanics – Lame's theorem, Parallelo	ogram and								
	Forces – Vectors – Vectorial representation of forces and moments, Pa									
and triangular Law	of forces – Vectors – Vectorial representation of forces and moment	s, Resolution								
and Composition o	of forces – Equilibrium of a particle – Forces in space, Equilibrium of	a particle in								
space – Equivalent	systems of forces, Principle of transmissibility – Single equivalent for	orce.								
UNIT-II	EQUILIBRIUM OF RIGID BODIES	12								
Free body diagram	- Types of supports and their reactions - requirements of stable equi	ilibrium,								
Moments and Cou	ples – Moment of a force about a point and about an axis, Vectorial re	epresentation								
of moments and co	ouples - Scalar components of a moment - Varignon's theorem, Equi	librium of								
Rigid bodies in two	o dimensions, Equilibrium of Rigid bodies in three dimensions – Exa	mples.								
UNIT-III	PROPERTIES OF SURFACES AND SOLIDS	12								
Determination of A	Areas and Volumes – First moment of area and the Centroid of section	ns – Rectangle,								
circle, triangle from	n integration, T section, I section, - Angle section, Hollow section by	using standard								
formula – second a	and product moments of plane area, Rectangle, triangle, circle from in	itegration – T								
section, I section, A	Angle section, Hollow section by using standard formula, Parallel axi	s theorem and								
perpendicular axis	theorem, Polar moment of inertia - Principal moments of inertia of p	lane areas–								
Principal axes of ir	nertia, Mass moment of inertia - Derivation of mass moment of inerti	a for								
rectangular section	, prism, sphere from first principle - Relation to area moments of ine	rtia.								
UNIT-IV	DYNAMICS OF PARTICLES	12								
Displacements, Ve	locity and acceleration, their relationship, Relative motion, Curviline	ar motion,								
Newton's law, Wo	rk Energy Equation of particles, Impulse and Momentum.									
UNIT-V										
	DYNAMICS									
	Laws of Coloumb friction, simple contact friction - Rolling resistance									
friction,Translation	and Rotation of Rigid Bodies, Velocity and acceleration, General Pl	ane motion.								
	TOTA	L: 60 HOURS								

TEXT BOOK

1. Beer, F.P and Johnson Jr. E.R. "Vector Mechanics for Engineers", Vol. 1 Statics and Vol. 2 Dynamics, McGraw-Hill International Edition, (1997).

REFERENCE(S)

- 1. Rajasekaran, S, Sankarasubramanian, G., "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt. Ltd., (2000).
- 2. Hibbeller, R.C., "Engineering Mechanics", Vol. 1 Statics, Vol. 2 Dynamics, Pearson Education Asia Pvt. Ltd., (2000).
- 3. Palanichamy, M.S., Nagam, S., "Engineering Mechanics Statics & Dynamics", Tata McGraw-Hill, (2001).
- 4. Irving H. Shames, "Engineering Mechanics Statics and Dynamics", IV Edition Pearson Education Asia Pvt. Ltd., (2003).
- 5. Ashok Gupta, "Interactive Engineering Mechanics Statics A Virtual Tutor (CDROM)", Pearson Education Asia Pvt., Ltd., (2002).

	Continuou	s Assessment (25)					
Evaluation Criteria & Marks	Internal Assessment Tests (60%)	Assign/Seminar/					
Citteria & Warks		Mini project (30%)					
	15	7.5					
Attendance Mark	91% and above – 10; 86-90% - 8; 81-85% - 6; 76-80% - 4; 75% -2						
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60	0-69), D(55-59), E(50-54), U(<50)-Fail					

Course Outcomes				I	Progra	am O	utcon	nes (P	Os)				Program Specific Outcomes (PSOs)				
	PO1	1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1:												PSO2	PSO3	PSO4	
CO1	3	2	3	1	2							3	3		2	3	
CO2	2	1	2	2								2	2		2	1	
CO3	3	2	2	2	2							3	3		1	2	
CO4	2	2 3 2 3 1 2											1		2	1	
CO5	2	2	2	2								3	2		1	2	

12F2Y6	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING		L	T	P	С
			3	1	0	4
Programme:	B.E. Civil Engineering	Sem:			II	
Prerequisites:						
AIM:	To learn the fundamentals of electric circuits, types, measure types and working principle of various electrical machines, and its applications, digital electronics and memory devices communication engineering.	basic ser	micor	duct	or de	
Course Objectives:	 To understand the knowledge of basic electrical with it, electrical quantities, definitions and the mediantities. To enable you to understand different types of eleprinciple and applications. To enable you to fathom in to the concepts of setheir applications. To enable you to understand the fundamentals of circuits, memory devices and their design. To study the fundamentals of communication engined. 	ethods red lectrical a emicondu ligital ele	quired machi	d to nines t	neasu heir es, ty	working vpes and
Course Outcomes:	Able to analyze electrical circuit and measure elect Able to illustrate various electrical machines and existing the state of	rical para xplain its resent its ions	work chara	cing. acteri	stics.	

UNIT-I	ELECTRICAL CIRCUITS & MEASURMENTS	12
Ohm's Law	- Kirchoff's Laws - Steady State Solution of DC Circuits - Introduction to AC Circ	euits –
Waveforms	and RMS Value - Power and Power factor - Single Phase and Three Phase Balance	d Circuits –
Operating P	Principles of Moving Coil and Moving Iron Instruments (Ammeters and Voltmeters),	
Dynamome	ter type Watt meters and Energy meters.	
UNIT-II	ELECTRICAL MACHINES	12
Constructio	n, Principle of Operation, Basic Equations and Applications of DC Generators, DC M	Motors, Single
Phase Trans	sformer, single phase induction Motor.	
UNIT-III	SEMICONDUCTOR DEVICES AND APPLICATIONS	12
Characterist	tics of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – Hal	f
wave and F	ull wave Rectifiers - Voltage Regulation. Bipolar Junction Transistor - CB, CE, CC	
Configuration	ons and Characteristics – Elementary Treatment of Small Signal Amplifier.	
UNIT-IV	DIGITAL ELECTRONICS	12
Binary Nun	nber System – Logic Gates – Boolean Algebra – Half and Full Adders – Flip-Flops –	
Registers ar	nd Counters – A/D and D/A Conversion (single concepts)	
UNIT-V	FUNDAMENTALS OF COMMUNICATION ENGINEERING	12
Types of Si	gnals: Analog and Digital Signals – Modulation and Demodulation: Principles of	
Amplitude a	and Frequency Modulations. Communication Systems: Radio, TV, Fax, Microwave,	Satellite and
Optical Fibr	re (Block Diagram Approach only).	
	TOTAL:	60 PERIODS

TEXT BOOK(S)

- 1. N. Mittle "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 1990.
- 2. R.S. Sedha, "Applied Electronics" S. Chand & Co., 2006.

REFERENCE(S)

- 1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill, Second Edition, (2006).
- 2. Nagsarkar T K and Sukhija M S, "Basics of Electrical Engineering", Oxford press (2005).
- 3. Mehta V K, "Principles of Electronics", S.Chand & Company Ltd, (1994).
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, (2002).
- 5. Premkumar N, "Basic Electrical Engineering", Anuradha Publishers, (2003).

	Con	tinuous Assessment (25)	End Semester			
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks		
	15	7.5	2.5	75	100		
				[Min Pass:	[Min Pass:		
				37]	50]		
Attendance Mark	91% and above	e – 10, 86-90% - 8, 8	1-85% - 6, 76-8	30% - 4, 75% - 2			
Grade Criteria	S(90-100), A(8	80-89), B(70-79), C(6	0-69), D(55-59	9), E(50-54), U (<50)-Fail			

Course Outcomes	Program Outcomes (POs)												Program Outcomes (POs) Ou									s Specifes (PSO	
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1												PSO2	PSO3	PSO4							
CO1	2	2		3	1							3	1			3							
CO2	2	3		3	2							3	1			3							
CO3	2	3	1	3	2							3	1			3							
CO4	2	3	2	2	3							3	1			3							
CO5	2	3	1	2	3							3	1			3							

12F2Z7	PHYSICS & CHEMISTRY LABORATORY - II		L	T	P	C						
			0	0	3	2						
Programme:	B.E. Civil Engineering Se	Sem:]	II							
Category:	Core	ore										
Prerequisites:	12F1Z7 – Physics and Chemistry Laboratory I, 12F2Z3- En 12F2Z4- Engineering Chemistry-II (CR)	2F1Z7 – Physics and Chemistry Laboratory I, 12F2Z3- Engineering Physics-II (CR)										
Aim:	To develop laboratory skills and realization of Physics and doing experiments.	chemist	ry co	ncep	ts by							
Course	The course should enable the students to:											
Objectives:	 To determine the different Modulus, specific resignation given materials and the coefficient of viscosity of the To determine the amount of chloride, strong acid barium chloride present in given sample solutions be To estimate of alkalinity of the water sample. 	he giver l, HCl a by vario	n liqu und C us me	id. CH₃C ethod	OOH ls.	and						
Course	1. Determine the rigidity modulus and Young's Modulus	s of the	mate	rial o	of a w	ire.						
Outcomes:	2. Find the coefficient of viscosity of a liquid.											
	3. Determine the wavelength of mercury spectrum.											
	semiconducting material. 5. Determine the amount of chloride, strong acid, I barium chloride present in given sample solutions before the semiconducting material.	Find the specific resistance of a coil of wire and Band gap of a semiconducting material. Determine the amount of chloride, strong acid, HCl and CH ₃ COOH and barium chloride present in given sample solutions by various methods.										
	6. Estimate of alkalinity of the water sample.											

LIST OF EXPERIMENTS

- 1. Torsional Pendulum Determination of rigidity modulus.
- 2. Determination of Young's modulus of the material Uniform bending.
- 3. Determination of Viscosity of liquid Poiseuille's method.
- 4. Determination of wavelength of mercury spectrum Spectrometer Grating.
- 5. Determination of band gap of semiconducting material.
- 6. Determination of specific resistance of a given coil of wire Carey foster bridge.
- 7. Estimation of chloride content in water sample (Argentometric method)
- 8. Conductometric titration of strong acid with strong base.
- 9. Conductometric titration of mixture of acids (HCl & CH₃COOH)
- 10. Conductometric precipitation titration using BaCl₂ Vs Na₂SO₄
- 11. Estimation of alkalinity in water sample.

TOTAL: 45 PERIODS

Evaluation Criteria & Marks	Continuo	ous Assessment (25))	End						
	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks					
	15	7.5	2.5	75	100					
				[Min Pass:	[Min Pass:					
Attendance	91% And Above – 10									
Grade Criteria	S(90-100), A(80-89)	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course Outcomes	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2	1	1	1				2			1	3			3
CO2	2	2	1	1	1				1			1	3			3
CO3	2	2	1	1	1				2			1	3			3
CO4	2	2	1	2	2				2			1	3			3
CO5	3	2	2	2	2				1			2	3			3
CO6	2	2	2	1	1				2			1	3			3

12F2X7	COMPUTER AIDED DRAFTING AN	D	L	T	P	C				
	MODELING LABORATORY									
			0	0	3	2				
Programme:	B.E. Civil Engineering	Sem:			I					
Category:	Core									
Prerequisites/	12F1Z8-Computer Practice Laboratory -1									
Corequisites										
(CR):										
Course	1. Learn the fundamentals of drafting using AUTO	CAD								
Outcomes:	2. Outline the basic shapes and modelling									
	3. Interpret the drawing from different perspective									
	4. Devise plan for residential building									
	5. Recall sectional views and Isometric projection of simple object.									
	6. Create 3D models for simple Objects.									

List of Exercises using software capable of Drafting and Modeling

- 1. Study of capabilities of software for Drafting and Modeling Coordinate systems (absolute, relative, polar, etc.) Creation of simple figures like polygon and general multi-line figures.
- 2. Drawing of a Title Block with necessary text and projection symbol.
- 3. Drawing of curves like parabola, spiral, involute using Bspline or cubic spline.
- 4. Drawing of front view and top view of simple solids like prism, pyramid, cylinder,cone, etc, and dimensioning.
- 5. Drawing front view, top view and side view of objects from the given pictorial views (eg. V-block, Base of a mixie, Simple stool, Objects with hole and curves).
- 6. Drawing of a plan of residential building (Two bed rooms, kitchen, hall, etc.)
- 7. Drawing of a simple steel truss.
- 8. Drawing sectional views of prism, pyramid, cylinder, cone, etc,
- 9. Drawing isometric projection of simple objects.
- 10. Creation of 3D models of simple objects and obtaining 2D multi-view drawings from 3D model.

Note: Plotting of drawings must be made for each exercise and attached to the records written by students.

List of Equipments for a batch of 30 students:

- 1. Pentium IV computer or better hardware, with suitable graphics facility -30 Nos.
- 2. Licensed software for Drafting and Modeling. 30 Licenses
- 3. Laser Printer or Plotter to print / plot drawings 2 Nos.

TOTAL: 45 PERIODS

		Internal (25)		End Semester						
Evaluation Criteria &	Observation (45%)	Record (45%)	Attendance (10%)	Examination	Total Marks					
Marks	10	10	5	75	100					
				[Min Pass:	[Min Pass:					
				37]	50]					
Attendance Mark	91% and above	01% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail								

Course Outcomes	Program Outcomes (POs)														Specif es (PSO	
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	PSO1	PSO2	PSO3	PSO4
CO1			2	3	3				2			3	3		2	2
CO2			1	2	3				3			3	2		1	1
CO3			3	2	3				2			2	2		2	2
CO4			2	3	2				2			3	3		3	2
CO5			1	2	3				1			2	2		2	1
CO6			2	1	3				2			3	2		2	2

12F2Z8	COMPUTER PRACTICE LABORATORY-II		L	T	P	C					
			0	0	3	2					
Programme:	B.E. Civil Engineering			II							
Category:	Core	ore									
Prerequisite:	12F1Z8-Computer Practice Laboratory – I	2F1Z8-Computer Practice Laboratory – I									
Course	1. Make use of basic UNIX commands and shell so	ripts.									
Outcomes:	2. Build simple shell programs.	_									
	3. Develop shell scripts using Conditional and Itera	3. Develop shell scripts using Conditional and Iterative statements.									
	4. Construct C program using functions.										
	5. Utilize File concepts in C.										

LIST OF EXPERIMENTS

- 1. Study of Unix OS
- 2. Basic Commands in Unix

Shell Programs

- 3. Simple Shell Programs
- 4. Script using for Loop
- 5. Script using if loop
- 6. Script using combination of for and if loop
- 7. Script using while and until loop
- 8. Script using combination of while and if loop
- 9. Script using Switch case
- 10. String Manipulation
- 11. File manipulation

C-Programs

- 1. Function with no arguments and no return type
- 2. Function with no arguments and return type
- 3. Function with arguments and no return type
- 4. Function with arguments and return type
- 5. Call by value
- 6. Call by reference
- 7. Recursion function
- 8. Pointers
- 9. Random access functions in files
- 10. File handling

SYLLABUS

1. UNIX COMMANDS

Study of UNIX OS - Basic Shell Commands - Unix Editor.

2. SHELL PROGRAMMING

Simple Shell program - Conditional Statements - Testing and Loops.

3. C PROGRAMMING ON UNIX

Dynamic Storage Allocation-Pointers-Functions-File Handling.

		Internal (25)		End Semester						
Evaluation Criteria &	Observation (45%)	Record (45%)	Attendance (10%)	Examination	Total Marks					
Marks	10	10	5	75	100					
				[Min Pass: 37]	[Min Pass: 50]					
Attendance Mark	91% and above	1% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail								

Course Outcomes		Program Outcomes (POs)											Progr	am Spec	cific Out Os)	comes
	PO1	POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PSO1	PSO2	PSO3	PSO4		
CO1	3	3		2					2			1	3			3
CO2	3	3	1	1					1				2			2
CO3	2	3		2					2				3			2
CO4	3	3		1					1				2			3
CO5	3	3	3	2					2				3			3

12MA31	TRANSFORMS AND PARTIAL DIFFERENTL EQUATIONS	AL	L	Т	P	С					
			3	1	0	4					
Programme:	B.E. Civil Engineering	Sem:	III								
Category	Core	Core									
Prerequisites:	12F2Z2-Engineering Mathematics-II	2F2Z2-Engineering Mathematics-II									
AIM:	The course is aimed at developing the basic mathematical students.	l skills of	Engii	neerii	ng						
Course Objectives:	 The course objective is to develop the skills of Transforms and Partial Differential Equations. This will be necessary for their effective studies in a subjects like heat conduction, communication electromagnetic theory. The course will also serve as a prerequisite for p studies and research. 	large nu systems,	mber elec	of en	nginee ptics	ering and					
Course Outcomes:	1. Classify the Fourier series and half range Fourier sine and cosine series. 2. Explain the Fourier transform and with their properties. 3. Determine Z-inverse transform using convolution theorem and partial fraction method. 4. Solve the partial differential equation by using Lagrange's linear equation. 5. Analyze separation of variable to solve linear partial differential equation.										

UNIT-I	FOURIER SERIES	12
Dirichlet's	conditions - General Fourier series - Odd and even functions - Half range sin	ne series –
Half range	cosine series - Complex form of Fourier Series - Parseval's identify - Harmon	nic
Analysis.		
UNIT-II	FOURIER TRANSFORMS	12
Fourier int	egral theorem (without proof) - Fourier transform pair - Sine and C	osine
transforms -	- Properties - Transforms of simple functions - Convolution theorem - Parseval	's
identity.		
UNIT-III	PARTIAL DIFFERENTIAL EQUATIONS	12
Formation of	of partial differential equations - Lagrange's linear equation - Solutions of sta	andard
types of fir	rst order partial differential equations - Linear partial differential equations of	of second
and higher of	order with constant coefficients.	
UNIT-IV	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS	12
Solutions o	f one dimensional wave equation - One dimensional equation of heat con-	duction –
Steady state	e solution of two-dimensional equation of heat conduction (Insulated edges ex	kcluded) –
Fourier serie	es solutions in Cartesian coordinates.	
UNIT-V	Z -TRANSFORMS AND DIFFERENCE EQUATIONS	12
Z-transform	s – Elementary properties – Inverse Z-transform – Convolution theorem – F	ormation
of difference	e equations – Solution of difference equations using Z-transform.	
	TOTAL: 60	PERIODS

TEXT BOOK(S)

1. Grewal, B.S, "Higher Engineering Mathematics", 40 th Edition, Khanna publishers, Delhi, (2007) 2. Veerarajan, T., "Transforms and Partial Differential Equation", Tata Mc-GrawHill Publishing Company limited, New Delhi (2011).

REFERENCE(S)

- 1. Bali, N.P and Manish Goyal "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications(P) Ltd. (2007)
- 2. Ramana B.V., "Higher Engineering Mathematics", Tata Mc-GrawHill Publishing Company limited, New Delhi (2007)
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd edition-Pearson Education (2007)
- 4. Erwin Kreyszig "Advanced Engineering Mathematics", 8th edition-Wiley India (2007)

	Con	tinuous Assessment (25)	End Semester						
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% and above	1% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course					Progr	am Ou	tcomes	(POs)					P	Program Speci Outcomes (PSO			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	3	2		2								3	1				
CO2	3	2		3								3	1				
СОЗ	3	2		3								3	1				
CO4	3	2		1									1				
CO5	3	2		2								1	1				

12GE31	ENVIRONMENTAL SCIENCE AND ENGINEER	RING	L	T	P	C						
			3	1	0	3						
Programme:	B.E. Civil Engineering	Sem:		I	II							
Category	Core											
Prerequisites:	12F2Z4- Engineering Chemistry-II											
AIM:	the aim of this course is to create awareness in every engineering graduate about the importance of environment, the effect of technology on the environment and cological balance and make them sensitive to the environment problems in every cofessional endeavor that they participates											
Course Course	the environment, what are precious resources conserve these resources, what is the role of a harden clean environment and useful environment for the to maintain ecological balance and preserve government and non-government organization in 1. Recall the importance of environment and ecological services are conserved.	• At the end of this course the student is expected to understand what constitutes the environment, what are precious resources in the environment, how to conserve these resources, what is the role of a human being in maintaining a clean environment and useful environment for the future generations and how to maintain ecological balance and preserve bio-diversity. The role of government and non-government organization in environment managements.										
Outcomes:	 Illustrate the equitable use of resources for lifestyles Determine the causes of environmental pollution Explain the various disaster managements Recognize the role of Individuals, Government and Technology in environmental protection and human health 											

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 14 hrs Definition, scope and importance of environment – need for public awareness - concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy

ecosystem – structure and function of an ecosystem – producers, consumers and decomposers – energy flow in the ecosystem – ecological succession – food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – bio geographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a megadiversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: Insitu and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II NATURAL RESOURCES 10 hrs

Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles. Field study of local area to document environmental assets – river / forest / grassland / hill / mountain.

UNIT III ENVIRONMENTAL POLLUTION 8 hrs

Definition – causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – solid waste management: causes, effects and control measures of municipal solid wastes – role of an individual in prevention of pollution – pollution case studies – disaster management: floods, earthquake, cyclone and landslides. Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

7 hrs

From unsustainable to sustainable development – urban problems related to energy – water conservation, rain water harvesting, watershed management – resettlement and rehabilitation of people; its problems and concerns, case studies – role of non-governmental organizationenvironmental ethics: Issues and possible solutions – climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, case studies. – wasteland reclamation – consumerism and waste products – environment protection act – Air (Prevention and Control of Pollution) act – Water (Prevention and control of Pollution) act – Wildlife protection act – Forest conservation act – enforcement machinery involved in environmental legislation- central and state pollution control boards- Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

6 hrs

Population growth, variation among nations – population explosion – family welfare programme – environment and human health – human rights – value education – HIV / AIDS – women and child welfare – role of information technology in environment and human health – Case studies.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1.Ravi Krishnan. A, "Environmental Science and Engineering", Sri Krishna publications, Chennai 2012.
- 2.Benny Joseph, "Environmental Studies", Tata McGraw-Hill, New Delhi, 2008

REFERENCES

- 1. R.K. Trivedi, "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol. I and II, Enviro Media.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, "Environmental law", Prentice hall of India PVT LTD, New Delhi, 2007.
- 4. Rajagopalan, R, "Environmental Studies-From Crisis to Cure", Oxford University Press (2005)
- 5. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 2nd Edition, Pearson Education, 2004.

	Con	tinuous Assessment (25)	End Semester								
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks							
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]							
Attendance Mark	91% and above	21% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2										
Grade Criteria	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail											

Course					Progr	am Ou	tcomes	(POs)								Specific (PSOs)	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	1		1				3	1				2				2	
CO2			1			3	2	2				3				2	
СО3	1		1	3		3	2	2				2				2	
CO4	2		2			3	2	1				1				2	
CO5	2		2			3	1	2				1				2	

12CE31	APPLIED GEOLOGY		L	T	P	C								
			3	0	0	3								
Programme:	B.E. Civil Engineering	Sem:		III	[
Category	Core													
Prerequisites:	2F1Z4-Engineering Chemistry-I													
AIM:	e aim of this course is to create awareness to the civil engineering students in logical field.													
Course	To introduce the basic knowledge to civil engineering students.													
Objectives:	• To apply this knowledge to engineering projects such as dams, tunnels and roads.													
Course Outcomes:	 Explain the importance of geology in civil engined tectonics. Gain knowledge about the formation of minerals a minerals. Gain knowledge about the formation of rocks and their properties. Examine geological maps and identify the geological full strate the seismic and electrical methods for civil 	different	fy the iate to from	e prophem	pertie basee maps	es of d on								

CITI	GENERAL GEOEGGI	
Geology in	civil Engineering - Branches of geology - Earth Structures and composition	1 —
Elementary	knowledge on continental drift and plate technologies - Earth processes -W	/eathering –
Work of rive	ers, wind and sea and their engineering importance –Earthquake belts in Ind	ia –
Groundwate	er – Mode of occurrence – Prospecting –importance in civil engineering	
UNIT-II	MINERALOGY	9
Elementary	knowledge on symmetry elements of important crystallographic systems -F	hysical
properties of	f minerals – Study of the following rock forming minerals – Quartz family -	- Feldpar
family - Au	gite, hornblende, biotite, muscovite, calcite, garnet - properties - behaviour	and
engineering	significance of clay minerals - Fundamentals of process of formation of ore	e minerals –
Coal and per	troleum – Their origin and occurrence in India.	
UNIT-III	PETROLOGY	9
Classification	on of rocks - Distinction between igneous, sedimentary and metamorphic ro	cks –
Description	occurrence, engineering properties and distribution of following rocks - Igr	neous rocks –
Granite, sye	nite, diorite, gabbro, pegmatite, dolerite and basalt sedimentary rocks sand	1stone –
Limestone,	shale conglo, conglomerate and breccia. Metamorphic rocks - Quartizite, m	arble, slate,
phyllite, gni	ess and schist.	
UNIT-IV	STRUCTURAL GEOLOGY AND GEOPHYSICAL METHOD	9
Attitude of b	peds - Outcrops - Introduction to geological maps Study of structures - Fol	ds, faults and
joints - The	ir bearing on engineering construction – Seismic and electrical methods for	civil
engineering	investigations.	
UNIT-V	GEOLOGICAL INVESTIGATIONS IN CIVIL ENGINEERING	9
Remote sens	sing techniques – Study of air photos and satellite images – Interpretation for	or civil
Engineering	projects - Geological conditions necessary for construction of dams - Tunr	iels –

Text Book

protection.

UNIT-I

Parbin Singh, "Engineering and General Geology", Katson Publication House, 1987. Legeet, "Geology and Engineering", McGraw-Hill Book Company 1998.

Buildings - Road cuttings - Landslides - Causes and preventions - Sea erosion and coastal

References

1. Blyth, "Geology for Engineers", ELBS, 1995.

GENERAL GEOLOGY

2. Krynine and Judd, "Engineering Geology and Geotechniques", McGraw-Hill Book Company, 1990

B.E. - Civil Engineering Page 68

Total: 45 Periods

	Con	tinuous Assessment (25)	End Semester								
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks							
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]							
Attendance Mark	91% and above	21% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2										
Grade Criteria	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail											

Course					Progr	am Ou	tcomes	(POs)						Program Spec Outcomes (PS) PS01 PS02 PS03		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1		1			1	2	3				2				2
CO2	2		1			2	2	3				3				2
СОЗ	1		1			2	2	3				2				2
CO4	1		1			2	2	3				1				2
CO5	2		1			2	1	3				1				2

12CE32	MECHANICS OF SOLIDS		L	T	P	C							
			3	1	0	4							
Programme:	B.E. Civil Engineering	Sem:	III										
Category	Core												
Prerequisites:	2F2Y5-Engineering Mechanics												
AIM:	o study and analyze solid mechanics, stress and deflection of beams												
Course	To study the theory of elasticity and solid mechanics.												
Objectives:	To locate the shear centre of thin wall beams	To locate the shear centre of thin wall beams											
	To analyze the forces in truss members												
Course	1. Explain the theory of elasticity including strain/disp	lacement a	and H	ooke	's lav	V							
Outcomes:	relationships.												
	2. Analyze solid mechanics problems using classical m	nethods an	d ene	rgy n	netho	ds;							
	3. Solve torsion problems in bars and thin walled mem	bers											
	4. Solve for stresses and deflections of beams under ur	symmetri	cal lo	ading	5;								
	5. Locate the shear centre of thin wall beams.	·											

INITE I	STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF	0
UNIT-I	STRESS	9
Rigid bodie	s and deformable solids - stability, strength, stiffness - tension, compression and	d shear
stresses – st	rain, elasticity, Hooke's law, limit of proportionately, modules of elasticity, stre	ss-strain
curve, later	al strain – temperature stresses – deformation of simple and compound bars – sh	ear
	ılk modulus, relationship between elastic constants – biaxial state of stress – stre	
point – stre	ss on inclined plane – principal stresses and principal planes –Mohr's circle of st	resses
UNIT-II	TRANSVERSE LOADING ON BEAMS	9
Beams – ty	pes of supports – simple and fixed, types of load – concentrated, uniformly distri	buted,
varying dist	ributed load, combination of above loading - relationship between bending mon	nent and
shear force	- bending moment, shear force diagram for simply supported, cantilever and over	er hanging
beams - Th	eory of simple bending - analysis of stresses - load carrying capacity of beams -	_
proportioni	ng of sections	
UNIT-III	DEFLECTION OF BEAMS AND SHEAR STRESSES	9
Deflection	of beams – double integration method – Macaulay's method – slope and deflection	on using
moment are	a method, Conjugate Beam method – variation of shear stress – shear stress dist	ribution in
rectangular	I sections, solid circular sections, hollow circular channel sections – shearflow	and shear
centre		
UNIT-IV	TORSION AND SPRINGS	9
Stresses and	d deformation in circular (solid and hollow shafts) - stepped shafts - shafts fixed	at both
ends-leaf	springs – stresses in helical springs and deflection of springs	
UNIT-V	ANALYSIS OF PLANE TRUSS	9
Stability an	d equilibrium of plane frames - types of trusses - analysis of forces in truss men	ıbers
method of j	oints, method of sections, method of tension coefficients	

TEXT BOOK(S)

1.Bansal R.K.Strength of materials, Laxmi 1Publications, New Delhi, Fourth Edition, 2010 2.Subramanian R., Strength of Materials, Oxford University press, New Delhi – 2010

REFERENCE(S)

- 1.William A.Nash, Theory and problems of strength of materials, Schaum's Outline series, Tata McGraw-Hill publishing co.,New Delhi-2010
- 2. Srinath L.S., Advanced Mechanics of solids, Tata McGraw-Hill publishing co., New Delhi-2003

	Con	tinuous Assessment (25)	End Semester							
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark 91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2											
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail										

Course					Progr	am Ou	tcomes	(POs)						Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	2	2	3	1	3							1	3				
CO2	3	3	2	3	2							1	3				
СОЗ	3	2	2	2	2							1	2				
CO4	1	2	3	1	1							1	2				
CO5	2	2	3	2	2							1	2				

12CE33	MECHANICS OF FLUIDS		L	T	P	C
			3	1	0	4
Programme:	B.E. CIVIL ENGINEERING S	Sem:	III			
Category	Core					
Prerequisites:	12F2Y5-Engineering Mechanics					
AIM:	The aim of this course is to provide knowledge in the field of Mechanics of Fluids and related areas					
Course Objectives:	 The student is introduced to the definition and properties of fluid. Principles of fluid statics, kinematics and dynamics are dealt with subsequently. The application of similitude and model study is covered subsequently. After undergoing this course, the student would have learnt fluid properties and application to real situations of fluid flow. 					
Course Outcomes:	 Determine the properties of fluid, pressure and their measurement Apply continuity equation and energy equation in solving problems on flow through conduits. Identify the discharge measurement, laminar flow through pipes and between plates. compute the frictional loss in laminar and turbulent flows Identify the Dimensional Analysis 					

UNIT-I	DEFINITIONS AND FLUID PROPERTIES	5+2 hrs			
Definitions – Fluid and fluid mechanics – Dimensions and units – Fluid properties – Continuum					
Concept of system and control volume					
UNIT-II	FLUID STATICS & KINEMATICS	10+4 hrs			
Pascal's Law	Pascal's Law and Hydrostatic equation – Forces on plane and curved surfaces – Buoyancy – Meta				
centre – Pressure measurement – Fluid mass under relative equilibrium Fluid Kinematics Stream,					
streak and path lines – Classification of flows – Continuity equation (one, two and three dimensional					
forms) – Stream and potential functions – flow nets – Velocity measurement (Pilot tube, current meter,					
Hot wire and hot film anemometer, float technique, Laser Doppler velocimetry)					
UNIT-III	FLUID DYNAMICS	10+3hrs			
Euler and Bernoulli's equations – Application of Bernoulli's equation – Discharge measurement –					
Laminar flows through pipes and between plates – Hagen Poiseuille equation – Turbulent flow –					
Darcy-Weisbach formula – Moody diagram – Momentum Principle.					
UNIT-IV	BOUNDARY LAYER AND FLOW THROUGH PIPES	10 +3 hrs			
Definition of boundary layer – Thickness and classification – Displacement and momentum thickness					
- Development of laminar and turbulent flows in circular pipes - Major and minor losses of flow in					
pipes – Pipes in series and in parallel – Pipe network					
UNIT-V	SIMILITUDE AND MODEL STUDY	10 +3hrs			
Dimensional Analysis – Rayleigh's method, Buckingham's Pi-theorem – Similitude and models –					
Scale effect a	and distorted models.				
	TOTAL: 60	PERIODS			

TEXT BOOK(S)

Rajput, R.K., "A text book of Fluid Mechanics", S.Chand and Co., New Delhi – 2007 2.Streeter, Victor, L. and Wylie, Benjamin E., "Fluid Mechanics", McGraw-Hill Ltd., 2010.

REFERENCE(S)

- 1 E. John Finnemore and Joseph B. Franzini, "Fluid Mechanics with Engineering Applications", McGraw-Hill International Edition, 2001.
- 2. PernardMessay, "Mechanics of Fluids" 7th Edition, Nelson Thornes Ltd. U. K. 1998.
- 3. Kumar, K.L., "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd., New Delhi,

1995. 4.Garde, R.J. and Mirajgaoker, A.G., "Engineering Fluid Mechanics", Nem Chand Bros., Roorkee

	Con	tinuous Assessment (25)	End Semester										
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks									
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]									
Attendance Mark	91% and above	1% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2												
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60	00-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail											

Course		Program Outcomes (POs)													Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4				
CO1	3	2	1	1	3							1	3			2				
CO2	3	3	2	3	2							1	3			1				
СО3	3	2	2	2	2							1	2			2				
CO4	3	2	3	1	1							1	2			1				
CO5	3	2	3	2	2							1	2			2				

12CE34	BUILDING MATERIALS AND CONSTRUCTIO TECHNIQUES	ON	L	T	P	С							
	·		4	0	0	4							
Programme:	B.E. Civil Engineering	Sem:											
Category	Core												
Prerequisites:	12F2Y6- Basic Electrical and Electronics Engineering.												
AIM:	study the Building materials and the various construction techniques, practices and equipment needed for different types of construction activities.												
Course Objectives:	 This course is to make the student aware of building construction techniques, practices. At the end of this course the student shall have a sthe various construction procedures for sub to superform the student the knowledge and suitability of equipment of various types of structures from foundation to state. 	reasonab er structu nent need	ole kn ire. led fo	owle	dge a	bout							
Course Outcomes:	 Describe the properties and behaviour of building mate Learn the advanced construction techniques used for s Adapt appropriate techniques for super structure const Explain the techniques used for construction of special Illustrate Suitability and optimum utility of construction budget cash flow. 	ub struct ruction o l structur	of buil	ding	S.								

UNIT-I UNIT I BUILDING MATERIALS

12

Bricks-constituents-qualities-classifications-uses-Stones – qualities – uses – cement-types qualities-uses- Mortar-types-properties-uses-selection of mortar-concrete-properties-uses-steel sections-wood-characteristics-seasoning-properties-uses-paints-types-properties of building materials.

UNIT-II BUILDING CONSTRUCTIONS

12hrs

Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork - masonry – stone masonry – Bond in masonry – concrete hollow block masonry – flooring – damp proof courses-building foundation –basement.

UNIT-III SUB STRUCTURE CONSTRUCTION

12

Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunneling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation.

UNIT-IV SUPER STRUCTURE CONSTRUCTION

12hrs

Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – insitu pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks.

UNIT-V CONSTRUCTION EQUIPMENT AND PRACTICS

12hrs

Selection of equipment for earth work - earth moving operations - types of earthwork equipment - Equipment for foundation and pile driving. Equipment for compaction, batching, mixing, concreting, material handling, erection of structures, dredging, trenching, tunneling- pre cast pavements – temporary shed – centering and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses - weather and water proof – roof finishes – acoustic and fire protection.

TOTAL: 60 PERIODS

TEXT BOOK(S)

1. Varghese, P.C. Building construction, Prentice Hall of India Pvt. Ltd, New Delhi, 2007.

REFERENCE(S)

- 1. Sheety, M.S, Concrete Technology, Theory and Practice, S. Chand and Company Ltd, New Delhi, 2005.
- 2. Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and Method of Construction, Dhanpat Rai and Sons, 1997.

	Con	tinuous Assessment (25)	End Semester									
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks								
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]								
Attendance Mark	91% and above	% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2											
Grade Criteria	S(90-100), A(8	90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail											

Course		Program Outcomes (POs)													Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO1	2	1	2	1	3	2	1					1	3	1	2			
CO2	2	3	2	3	2	1	1					1	3	1	2			
СОЗ	2	2	2	2	2	1	1					1	2	1	2			
CO4	2	2	3	1	1	1	1					1	2	1	2			
CO5	2	2	3	2	2	1	1					1	2	1	2			

12CE35	SURVEY	ING I	L	T	P	C							
			3	0	0	3							
Programme:	B.E. Civil Engineering	Sem: III											
Prerequisite:	12F1Z6-Engineering Graphics												
Category:	Core												
AIM:	The aim of this course is to make the engineering.	ne student aware of surveying te	chni	ques	in c	zivil							
Course	• To study the Chain surveying,	compass surveying											
Objectives:	To study the Plane table survey	ving											
	To study the Leveling, Theodo	lite surveying											
	To study the Engineering surve	eys.											
Course	1. Carry out preliminary surveyi	ng in the field of civil engineer	ring	appl	licati	ions							
Outcomes:		gineering and geotechnical engin		_									
	2. Able to plan a survey, taking and adjustment of traverse	accurate measurements, field b	ooki	ing,	plot	ting							
	S .	ruments involved in surveying	wit	h re	spec	t to							
	4. Plan a survey for application building	ns such as road alignment an	d he	eight	of	the							
	5. Undertake measurement and pl	lotting in civil engineering											

UNIT I INTRODUCTION AND CHAIN SURVEYING	8 hrs							
Definition - Principles - Classification - Field and office work - Scales - Conventio	nal signs - Survey							
instruments, their care and adjustment - Ranging and chaining - Reciprocal ranging	g - Setting							
perpendiculars - well - conditioned triangles - Traversing - Plotting - Enlarging and	d reducing figures.							
UNIT II COMPASS SURVEYING AND PLANE TABLE	7 hrs							
SURVEYING								
Prismatic compass - Surveyor's compass - Bearing - Systems and conversions - Lo	ocal attraction -							
Magnetic declination - Dip - Traversing - Plotting - Adjustment of errors - Plane ta								
accessories - Merits and demerits - Methods - Radiation - Intersection - Resection	- Traversing.							
UNIT III LEVELLING AND APPLICATIONS	12							
Level line - Horizontal line - Levels and Staves - Spirit level - Sensitiveness - Bend								
Temporary and permanent adjustments - Fly and check levelling - Booking - Redu								
and refraction - Reciprocal levelling - Longitudinal and cross sections - Plotting - Co								
and volumes - Contouring - Methods - Characteristics and uses of contours - Plotti	ng - Earth work							
volume - Capacity of reservoirs.								
UNIT IV THEODOLITE SURVEYING	8 hrs							
Theodolite - Vernier and microptic - Description and uses - Temporary and perman	nent adjustments of							
vernier transit - Horizontal angles - Vertical angles - Heights and distances - Trave	rsing - Closing error							
and distribution - Gale's tables - Omitted measurements.								
UNIT V ENGINEERING SURVEYS	10 hrs							
Reconnaissance, preliminary and location surveys for engineering projects - Lay or								
works - Route Surveys for highways, railways and waterways - Curve ranging - H								
vertical curves - Simple curves - Setting with chain and tapes, tangential angles by								
theodolite - Compound and reverse curves - Transition curves - Functions and requirements - Setting								
out by offsets and angles - Vertical curves - Sight distances - Mine Surveying - instruments - Tunnels								
- Correlation of underground and surface surveys - Shafts - Adits.								
TO	TAL: 45 PERIODS							

TEXT BOOKS

Punmia B.C. Surveying, Vols. I, Laxmi Publications, 1989

. Clark D., Plane and Geodetic Surveying, Vols. I and II, C.B.S. Publishers and Distributors, Delhi, Sixth Edition, 1971.

REFERENCES

- 1. James M.Anderson and Edward M.Mikhail, Introduction to Surveying, McGraw-Hill Book Company, 1985.
- 2. Heribert Kahmen and Wolfgang Faig, Surveying, Walter de Gruyter, 1995.
- 3. Bannister A. and Raymond S., Surveying, ELBS, Sixth Edition, 1992.
- 4. Kanetkar T.P., Surveying and Levelling, Vols. I and II, United Book Corporation, Pune, 1994

	Con	tinuous Assessment (25)	End Semester								
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks							
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]							
Attendance Mark	91% and above	1% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2										
Grade Criteria	S(90-100), A(8	90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail										

Course	Program Outcomes (POs)												Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO1	1	2	2	1	3	2	1	1				2	3	3	2	1		
CO2	2	3		3	3				2			2	1	1	2	1		
СОЗ	1	3	3	2	2		1					1	2	1	2	1		
CO4	3	3	1	1	1		1					1	2	1	2	1		
CO5	2	3	2	2	2		1					1	2	1	2	1		

12CE36	SURVEY PRACTICAL – I		L	T	P	C
			0	0	4	2
Programme:	B.E. Civil Engineering	Sem:		II	I	
Category:	Core					
Prerequisites:	12CE35- Surveying-I(CR)					
AIM:	The aim of this course is to make the student aware of sur instruments.	rveying tec	hniqu	ies a	nd	
Course	At the end of the course the student will posses k	nowledge a	bout	Surv	/ey	
Objectives:	field techniques.				•	
Course	1. Use conventional surveying tools such as chain/tape,					
Outcomes:	 in the field of civil engineering applications such highway profiling. 2. Apply the procedures involved in field work and to w 3. Able to plan a survey appropriately with the surroundings. 4. Take accurate measurements, field booking, plottin can be understood. 5. Plot traverses / sides of building and determine the lefield on a piece of paper. 	as structu ork as a su skill to g and adju	rveyi unde	ng te ersta nt of	ng a eam. nd t	the ors

LIST OF EXPERIMENTS

- 1. Study of chains and its accessories
- 2. Aligning, Ranging and Chaining
- 3. Chain Traversing
- 4. Compass Traversing-open Traversing
- 5. Compass Traversing-closed Traversing
- 6. Plane table surveying: Resection Three point problem
- 7. Plane table surveying: Resection Two point problem
- 8. Study of levels and levelling staff
- 9. Fly levelling using Dumpy level
- 10. Check levelling
- 11. LS and CS
- 12. Contouring
- 13. Study of Theodolite

Evaluation	Continuo	ous Assessment (25))	End Semester	Total Marks							
Criteria & Marks	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Examination	Total Marks							
WILLIAS	15 7.5 2.5 75											
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	55% - 6, 76-80	% - 4, 75% - 2								
Grade Criteria	S(90-100), A(80-89)	(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail										

Course	Program Outcomes (POs)												Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO1	1	2	2	1	3	2	1	1				2	3	3	2	1		
CO2	2	3		3	3				2			2	1	1	2	1		
СОЗ	1	3	3	2	2		1					1	2	1	2	1		
CO4	3	3	1	1	1		1					1	2	1	2	1		
CO5	2	3	2	2	2		1					1	2	1	2	1		

12CE37	COMPUTER AIDED BUILDING DRAWING		L	T	P	C					
			0	0	4	2					
Programme:	B.E. Civil Engineering	Sem:			III						
Category	Core		•								
Prerequisites:	12F2X7- Computer Aided Drafting and ModelingLaborate	F2X7- Computer Aided Drafting and ModelingLaboratory									
AIM:	To get experience in draft the building plan, elevation, s	get experience in draft the building plan, elevation, section.									
Course Objectives:	 At the end of this course the student should be able drawings (Plan, elevation and sectional views). The student shall also be able to appreciate the improvement of the student shall also be able to appreciate the improvement of the student shall also be able to appreciate the improvement of the student shall also be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the improvement of the student shall be able to appreciate the student shall be able to appreciate the improvement of the student shall be able to appreciate the stu				Ü						
Course Outcomes:	 Acquire knowledge and skills needed to design walls(Flat and pitched roof)-including details of de Develop the RCC framed structure Adapt appropriate techniques for super structure c Acquire basic skills needed to view, print, edit, an north light roof structure –trussess. 	oors and onstructi	wind on of	ows	ding	s.					

LIST OF EXPERIMENTS

- 1. Study of chains and its accessories
- 2. Aligning, Ranging and Chaining
- 3. Chain Traversing
- 4. Compass Traversing-open Traversing
- 5. Compass Traversing-closed Traversing
- 6. Plane table surveying: Resection Three point problem
- 7. Plane table surveying: Resection Two point problem
- 8. Study of levels and levelling staff
- 9. Fly levelling using Dumpy level
- 10. Check levelling
- 11. LS and CS
- 12. Contouring
- 13. Study of Theodolite

Evaluation Criteria & Marks	Continuo	ous Assessment (25))	End							
	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks						
Waters	15	7.5	2.5	75	100						
Attendance	91% And Above – 10	% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2									
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail										

Course	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		1	1									2	3			1
CO2		3	1	2	1							2	1			1
СОЗ		3	3	2	1							1	2			1
CO4		3	1	1	1							1	2			1

12HS31	PROFESSIONAL ENGLISH -I		L	T	P	C	
			0	0	1	1	
Programme:	B.E. Civil Engineering	Sem:		II	[
Category	Core						
Prerequisites	12F2Z1- Technical English-II						
:							
AIM:	To create an Environment to improve learner's co	mmunication skil	l using	Profes	ssiona	1	
	English module						
Course	To impart basics of Language & Gramma	r relating to Busin	ness Co	mmun	icatio	n	
Objectives:	To imbibe the spirit of accurate and appropriate and appr	opriate Basic com	municat	ion			
	To introduce the professional Communication	ation module					
	To improve learners ability to understand	Technical commu	unicatio	n			
Course	1. Employ appropriate syntax and words.						
Outcomes:	2. Understand the text and its structure to respon	nd any queries.					
	3. Improve technical communication.						
	4. Respond oral communication at work place.						
	5. Develop coherence in oral presentation and Initiate discussion with the mass.						

List of Experiments:

Language & Grammar

Use of Verb, Article, Adjectives, Adverbs, Preposition, Conjunction, Comparative Superlative,

Noun - Antecedent & Precedent

Spelling &Punctuation

Concord

Use of Active & Passive voice

Use of Conditional Sentence & Reported speech

Reading

Reading technical reports for Gist

Reading Technical Article, Graphs, Charts, Adverts, Notices & Proposals for Structure and detail

Writing

Writing E-mails for giving Instruction/ Summarizing/Persuading/Giving assurance/asking a comment Writing an Introduction to Report/Proposal/Technical Description

Writing Instructions & Recommendations for User manuals/Equipments/devices/New Inventions

Listening

Listening to Technical News for Gist

Listening to Technical Interviews for gathering information

Listening to a Presentation for inferring meaning

Speaking

Self-Introduction

Have your say- Recent gadgets/Technical Innovations/ Scientific Inventions

Evaluation Criteria & Marks	Continuo	ous Assessment (25))	End						
	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks					
Marks	15	7.5	2.5	75	100					
				[Min Pass:	[Min Pass:					
Attendance	91% And Above – 10	% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12						PO12	PSO1	PSO2	PSO3	PSO4				
CO1						2			2	3	1	2	2	2		3
CO2						3			2	3	1	2	2	2		3
СО3						3			2	3	1	1	2			3
CO4						3			2	3	1	1	3	3		2
CO5						3			2	2	2	1	1	3		1

12MA42	NUMERICAL METHODS	L	T	P	C				
		3	1	0	4				
Programme:	B.E. Civil Engineering Sem								
Prerequisite:	12MA31- Transforms and Partial Differential Equations								
Category:	Core								
AIM:	To provide adequate analytical and problem solving skills for all students	the e	engin	eerin	g				
Course Objectives:	 At the end of the course, the students would be able to ke concepts in numerical methods and their uses like the ro- equations, interpolation of data, application of differential integration. 	ots o	non		r				
Course Outcomes:	 Evaluate matrix Inverse by using Gauss-Jordan method. Apply Newton's forward and backward difference interpolation Solve Numerical integration using Trapezoidal and Simpson's 1/3 rules. Analyze the Modified Euler's method. Evaluate Finite difference solution of Second order Equation 								

UNIT I	SOLUTION OF EQUATIONS AND EIGENVALUE	9+3 hrs							
	PROBLEMS								
Solution of equ	nation –Fixed point iteration: $x=g(x)$ method - Newton's method –	- Solution of linear							
system by Gau	ssian elimination and Gauss-Jordon method- Iterative method - G	auss- Seidel method							
- Inverse of a r	natrix by Gauss Jordon method – Eigen value of a matrix by powe	er method and by							
Jacobi method	Jacobi method for symmetric matrix.								
UNIT II	INTERPOLATION AND APPROXIMATION	9+3 hrs							
Lagrangian Po	Lagrangian Polynomials – Divided differences – Interpolating with a cubic spline – Newton's								
forward and ba	ckward difference formulas.								
UNIT III	NUMERICAL DIFFERENTIATION AND	9+3 hrs							
	INTEGRATION								
Differentiation	Differentiation using interpolation formulae –Numerical integration by trapezoidal and Simpson's 1/3								
and 3/8 rules –	Romberg's method – Two and Three point Gaussian quadrature f	formulae – Double							
integrals using	trapezoidal and Simpsons's rules.								
UNIT IV	INITIAL VALUE PROBLEMS FOR ORDINARY	9+3 hrs							
	DIFFERENTIAL EQUATIONS								
Single step me	thods: Taylor series method - Euler method for first order equatio	n – Fourth order							
	method for solving first and second order equations - Multistep n	nethods: Milne's and							
Adam's predic	tor and corrector methods.								
UNIT V	BOUNDARY VALUE PROBLEMS IN ORDINARY AND	9+3 hrs							
	PARTIAL DIFFERENTIAL EQUATIONS								
Finite difference solution of second order ordinary differential equation – Finite difference solution of									
	one dimensional heat equation by explicit and implicit methods – One dimensional wave equation and								
two dimension	al Laplace and Poisson equations.								
	TOTAL: 60 PERIODS								

TEXT BOOKS

- 1.P.Kandasamy, K.Thilagavathy and K.Gunavathy, 'Numerical Methods', S.Chand Co.Ltd., New Delhi, 2003. New Delhi, 2007.
- 2. Veerarjan, T and Ramachandran, T., "Numerical methods with programming in C", Second Editiion, Tata McGraw-Hill Publishing.Co.Ltd, 2007.

REFERENCES

1. Sankara Rao K, "Numerical Methods for scientists and Engineers", 3rd Edition, Printice Hall of

India Private Ltd, New Delhi, 2007.

2. Gerald, C. F. and Wheatley, P.O., "Applied Numerical Analysis".., Edition, Pearson Education, Asia, New Delhi.

Evaluation Criteria & Marks	Continuo	ous Assessment (25))	End						
	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks					
Marks	15	7.5	2.5	75	100					
				[Min Pass:	[Min Pass:					
Attendance	91% And Above – 10	% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1								PO12	PSO1	PSO2	PSO3	PSO4			
CO1	3	2		3		2		3					3	2		
CO2	3	2		3		2	3						3	2		
СО3	3	2	3	2		2	3						3	2		
CO4	3	2	3	2									3	2		
CO5	3		2	3	2								3	2		

12CE41	GEOTECHNICAL ENGINEERING – I		L	T	P	C				
			3	0	0	3				
Programme:	B.E. Civil Engineering	Sem:	IV							
Category	Core									
Prerequisites:	12CE31- Applied Geology									
AIM:	After undergoing this course, the student gains adequate k properties of soil.	knowledge	e on e	engin	eerin	g				
Course	• To study the nature of soil and classification of soil.									
Objectives:	To study the stress concept in soil.									
	To study the shear strength and its measurement.									
	To study the stability analysis for cohesive soil.									
Course	Classify the soil based on its nature.									
Outcomes:	2. Determine the permeability and seepage characte	ristics of s	soil.							
	3. Describe the stress analysis of soil by various the									
	4. Evaluate the shear strength of soil using Mohr - Coulomb failure theory.									
	5. Analyse the stability of soil and suggest protective measures.									

UNIT-I INTRODUCTION

10 hrs

Nature of Soil – Phase relation – Sieve analysis – Sedimentation analysis – Atterberg's limits – BIS Classification system – Soil compaction – Factors affecting compaction – Field compaction methods and monitoring.

UNIT-II SOIL WATER AND WATER FLOW

8 hrs

Soil water – Various forms – Influence of clay minerals – Capillary rise – Suction – Effective stress concepts in soil – Total, neutral and effective stress distribution in soil - Permeability – Darcy's Law-Permeability measurement in the laboratory – quick sand condition - Seepage – Laplace Equation - Introduction to flow nets –properties and uses - Application to simple problems.

UNIT-III STRESS DISTRIBUTION, COMPRESSIBILITY AND SETTLEMENT

10hrs

Stress distribution in soil media – Boussinesque formula – stress due to line load and Circular and rectangular loaded area - approximate methods - Use of influence charts – Westergaard equation for point load – Terzaghi's one dimensional consolidation theory – governing differential equation - laboratoryconsolidation test – Field consolidation curve – NC and OC clays - problems on final and timerate of consolidation

UNIT-IV | SHEAR STRENGTH

9hrs

Shear strength of cohesive and cohesionless soils - Mohr - Coulomb failure theory - Saturated soil - Strength parameters - Measurement of shear strength, direct shear, Triaxial compression, UCC and Vane shear tests -Types of shear tests based on drainage and their applicability - Drained and undrained behaviour of clay and sand - Stress path for conventional triaxial test.

UNIT-V SLOPE STABILITY

8hrs

Slope failure mechanisms - Modes - Infinite slopes - Finite slopes - Total and effective stress analysis - Stability analysis for purely cohesive and C- soils - Method of slices - Modified Bishop's method - Friction circle method - stability number - problems - Slope protection measures.

TOTAL:45 PERIODS

TEXT BOOK(S)

- 1. Punmia P.C., "Soil Mechanics and Foundations", Laximi Publications Pvt. Ltd., New Delhi, 2005.
- 2. Coduto, D.P., "Geotechnical Engineering Principles and Practices", Prentice Hall of India Private Limited, New Delhi, 2002.

REFERENCE(S)

- 1. McCarthy D.F., "Essentials of Soil Mechanics and Foundations Basic Geotechniques", Sixth Edition, Prentice-Hall, New Jersey, 2002.
- 2. Das, B.M, "Principles of Geotechnical Engineering", (fifth edition), Thomas Books/ cole,2002
- 3. Muni Budhu, "Soil Mechanics and Foundations", John Willey & Sons, Inc, New York, 2000.
- 4. Gopal Ranjan and Rao A.S.R., "Basic and applied soil mechanics", New Age International Publishers, New Delhi, 2000.
- 5. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 1995
- 6. Khan I.H., "A text book of Geotechnical Engineering", Prentice Hall of India, New Delhi, 1999...

	Con	tinuous Assessment (25)	End Semester						
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% and above	1% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	3			2								3	3	2	
CO2	2	3	2		2								3	3		
CO3	2	3	1		3								3	3		
CO4	2	3	3		3								3	3	2	
CO5	2	3	3		3								3	3		

12CE42	STRENGTH OF MATERIALS		L	T	P	С			
			3	1	0	4			
Programme:	B.E. Civil Engineering Sem:								
Category:	Core								
Prerequisites:	12CE32- Mechanics of Solids								
Aim:	The aim of this course is to make the student familiar w concept in Strength of Materials field in civil engineering		chniq	ues a	nd				
Course Objectives:	 This subject is useful for a detailed study of forwith some suitable protective measures for the second types. This knowledge is very essential for an engineer all types of structures and machines. 	ces and the	ing c	ondit	ion.				
Course	1. Apply the principle of virtual work and also can a	ble to app	ply e	nergy	met	hods			
Outcomes:	for the determination of the deflections and rotation 2. Perform Analysis for Statically Indeterminate bean 3. Visualize the behavior of column for combined ber 4. Explain the concepts of three - dimensional stress as the stress -strain relationships for homogenous, is 5. Examine the different failure criterion and predict state of a body.	ns nding and s and strains sotropic n	in at : nateri	a poi als	nt as				

UNIT I	ENERGY PRINCIPLES	9+3 hrs
Strain energy and	strain energy density - strain energy in traction, shear in flexu	re and torsion –
castigliano's theor	rems – principle of virtual work – application of energy theore	ems for computing
deflections in bear	ms and trusses – Maxwell's reciprocal theorems	
UNITII	INDETERMINATE BEAMS	9+3 hrs
cantilever and fixe	ed beams-fixed end moments and reactions for concentrated lo	oad (central, non
central), uniformly	y distributed load, triangular load (maximum at centre and ma	ximum at end) –
theorem of three r	noments - analysis of continuous beams - shear force and ben	nding moment
diagrams for conti	inuous beams – slope & deflections in continuous beams (qual	litative study only)
UNITIII	COLUMNS	9+3 hrs
Eccentrically load	ed short columns – middle third rule – core section – Euler's t	theory of long
columns - critical	loads for prismatic columns with different end conditions; Ra	nkine-Gordon
formula for eccen-	trically loaded columns – Thin Cylinders and Shell - Thick cylinders	linders – compound
cylinders.		
UNITIV	STATE OF STRESS IN THREE DIMENSIONS	9+3 hrs
Spherical and dev	iatory components of stress tensor - determination of principal	l stresses and
principal planes -	volumetric strain - dilatation and distortion -theories of failur	re – principal strain –
shear stress – strai	n energy and distortion energy theories	
UNIT V	ADVANCED TOPICS IN BENDING OF BEAMS	9+3 hrs
Columns of unsyr	nmetrical sections - Unsymmetrical bending of beams of symr	metrical and
unsymmetrical sec	ctions – curved beams – Winkler Bach formula	
	TO	TAL: 60 PERIODS

TEXT BOOKS

Rajput R.K. Strength of Materials, S.Chand&company Ltd., New Delhi – 2006

Srinath, L.S. Advanced mechanics and solids, Tata-McGraw Hill publishing company ltd, 2008.

REFERENCES

- 1. Kazimi S.M.A, "Solid Mechanics", Tata McGraw-Hill Publishing Co., New Delhi, 2003
- 2. William A .Nash, "Theory and Problems of Strength of Materials", Schaum's Outline Series, Tata

McGraw Hill Publishing company Ltd, 2007.

3. Punmia B.C.Theory of Structures (SMTS) Vol 1&II, Laxmi publishing Pvt Ltd,New Delhi, 2004

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	1-89), B(71-80), C(61	1-70), D(56-60)	E(50-55), U (<50-55)	0)-Fail				

Course	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3		2	3								3	2	2	
CO2	3	3		2	3								3	2		
CO3	3	3		2	3								3	2		
CO4	3	3		2	3								3	2	2	
CO5	3	3		2	3								3	2		

12CE43	APPLIED HYDRAULIC ENGINEERING		L	Т	P	С					
			3	1	0	4					
Programme:	B.E. CIVIL ENGINEERING Sem: IV										
Category	Core										
Prerequisites:	12CE33 Mechanics of Fluids										
AIM:	The aim of this course is to make the student aware of hy and methodology.	draulic en	ginee	ring	conce	epts					
Course Objectives:	 Student is introduced to open channel flow charal jump and surges. Hydraulic machines viz flow through turbines an performance characteristics and design aspects at Student, at the end of the semester will have the a characteristics in open channel and design hydrau 	d pumps in the taught.	nclud	ling t	heir	ulic					
Course Outcomes:	 Use the basic equations of motion for moving fluids Apply the manning equation and Chezy's equation to Classify gradually varied flow profiles Explain the working principles of different types of to Apply the knowledge of applied hydraulics on design problems 	in open che describe turbines ar	nanne unifo nd pu	orm f mps.		and					

UNITI OPEN CHANNEL FLOW	9+3 hrs								
Open channel flow – Types and regimes of flow – Velocity distribution in open	channel – Wide								
open channel – Specific energy – Critical flow and its computation – channel transition.									
UNITII UNIFORM FLOW	8+3 hrs								
Uniform flow – Velocity measurement – Manning's and Chezy's formula – Det	termination of								
roughness coefficients – Determination of normal depth and velocity – Most ec	onomical sections -								
Non-erodible channels=									
UNITIII VARIED FLOW	9+3 hrs								
Dynamic equations of gradually varied flow – Assumptions – Characteristics of	flow profiles –								
Draw down and back water curves – Profile determination – Graphical integrati	on, direct step and								
standard step method – Flow through transitions - Hydraulic jump – Types – Er	nergy dissipation –								
Surges.									
UNITIV PUMPS	9+3 hrs								
Centrifugal pump - minimum speed to start the pump – multistage Pumps – Jet	and submersible								
pumps - Positive displacement pumps - reciprocating pump - negative slip - flow	w separation								
conditions - air vessels -indicator diagram and its variation - savings in work do	ne – rotary pumps.								
UNIT V TURBINES	10+3 hrs								
Turbines - draft tube and cavitations – Application of momentum principle – Im	pact of jets on plane								
and curved plates - turbines - classification - radial flow turbines - axial flow turbines	rbines – Impulse and								
Reaction									
TO	OTAL: 60 PERIODS								

TEXT BOOKS

Bansal R.K, Fluid mechanics & Hydraulic machines, Laxmi Publishing Pvt Ltd, New Delhi – 2007. 1. Jain A.K., "Fluid Mechanics (including Hydraulic Machines)", Khanna Publishers, 10th edition

REFERENCES

- 1. Ranga Raju, K.G., "Flow through Open Channels", Tata McGraw-Hill, 1985
- 2. Subramanya K., "Flow in Open channels", Tata McGraw-Hill PublishingCompany, 1994.
- 3. Modi, P.N, and Seth S.M. Hydraulic and Fluid Mechanics Standard Book House, 2000.

	Con	tinuous Assessment (25)	End Semester						
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% and above	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60	0-69), D(55-59)	, E(50-54), U (<5	50)-Fail					

Course	Program Outcomes (POs)									Program Specific Outcomes (PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	1	2								3	2		2
CO2	3	3	3	1	2								3	2		
СО3	3	3	3	1	2								3	2		
CO4	3	3	3	1	2								3	2	3	
CO5	3	3	3	1	2								3	2	3	2

12CE44	SURVEYING II	L	T	P	C				
		3	0	0	3				
Programme:	B.E. CIVIL ENGINEERING Sem:	IV							
Category	Core								
Prerequisites:	12CE35- Surveying-I								
AIM:	The aim of this course is to make the student aware of surveying to engineering.	echnic	ques i	n civ	il				
Course	At the end of the course the student will posses	kno	wled	ge a	bout				
Objectives:	Tachometric surveying, Control surveying, Survey adjustr	nents.							
	To get introduced to modern advanced surveying technique.	ies in	volve	ed suc	ch as				
	Remote sensing, Total station, GPS, Photogrammetry etc.								
Course	1. Describe the tachometric systems and stadia systems.								
Outcomes:	2. Carry out a geodetic survey, taking accurate measurements u and adjusting the traverse.	sing	in	strun	nents				
	3. Apply mathematical adjustment of accidental errors inv measurements.	olved	in	surve	ying				
		4. Plan a survey for applications such as road alignment and height of the building.							
	Invoke advanced surveying techniques over conventional me civil engineering	thods	in th	ne fie	ld of				

**************************************	THE CONTROL OF THE PARK OF THE						
UNIT I	TACHEOMETRIC SURVEYIN	6 hrs					
	tems - Tangential, stadia and subtense methods - Stadia systems - Horiz						
inclined sights - V	Vertical and normal staffing - Fixed and movable hairs - Stadia constant	s - Anallactic					
lens - Subtense ba	ur.						
UNIT II	CONTROL SURVEYING	8 hrs					
	ole to part - Horizontal and vertical control methods - Triangulation - S						
line - Instruments	and accessores - Corrections - Satellite station - Reduction to centre - 7	Trignometric					
levelling - Single	and reciprocal observations - Modern trends – Bench marking						
UNITIII	SURVEY ADJUSTMENTS	8 hrs					
Errors - Sources,	precautions and corrections - Classification of errors - True and most pr	obable values -					
	tions - Method of equal shifts - Principle of least squares – Normal equations						
	nets - Adjustment of simple triangulation networks.						
UNITIV	ASTRONOMICAL SURVEYING	11 hrs					
Celestial sphere -	Astronomical terms and definitions - Motion of sun and stars - Appare	nt altitude and					
corrections - Cele	stial co-ordinate systems - Different time systems - use of Nautical alm	anac - Star					
constellations - ca	lculations for azimuth of a line.						
UNITV	HYDROGRAPHIC AND ADVANCE SURVEYING	12					
Hydrographic Sur	veying - Tides - MSL - Sounding methods - Location of soundings and	methods -					
Three point probl	em - Strength of fix - Sextants and station pointer - River surveys - Mea	asurement of					
current and discha	arge - Photogrammetry - Introduction - Basic concepts of Terrestial and	l aerial					
Photographs - Stereoscopy - Definition of Parallax. Electromagnetic distance measurement - Basic							
principles - Instruments - Trilateration. Basic concepts of Cartography and Cadastral surveying- Area							
calculation using Total Station & GPS.							
<u> </u>		: 45 PERIODS					

TEXT BOOKS

- 1. Punmia B.C., Surveying, Vols. II and III, Laxmi Publications, fifteenth edition, 2005.
- 2. Kanetkar T.P., Surveying and Levelling, Vols. I and II, United Book Corporation, Pune, 2008

REFERENCES

- 1. Clark D., Plane and Geodetic Surveying, Vols. I and II, C.B.S. Publishers and Distributors, Delhi, Sixth Edition, 1971.
- 2. James M.Anderson and Edward M.Mikhail, Introduction to Surveying, McGraw-Hill Book Company, 1985.
- 3. Wolf P.R., Elements of Photogrammetry, McGraw-Hill Book Company, Second Edition, 1986.
- 4. Robinson A.H., Sale R.D. Morrison J.L. and Muehrche P.C., Elements of Cartography, John Wiley and Sons, New York, Fifth Edition, 1984.
- 5. Heribert Kahmen and Wolfgang Faig, Surveying, Walter de Gruyter, 1995.
- 6. Bannister A. and Raymond S., Surveying, ELBS, Sixth Edition, 1992

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester						
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	75 [Min Pass: 37]	100 [Min Pass: 50]							
Attendance Mark	91% and above	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	E(50-54), U (<50	0)-Fail					

Course					Progr	am Ou	tcomes	(POs)							Specifes (PSO	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	2	2								3	3		2
CO2	3	3	2	2	2								3	3		
СОЗ	3	3	1	2	2								3	3		
CO4	3	3	2	2	2								3	3	2	
CO5	3	3	2	2	2								3	3	3	2

12CE45	HIGHWAY ENGINEERING		L	T	P	C							
			3	0	0	3							
Programme:	B.E. CIVIL ENGINEERING	Sem:		Ι	V								
Category	Core												
Prerequisites:	12CE34- Building Materials and Construction Technique	S											
AIM:	The aim of this course is to provide knowledge for the stu and design.	ident with	high	ways	plan	ning							
Course	The objective of the course is to educate the students on the	The objective of the course is to educate the students on the various components of											
Objectives:	Highway Engineering. It exposes the students to highway	planning	, engi	neeri	ng								
	surveys for highway alignment, Design of Geometric Eler	ments of I	Highv	vays	and								
	Urban roads, and Rigid and Flexible pavements design.												
Course	1. Describe the jayakar committee recommendations	and realize	zatior	ns of	high	ıway							
Outcomes:	engineering.												
	2. Explain about design of horizontal and vertical alignment	nent of ge	omet	ric de	esign.	,							
	3. Describe the design principles of flexible and rigid pa												
	4. Explain about factors affecting flexible and rigid pave												
	5. Describe the desirable properties and testing of highw	ay materi	als										

UNIT I HIGHWAY PLANNING AND ALIGNMENT	9
History of Road Construction, Highway Development in India - Jayakar Commi	ttee
Recommendations and Realisations, Twenty-year Road Development Plans, Co	ncepts of ongoing
Highway Development Programmes. Requirements of Ideal Alignment, Factors	Controlling Highway
Alignment Engineering Surveys for Alignment - Conventional Methods and Mo	dern Methods
(Remote Sensing, GIS and GPS techniques) Classification and Cross Section of	Urban and Rural
Roads (IRC), Highway Cross Sectional Elements - Principles of Highway Finan	ncing – Traffic Signals
UNIT II GEOMETRIC DESIGN OF HIGHWAYS	9
Design of Horizontal Alignment - Horizontal Curves Super elevation, Widening	g of Pavements on
Horizontal Curves and Transition Curves Design of Vertical Alignments - Rolli	ng, Limiting,
Exceptional and Minimum Gradients, Summit and Valley Curves-Sight Distance	es – Factors affecting
Sight Distances, PIEV theory, Stopping Sight Distance (SSD), Overtaking Sight	Distance (OSD),
Sight Distance at Intersections, Intermediate Sight Distance and Illumination Sig	ght Distance
[Derivations and Problems in SSD and OSD] -Geometric Design of Hill Roads	[IRC Standards Only]
UNIT III FLEXIBLE AND RIGID PAVEMENTS	9
Rigid and Flexible Pavements- Components and their Functions -Design Princip	oles of Flexible and
Rigid Pavements, Factors affecting the Design of Pavements - ESWL, Climate,	Sub-grade Soil and
Traffic - Design Practice for Flexible Pavements [IRC Method and Recommend	ations- Problems] -
Design Practice for Rigid Pavements – IRC Recommendations - concepts only.	
UNIT IV HIGHWAY MATERIALS AND CONSTRUCTION	9
PRACTICE	
Desirable Properties and Testing of Highway Materials: Soil - California Bearing	
Density Test - Aggregate - Crushing, Abrasion, Impact Tests, Water absorption,	
Elongation indices and Stone polishing value test - Bitumen - Penetration, Ducti	
content and Softening point Tests Construction Practice - Water Bound Macae	
Bituminous Road and Cement Concrete Road [as per IRC and MORTH specific	ations] - Highway
Drainage [IRC Recommendations]	
UNIT V HIGHWAY MAINTENANCE	9
Types of defects in Flexible pavements – Surface defects, Cracks, Deformation,	
Symptoms, Causes and Treatments Types of Pavement, Failures in Rigid Pave	
Shrinkage, Warping, Structural Cracks Spalling of Joints and Mud Pumping – a	nd Special Repairs

Pavement Evaluation – Pavement Surface Conditions and Structural Evaluation, Evaluation of pavement Failure and strengthening - Overlay design by Benkelman Beam Method [Procedure only],

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Khanna K and Justo C E G, Highway Engineering, Nem chand & Bros, Roorkee, 9th Edition.
- 2. Kadiyali L R, Principles and Practice of Highway Engineering, Khanna Technical Publications, Delhi, 5th Edition.

REFERENCES

- 1. Transportation Engineering & Planning, C.S. Papacostas, P.D. Prevedouros, Prentice Hall of India Pvt ltd, 2006.
- 2. IRC Standards (IRC 37 2001 & IRC 58 -1998)
- 3. Bureau of Indian Standards (BIS) Publications on Highway Materials
- 4. Specifications for Road and Bridges, MORTH (India)

Evaluation Criteria & Marks	Con	tinuous Assessment (25)	End Semester									
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks								
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]								
Attendance Mark	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2												
Grade Criteria	S(90-100), A(8	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail											

Course	Program Outcomes (POs)												Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO1						3	2	1				2	1					
CO2	3	3	2		2								3	2	2			
СОЗ	3	3	2		2								3	2	2			
CO4	3	2	2	2	2								3	2	2			
CO5				3	2							2	2	2	2			

12CE46	STRENGTH OF MATERIALS LAB		L	T	P	C							
			0	0	3	2							
Programme:	B.E. Civil Engineering	Sem:			IV								
Category	Core												
Prerequisites:	12CE42- Strength of Materials(CR), 12CE32- Mechanics	of Solids	S										
AIM:	The aim of this course is to make the student to practice an of materials concepts.	nd get fai	miliar	wit	h stre	ngth							
Course	The experimental work involved in this laboratory	should	make	the	stude	nt							
Objectives:	understand the fundamental modes of loading of t measurements of loads, displacements and strains		ures a	nd a	ılso n	nake							
	 Relating these quantities, the student should be ab the material and stiffness properties of structural e 	le to obta		e str	ength	ı of							
Course	1. Extract basic material properties of wood, aluminium	m and st	eel si	ıch	as ev	aluate							
Outcomes:	Young's Modulus, torsional strength, hardness an specimens from simple mechanical tests.	d tensile	e stre	engtl	n of	given							
	2. Operate and handle Major equipments such as, Torsion Testing Machine, Rockwell/Brinnel Hardness	testing i		_	-								
	3. Identify the flexural behavior of simply supported bea4. Evaluate stiffness of open coiled and closed coiled spr												
	 Evaluate the compressive strength of concrete cube block. 	_	ricks	and	l Pav	ement							

LIST OF EXPERIMENTS

- 1. Test involving axial tension to obtain the stress strain curve and the strength
- 2. Test involving torsion to obtain the torque vs. angle of twist and hence the stiffness
- 3. Test involving flexure to obtain the load deflection curve and hence the stiffness
- 4. Tests on springs
- 5. Hardness tests
- 6. Double Shear test
- 7. Izod Impact Test
- 8. Charpy Impact Test
- 9. Compression Test on wood Specimen.
- 10. Compression Test on Brick and Pavement block. The student should learn the use of deflectometer, extensometer, compressometer and strain gauges.

Evaluation Criteria & Marks	Continuo	ous Assessment (25))	End								
	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks							
	15	7.5	2.5	75	100							
		[Min Pass:	[Min Pass:									
Attendance	91% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2											
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail											

Course					Progr	am Ou	tcomes	(POs)						rogram		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1						3	2	1				2	1			
CO2	3	3	2		2								3	2	2	
СОЗ	3	3	2		2								3	2	2	
CO4	3	2	2	2	2								3	2	2	
CO5				3	2							2	2	2	2	

12CE47	HYDRAULIC ENGINEERING LABORATORY	Y	L	T	P	C								
			0	0	3	2								
Programme:	B.E. Civil Engineering	Sem:			IV									
Category	Core													
Prerequisites:	12CE43- Applied Hydraulic Engineering(CR), 12CE33- Mechanics of Fluids													
AIM:	The aim of this course is to make the student to practice an Hydraulic Engineering concepts and equipments.	The aim of this course is to make the student to practice and get familiar with Hydraulic Engineering concepts and equipments.												
Course Objectives:	 To study a design problem in any one of the discipline Student should be able to verify the principles studie experiments. 		_		_	ng the								
Course Outcomes:	 Determine the co-efficient of discharge for orifice Venturimeter Determine the friction losses and minor losses in pipes Identification of meta centre in a ship model. Knowledge about Performance characteristics of Pelto Knowledge about Performance characteristics of Opump. 	s on, Franci	s and	Kap	olan t	urbine								

LIST OF EXPERIMENTS

- 1. Determination of co-efficient of discharge for orifice and mouth piece
- 2. Determination of co-efficient of discharge for notches
- 3. Determination of co-efficient of discharge for venturimeter
- 4. Determination of co-efficient of discharge for orifice meter
- 5. Determination of impact of jet on flat plate (normal / inclined)
- 6. Determination of friction losses in pipes
- 7. Determination of minor losses in pipes
- 8. Performance characteristics of Pelton turbine.
- 9. Performance characteristics of Francis turbine
- 10. Performance characteristics of Kaplan turbine
- 11. Performance characteristics of Centrifugal pumps (Constant speed / variable speed)
- 12. Performance characteristics of reciprocating pump.
- 13. Determination of Metacentric height.

TOTAL: 45 PERIODS

Evaluation Criteria &	Continuo	ous Assessment (25))	End								
	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks							
Marks	15	7.5	2.5	75	100							
		[Min Pass:	[Min Pass:									
Attendance	91% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2											
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail											

Course					Progr	am Ou	tcomes	(POs)						rogram utcome		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	2								3		2	
CO2	3	3	2	3	2								3		2	
CO3	3	3	2	3	2								3		2	
CO4	3	3	2	3	2								3		2	
CO5	3	3	2	3	2								2		2	

12CE48	SURVEY PRACTICAL – II		L	T	P	C
			0	0	4	2
Programme:	B.E. Civil Engineering	Sem:			IV	
Category	Core					
Prerequisites:	12CE44- Surveying – II(CR), 12CE35- Surveying-I					
AIM:	The aim of this course is to make the student aware of sur instruments	veying te	chnic	ques	and	
Course Objectives:	At the end of the course the student will posses keep techniques	nowledge	abou	ıt Su	rvey	field
Course Outcomes:	 Use the theodolite along with chain, tape on the field Apply field procedures in basic types of survey Take accurate measurements using different surveyin Use geometric and trigonometric calculations of basic Practicing field observation by using advanced ins Station 	surveyin	ıg.	GPS	and	l Total

LIST OF EXPERIMENTS

- 1. Study of theodolite
- 2. Measurement of horizontal angles by reiteration and repetition and vertical angles
- 3. Theodolite survey traverse
- 4. Heights and distances Triangulation Single plane method.
- 5. Trilateration.
- 6. Tacheometry Tangential system Stadia system Subtense system.
- 7. Setting out works Foundation marking Simple curve (right/left-handed) Transition curve.
- 8. Field observation for and Calculation of azimuth, Latitude and Longitude
- 9. Calculating and plotting the given area using Total Station
- 10. Calculating and plotting the given area using GPS

TOTAL: 45 PERIODS

	Continuo	ous Assessment (25)	End						
Evaluation Criteria &	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks				
Marks	15	7.5	75	100					
				[Min Pass:	[Min Pass:				
Attendance	91% And Above – 10	91% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100), A(80-89)	5(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail							

Course	Program Outcomes (POs)								Program Specific Outcomes (PSOs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12 PSO1 PSO2			PSO3	PSO4
CO1	3	3	2	3	2				2	2			3	3	2	
CO2	3	3	2	3	2				2				3	3	2	
СОЗ	3	3	2	3	2				2	2			3	3	2	
CO4	3	3	2	3	2				2				3	3	2	
CO5	3	3	2	3	2				2	2			3	3	2	

12HS41	PROFESSIONAL ENGLISH -II		L	T	P	C			
			0	0	2	1			
Programme:	B.E. Civil Engineering	Sem:			IV				
Category	Core								
Prerequisites:	12HS31- Professional English-I								
AIM:	To Create an Environment to experiment Professional Eng	glish com	muni	catio	n mo	dule			
Course	• The objective to improve the proficiency in	business	com	mun	icati	on, to			
Objectives:	develop students accuracy in communication, to	o improv	e lea	rner	s abi	lity to			
	understand kind of text and to give exposi	are to i	nterna	al a	nd o	official			
	communication exposure.								
Course	1. Develop grasping skill to interpret the text.								
Outcomes:	2. Create technical communication at work place.								
	3. Distinguish sounds of English to respond any queries.	3. Distinguish sounds of English to respond any queries.							
	4. Identify vocabulary for effective communication.								
	5. Evaluate the topic and Present personal opinion using suitable verbal and non-								
	verbal cues.								

List of Experiments:	
Reading	7
Reading for Identifying Information	
Reading for Structure and detail-Article, Report, Proposal	
Reading for Matching Information	
Reading for Matching short-answer questions	
Structure and Discourse features	
Reading for Error Identification	
Reading for identifying Main points	
Writing	7
Writing for clarity, accuracy, aptness	
Writing for Giving Instruction	
Writing for asking a comment	
Writing for Gathering Information	
Describing a Technical Report	
Summarizing/Persuading Proposal	
Writing for giving assurance	
Listening	6
Listening for writing short answers	
Listening for Matching words	
Listening for filling a gap	
Listening for Sentence completion	
Listening for writing short answers	
Listening to a Conversation to gather Information	
Speaking	10
Introduction	
Interview	
Long Turn	
Group Discussion	

	Continuo	ous Assessment (25))	End					
Evaluation Criteria &	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks				
Marks	15	7.5	75	100					
				[Min Pass:	[Min Pass:				
Attendance	91% And Above – 10	91% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course	Program Outcomes (POs)								m Specific nes (PSOs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1				1					2	2	1	3			2	3
CO2									3	3	3	3			2	3
СОЗ				1					3	3	2	3			2	3
CO4				1					3	3	3	3			2	3
CO5									3	3	3	3			2	3

12CE51	IRRIGATION ENGINEERING		L	T	P	C	
			3	0	0	3	
Programme:	B.E. Civil Engineering	Sem:	V				
Category	Core						
Prerequisites:	12CE43- Applied Hydraulic Engineering						
AIM:	Core						
Course Objectives:	 The aim of this course is to make the students aw concepts and water management. 	are of irri	gatio	n eng	ineer	ing	
Course Outcomes:	 Acquire the basic knowledge in irrigation, its imporplanning and development of irrigation project. Learn the types of irrigation methods and able to method. Acquire broad knowledge in diversion and impoundi Acquire knowledge in canal irrigation, cross drain works. Describe the Participatory irrigation management water management. 	adapt the	effic res ar s and	cient nd its rive	irriga types r trai	ation s. ning	

UNIT-I	INTRODUCTION	9
	eed and mode of irrigation – Merits and demerits of irrigation – Cro	
	se of water – Duty – Factors affecting duty – Irrigation efficiencie	
_	of irrigation projects.	o 1 mining with
Unit-II	IRRIGATION METHODS	8 hrs
	n – Lift irrigation – Tank irrigation – Flooding methods – Merits a	
_	ation – Drip irrigation.	
Unit-III	Diversion and impounding structures	10 hrs
Weirs – eleme	ntary profile of a weir – weirs on pervious foundations - Types of	impounding structures
- Percolation p	onds – Tanks, Sluices and Weirs – Gravity dams – Earth dams – A	Arch dams – Spillways
- Factors affect	eting location and type of dams – Forces on a dam – Hydraulic des	ign of dams.
UNIT-IV	CANAL IRRIGATION	10 hrs
Alignment of o	canals – Classification of canals – Canal drops – Hydraulic design	of drops – Cross
drainage work	s – Hydraulic design of cross drainage works – Canal Head works	– Canal regulators –
River Training	works.	
UNIT-V	IRRIGATION WATER MANAGEMENT	8 hrs
Need for optin	nization of water use – Minimizing irrigation water losses – On far	m development works
- Participatory	irrigation management - Water users associations - Changing par	adigms in water
management -	Performance evaluation.	
		Total: 45 PERIODS

Text Book(s)

Punima B.C. & Pande B.B .Lal Irrigation and Water Power Engineering, sixteenth Edition, Laxmi Publishing, New Delhi 2009.

2. Sharma R.K.. "Irrigation Engineering", S.Chand & Co. 2008.

Reference(s)

- 1. Dilip Kumar Majumdar, "Irrigation Water Management (Principles & Practices)", Prentice Hall of India (P), Ltd, 2000.
- 2. Basak, N.N, "Irrigation Engineering", Tata McGraw-Hill Publishing Co. New Delhi, 1999.
- 3. Michael, A.M, Irrigation Theory and Practical, Vikas Publishing Pvt Ltd, 2006.
- 4. Gupta, B.L, & Amir Gupta, "Irrigation Engineering", Satya Praheshan, New Delhi.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	· • • • • • • • • • • • • • • • • • • •		75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% and above	01% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	, E(50-54), U (<50	0)-Fail				

Course	Program Outcomes (POs)							Progra		Specific Outcomes (PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	2	1	3	3	3					1	1	2	2	2
CO2	3	1	2	1		1	1				1	1	1	1	2	1
CO3	1	3	2		2	1	1				1	1	2	1	2	1
CO4	1	2	3	1	1	1	1				1	1	1	2	2	1
CO5	1	1	1	1	2	1	1				1	2	1	1	3	1

12CE52	STRUCTURAL ANALYSIS I		L	T	P	C		
			3	1	0	4		
Programme:	B.E. Civil Engineering	Sem:	V					
Category	Core							
Prerequisites:	12CE42- Strength of Materials							
AIM:	The aim of this course is to provide adequate analytical sand moments in the structure.	kills for fi	nding	the f	forces	3		
Course Objectives:	 The members of a structure are subjected to internal shearing forces, bending and torsional moments while on it. Structural analysis deals with analyzing these internal structures. At the end of this course students will be conversant analysis. 	e transferr l forces in	ing tl	ne loa nemb	nds ac	C		
Course	1. Get exposure to basic principles of Irrigation.							
Outcomes:	 Learn the types of irrigation methods. Describe the various impounding structures. Illustrate the canal head works and maintenance. Assess the performance of an irrigation system 							

UNIT I	DEFLECTION OF DETERMINATE STRUCTURES	9+3 hrs					
Principles of virtual	work for deflections – Deflections of pin-jointed plane frames	and rigid plane					
frames – Willot diag	gram - Mohr's correction						
	MOVING LOADS AND INFLUENCE LINES	9+3 hrs					
UNIT II	(DETERMINATE & INDETERMINATE						
UNITI	STRUCTURES WITH REDUNDANCY						
	RESTRICTED TO ONE)						
Influence lines for re	eactions in statically determinate structures – influence lines for	r member forces in					
pin-jointed frames -	Influence lines for shear force and bending moment in beam se	ections –					
Calculation of critic	al stress resultants due to concentrated and distributed moving	loads. Muller					
Breslau's principle -	- Influence lines for continuous beams and single storey rigid for	rames					
UNITIII	ARCHES	9+3 hrs					
Arches as structural	forms - Examples of arch structures - Types of arches - Analy	sis of three hinged,					
two hinged and fixed	d arches, parabolic and circular arches.						
UNIT IV	SLOPE DEFLECTION METHOD	9+3 hrs					
Continuous beams a	nd rigid frames (with and without sway)-Symmetry and antisy	mmetry –					
Simplification for hinged end – Support displacements.							
UNIT V	MOMENT DISTRIBUTION METHOD	9+3 hrs					
Distribution and carryover of moments – Stiffness and carry over factors – Analysis of continuous							
beams – Plane rigid	beams – Plane rigid frames with and without sway.						
TOTAL: 60 PERIODS							

TEXT BOOK(S)

- 1. Punmia B.C., Theory of Structures (SMTS) Vol II Laxmi Publishing Pvt ltd, New Delhi, 2004.
- 2. Bhavikatti, S.S, Structural Analysis Vol. 1 & Vol. 2, Vikas Publishing Pvt Ltd., New Delhi, 2008.

REFERENCE(S)

- 1. Analysis of Indeterminate Structures C.K. Wang, Tata McGraw-Hill, 1992.
- 2. L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw-Hill Publications, New Delhi, Sixth Edition, 2003.
- 3. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications, New Delhi, 2003.

4. Devdas Menon, "Structural Analysis", Narosa Book Distributors Pvt Ltd.

Evaluation Criteria & Marks	Con	tinuous Assessment (End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks			
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]			
Attendance Mark	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail							

Course	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	1	3	1								2	3	1	2	1
CO2	3	3	2	3	1							2	3	1	2	1
СОЗ	3	2	2	2						1		2	2	3	1	1
CO4	2	3	1	3	1							1	1	3	2	3
CO5	2	3	2	2	2					1	1	2	1	2	2	1

12CE53	CONCRETE TECHNOLOGY		L	T	P	C		
			3	0	0	3		
Programme:	B.E. Civil Engineering Sen	n:	V					
Category	Core							
Prerequisites:	12CE34- Building Materials and Construction Techniques							
AIM:	The aim of this course is to make the students aware of technology involved in concrete.							
Course Objectives:	 To understand the properties of ingredients of concrete To study the behavior of concrete at its fresh and hardened state To study about the concrete design mix To know about the procedures in concreting To understand special concrete and their use 							
Course Outcomes:	 Test all the concrete materials as per IS code. Determine the properties of fresh and hardened concrete. Design the concrete mix using ACI and IS code methods. Design special concretes and their specific applications. Describe the special concreting method and test perforn concrete 		afte	r har	denin	g of		

UNIT I	CONCRETE MAKING MATERIALS		9		
Cement-Different types-Ordinary Portland Cement-Low-alkali cement-Blended Cement-Portland					
Pozzolana cement-Portland blast furnace slag cement-Portland Slag cement-Sulphate resisting					
Portland Cement-Low-	-heart Portland cement-Hydrophobic cement-Oil well cem	ent-White cement-			
Aggregates-Aggregate	s-Classification-IS Specifications-Properties-Grading-Me	thods of combining			
aggregates-Specified (Gradings-Testing of aggregates. Mineral admixtures-Water	r-Accelerators-			
Retarders-Plasticizers-	Superplasticizers-Waterproofers-Miscellaneous admixture	es.			
UNIT II	CONCRETE		9		
Properties of Fresh Co	ncrete-Workability-compactability-consistency-segregation	on-bleeding-maturity	,		
of concrete-curing-aut	ogenous healing-Hardened Concrete-Strength-Elastic Prop	perties-Creep &			
Shrinkage Variability	of concrete Strength-Durability of Concrete-Sulphate and	chloride attack on			
concrete.					
UNIT III	MIX DESIGN		9		
Physical properties of	materials required for mix design - Acceptance criteria fo	r concrete –			
Determining the labora	atory design strength of concrete - Quality control of conc	erete – Methods of			
concrete mix design -	Trial mixes - Nominal mixes - ACI and BIS Method of a	mix design.			
UNIT IV	SPECIAL CONCRETE		9		
Light weight concrete	– High strength concrete – High performance concrete – I	Polymer concrete			
Polymer Impregnated concrete – Steel – fibre – reinforced concrete – Ready mixed concrete concrete					
– Self compacting concrete.					
UNIT V	CONCRETING METHODS AND TEST		9		
Extreme weather concreting – Special concreting methods – Vacuum dewatering – Underwater					
concrete – Non destructive testing – semi –destructive testing techniques – Development in rebar					
technology – smart concrete.					
	T	OTAL: 45 PERIOI	OS		

TEXT BOOKS

- A.R.Santhakumar," Concrete technology, "Oxford University Press, 2003.
 Shetty, M.S."Concrete Technology", S.Chand &Co., New Delhi, 2003.

REFERENCES

Page 108 B.E. - Civil Engineering

- 1. Neville," Properties of concrete, Prentice Hall, 1995, London.
- 2. Neville &Brooks, Concrete Technology, Longman Publishing Co.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% and above								
Grade Criteria	S(90-100), A(8	(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail							

Course	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12				PSO1	PSO2	PSO3	PSO4						
CO1	2	1	1	1	1	2			1		2	3	2	2	1
CO2	1	1 1 1 1 1 1 2					2	3	1	2	3				
СОЗ	3	1	3	1		1			1		3	2	3	1	1
CO4	1	2	2	1	1	1			1	1	3	1	3	1	1
CO5	2	2	1	1	2	1			2	1	3	1	2	2	1

12CE54	ENVIRONMENTAL ENGINEERING – I		L	T	P	C					
			3	0	0	3					
Programme:	B.E. CIVIL ENGINEERING Sem: IV										
Category	Core										
Prerequisites:	12GE31- Environmental Science and Engineering										
AIM:	The aim of this course is to make the students familiar w supply system.	ith the prir	nciple	s of v	water	•					
Course Objectives:	 To study the principles and objectives of planned wa To study about various process and treatment involve To study about advanced water treatment process and residential buildings. 	ed in a wat	ter su	pply							
Course Outcomes:	 Describe about public water supply system and the system. Summarize the potable water quality standards. Illustrate the various unit operations in a water treatment. Explain the advanced potable water treatment metho. Analyze water supply distribution networks and he system of plumbing. 	nent plant. ds.									

UNIT I	PLANNING FOR WATERSUPPLY SYSTEM	9
Public water supply sy	stem -Planning -Objectives -Design period -Population fo	recasting –Water
demand -Sources of w	ater and their characteristics -Surface and Groundwater- In	mpounding Reservoir
Well hydraulics -Deve	lopment and selection of source - Water quality - Characte	erization -Water
quality standards.		
UNIT II	CONVEYANCE SYSTEM	9
Water supply -intake s	tructures -Functions and drawings -Pipes and conduits for	water- Pipe materials
-Hydraulics of flow in	pipes -Transmission main design -Laying, jointing and te	sting of pipes -
Drawings appurtenanc	es - Types and capacity of pumps -Selection of pumps and	l pipe materials.
UNIT III	WATER TREATMENT	9
Objectives -Unit opera	tions and processes -Principles, functions design and drav	ving of Flash mixers,
fiocculators, sedimenta	ation tanks and sand filters -Disinfection- Residue Manage	ement.
UNIT IV	ADVANCED WATER TREATMENT	9
Aerator- Iron and man	ganese removal, Defluoridation and demineralization -Wa	ter softening -
Desalination - Membra	ne Systems -Construction and Operation & Maintenance a	aspects of Water
Treatment Plants -Rec	ent advances -Membrane Processes	
UNIT V	WATER DISTRIBUTION AND SUPPLY TO	9
	BUILDINGS	
Requirements of water	distribution -Components -Service reservoirs -Functions	and drawings -
	omics -Computer applications -Analysis of distribution ne	
Appurtenances -operat	ion and maintenance -Leak detection, Methods. Principles	s of design of water
	ouse service connection -Fixtures and fittings -Systems of	
drawings of types of p	lumbing.	
	T	OTAL: 45 PERIODS

TEXT BOOKS

- 1. Garg, S.K., Water Supply Engineering, Vol.1 Khanna Publishers, New Delhi, 2007.
- 2. Punmia, B.C., Ashok K Jain and Arun K Jain, Water Supply Engineering, Laxmi Publications (P) Ltd., New Delhi, 2005.

REFERENCES

1. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government

of India, New Delhi, 2003

- 2. Syed R.Qasim and Edward M.Motley Guang Zhu, Water Works Engineering Planning, Design and Operation, Prentice Hall of India Private Limited, New Delhi 2006.
- 3. Modi.P.N. Water Supply Engineering, Vol. I Standard Book House, New Delhi, 2005.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester		
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks	
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]	
Attendance Mark	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2					
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	, E(50-54), U (<5	0)-Fail	

Course	Program Outcomes (POs)								Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12					PSO1	PSO2	PSO3	PSO4				
СО1	2	2	3	2	2	3	3			1	3	2	3	1
CO2	3	3	3	2	2	2	2			2	3	1	2	1
СОЗ	3	3	3	2	2	3	3			1	3	2	2	1
CO4	3	3	3	1	1	3	3			2	3	3	2	1
CO5	3	2	2	1	1	3	3			1	3	2	2	1

12CE55	GEOTECHNICAL ENGINEERING – II		L	T	P	C				
			3	0	0	3				
Programme:	B.E. CIVIL ENGINEERING	Sem:		1	V					
Category	Core									
Prerequisites:	12CE41- Geotechnical Engineering – I									
AIM:	To assess the soil condition at a given location in order to and also gains the knowledge to design various foundation		suitab	le fou	ındat	ion				
Course	To study the site investigation and selection of form	undation								
Objectives:	 To study the types and load carrying capacity of 	Shallow a	nd Ra	aft for	undat	ions				
	 To study the load carrying capacity of piles. 									
	 To study the types and stability analysis of Retain 	ning wall.								
Course	1. Apply the concept of site investigation and so	oil explo	ratio	n me	thod	ls in				
Outcomes:	field.									
	2. Determine the bearing capacity for various types	of shallo	w fo	unda	tion.					
	3. Learn the types of footings.									
	4. Predict load carrying capacity and settlement bel	navior for	pile	grou	ıp.					
	5. Analyze the stability on retaining wall using earth pressure theories.									

UNIT-I	SITE INVESTIGATION AND SELECTION OF FOUNDATION	7 hrs				
Scope and obje	ctives - Methods of exploration - Boring and drilling methods - Depth	n and spacing of				
boring - Samp	ling methods – Borehole – Selection of foundation.					
UNIT-II	SHALLOW FOUNDATION	11+4=15 hrs				
	epth of foundation - Bearing capacity of shallow foundation - Terzagh					
Factors affecting	ng baring capacity - Bearing capacity from insitu tests - Allowable bear	aring pressure –				
Settlement of fo	oundation - Allowable settlement					
UNIT-III	FOOTINGS AND RAFTS	7+3=10hrs				
Types of found	ation - Contact pressure distribution - Isolated and combined footing -	- Mat				
foundation - F	loating foundation.					
UNIT-IV	PILES	12+4= 16hrs				
Types and func	tion of piles - Factors influencing for selection of piles - Carrying capac	ity of single pile				
 Capacity from 	m insitu test - Negative skin friction - Uplift capacity - Group cpacity -	- Settlement of				
pile group - In	terpretation of pile load test – Forces on pile cap - Under reamed piles.					
UNIT-V	RETAINING WALL	8+4=12				
Plastic equilibrium in soils - active and passive states - Rankein's theory - Cohesionless and cohesive						
	s's wedge theory – Earth pressure on retaining wall - Graphical methods	(Rebhann and				
Culmann) - Sta	ability of retaining wall.					
	TOTAI	L: 60 PERIODS				

TEXT BOOK(S)

- 1. Murthy, V.N.S, "Soil Mechanics and Foundation Engineering", UBS Publishers Distribution Ltd,New Delhi 2007
- 2. Das, B.M, "Principles of Foundation Engineering (Fifth Edition), Thomson Books/COLE, 2003.

REFERENCE(S)

- 1. Bowles, J.E, "Foundation Analysis and Design", McGraw-Hill, 1994.
- 2. Punmia, B.C, "Soil Mechanics and Foundation" Laxmi Publications Private Ltd, New Delhi, 1995.
- 3. Venkatramaiah, C, "Geotechnical Engineering", New Age International Publishers, New Delhi, 1995.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester						
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% and above									
Grade Criteria	S(90-100), A(8	90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12					PSO1	PSO2	PSO3	PSO4					
CO1	3	2	1		1	1					1	3	2	2	1
CO2	3	2	3	2	1		1			1	1	3	2	2	1
CO3	3	1	3	2							1	2	3	1	1
CO4	3	2	1	1	2	1					2	3	3	2	3
CO5	2	3	2	2	1	1				1	2	1	2	2	1

12CE56	DESIGN OF RC ELEMENTS	L	T	P	C					
			3	1	0	4				
Programme:	B.E. Civil Engineering	B.E. Civil Engineering V								
Category	Core									
Prerequisites:	12CE42- Strength of Materials									
AIM:	The aim of this course is to make the students to design the method	ne RC elei	ments	in li	mit s	tate				
Course Objectives:	 To study the different types of philosophies relate Reinforced Concrete Structures with emphasis or To study the design of Basic elements such as slawhich form part of any structural system with refunded code of practice for Reinforced Concrete Structural included. To study the end of course the student shall be in elements of reinforced concrete structures 	Limit States, beam, of erence to res and De	ate M colun India esign	ethoon n an n star Aids	d foo ndard are					
Course	1. Explain the design codes and specifications, Limit	State phil	osop	hy ar	nd als	so to				
Outcomes:	 design the slabs as detailed in IS code. To design the different sections of beams as per Limi To gain the knowledge of limit state design for flex anchorage Explain the design of short column for axial, unian Design of long columns. To learn the design of various foundation 	ture, shear	r, tors	sion,						

UNIT I	DESIGN OF CONCRETE STRUCTURES	9+3 hrs				
Concept of Working	g Stress method, ultimate load method and limit state method – Adv	antages of				
Limit State Method	over other methods - Introduction to Structural System with load c	alculation -				
Design codes and s	pecification – Limit State philosophy as detailed in IS code – Proper	rties of un-				
cracked section. Application of virtual work method to square, rectangular, circular and triangular						
slabs - Analysis and	l design of one way and two way rectangular slab subjected to unifo	ormly				
distributed load for	various boundary conditions and corner effects	-				
UNIT II	LIMIT STATE DESIGN FOR FLEXURE	9+3 hrs				
Analysis and design	of singly and doubly reinforced rectangular and flanged beams – Γ	Design of T-				
Beams and L- Beam	n					
LINITE III	LIMIT STATE DESIGN FOR BOND, ANCHORAGE	9+3 hrs				
UNIT III	SHEAR & TORSION					
Behaviour of RC m	embers in bond and Anchorage - Design requirements as per curren	t code -				
Behaviour of RC be	eams in shear and torsion - Design of RC members for combined be	nding shear and				
torsion.		-				
UNIT IV	LIMIT STATE DESIGN OF COLUMNS	9+3 hrs				
Types of columns -	Braced and unbraced columns – Design of short column for axial,	uniaxial and				
biaxial bending – D	esign of long columns.					
UNIT V	LIMIT STATE DESIGN OF FOOTING AND DETAILING	9+3 hrs				
Design of wall foot	ing – Design of axially and eccentrically loaded rectangular footing	– Design of				
	ar footing for two columns only – Design of Strap Footing – Standa					
	, slabs and columns - Special requirements of detailing with referer					
process.	· · ·					
	TOTAL	: 60 PERIODS				

TEXT BOOK

Krishna Raju, N., "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi,2012.

. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi 2008.

REFERENCE(S)

- 1. Jain, A.K., "Limit State Design of RC Structures", Nemchand Publications, Rourkee
- 2. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw-Hill Publishing Company Ltd., New Delhi.
- 3. Unnikrishna Pillai, S., Devdas Menon, "Reinforced Concrete Design", Tata McGraw-Hill

	Con	tinuous Assessment (25)	End Semester				
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks			
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]			
Attendance Mark	91% and above	- 10, 86-90% - 8, 81	-85% - 6, 76-80	0% - 4, 75% - 2	_			
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	59), E(50-54), U (<50)-Fail				

Course					Progra	am Ou	tcomes	(POs)					Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	3	1	3	1	1	1						3	3	2	2	1	
CO2	2	2	3	1			1					3	3	1	2	1	
СОЗ	2	2	3	2								3	3	2		1	
CO4	2	2	3	1	2	1						3	3	2		3	
CO5	2	2	3	1		1						3	3	2		2	

12CE57	CONCRETE AND HIGHWAY ENGINEERING L	AB	L	T	P	C
			0	0	3	2
Programme:	B.E. Civil Engineering	Sem:		I	V	
Category	Core					
Prerequisites:	12CE53- Concrete Technology(CR)					
AIM:	The aim of this course is to make the students to practice a properties of concrete and highway materials	ınd get fa	ımilia	r with	n the)
Course Objectives:	 To learn the principles and procedures of testing C materials 	Concrete	and H	lighw	ay	
Course	Test all the concrete materials as per IS code					
Outcomes:	2. Design the concrete mix using ACI and IS code method					
	3. Determine the properties of fresh and hardened of con					
	4. Design special concretes and their specific application					
	1. Ensure quality control while testing/ sampling and acc	eptance	criteri	a		

LIST OF EXPERIMENTS

Part A – Concrete

1. Consistency, Initial and final setting time.

Fineness test.

Soundness test

Specific gravity test

Sieve analysis-fineness modulus

Proportioning of Aggregates

Water Absorption

Mix design IS, ACI

Slump test

Compaction factor test

Compression test, split tensile test, flexure test

Part B – Highway

Aggregate impact test

Aggregate crushing strength test

Aggregate attrition test

Aggregate abrasion test

Softening point

Penetration test on bitumen

Specific gravity test on bitumen.

TOTAL: 45 PERIODS

	Continuo	ous Assessment (25))	End	
Evaluation Criteria &	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks
Marks	15	7.5	2.5	75	100
				[Min Pass:	[Min Pass:
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	35% - 6, 76-80	% - 4, 75% - 2	
Grade Criteria	S(90-100), A(80-89).	B(70-79), C(60-69), D(55-59), E	E(50-54), U (<50	0)-Fail

Course					Progra	am Ou	tcomes	(POs)						fic Os)		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	1	1	1	2			2	2		2	3	2	2	1
CO2	1	1	3	1		1			1	2	1	2	3	1	2	3
СО3	2	1		1		1			2	1		3	2	3	1	1
CO4	1	2	3	1	1	1			2	1	1	3	1	3	1	1
CO5	2	2	2	1	2	1			2	2	1	3	1	2	2	1

12CE58	SOIL MECHANICS LABOR	ATORY	7	L	T	P	C
				0	0	3	2
Programme:	B.E. Civil Engineering	Sem:	I	V			
Category	Core						
Prerequisites:	12CE55- Geotechnical Engineering –II(CR), 120	CE41- C	Geotechnical Engir	neerii	ng -]	[
AIM:	The aim of this course is to make the students to properties of soil.	practice	e and get familiar	with	the		
Course Objectives:	At the end of this course, the student acquires the Engineering and Index properties	e capaci	ty to test the soil t	o ass	ess i	ts	
Course Outcomes:	 Classify the soil based on index and enging Identify the shear strength parameters fom Determine the consolidation and permean Evaluate the bearing capacity of soil from Determine the density of soil tests. 	r differe bility cl	ent types of soils naracteristics of	•	ils.		

LIST OF EXPERIMENTS

- 1. Grain size distribution Sieve analysis
- 2. Grain size distribution Hydrometer analysis
- 3. Specific gravity of soil grains
- 4. Relative density of sands
- 5. Atterberg limits test
- 6. Determination of moisture Density relationship using standard Proctor test.
- 7. Permeability determination (constant head and falling head methods)
- 8. Determination of shear strength parameters.
- 9. Direct shear test on cohesion less soil
- 10. Unconfined compression test on cohesive soil
- 11. Triaxial compression test (demonstration only)
- 12. One dimensional consolidation test (Demonstration only)
- 13. Field density test (Core cutter and sand replacement methods)
- 14. Standard Penetration Test.

TOTAL: 45 PERIODS

	Continuo	ous Assessment (25))	End	
Evaluation Criteria &	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks
Marks	15	7.5	2.5	75	100
				[Min Pass:	[Min Pass:
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	5% - 6, 76-80	% - 4, 75% - 2	
Grade Criteria	S(90-100), A(80-89),	, B(70-79), C(60-69), D(55-59), E	E(50-54), U (<50	0)-Fail

Course					Progr	am Ou	tcomes	(POs)					Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	3	1	1			1	2	2		.3	3	1	2	1
CO2	2	2		1	2	1	1	1	1	2	1	3	3	1	2	2
CO3	1	1		2		1	1	1	2	1		3	3	3	1	2
CO4	1		1		2	1	1	1	2	1		3	2	3	1	3
CO5	3	2		1	1	1	1	1	2	1		3	3	1	1	2

SURVEY CAMP		L	T	P	С
		0	0	0	2
B.E. Civil Engineering	Sem:			IV	
Core					
12CE44- Surveying – II, 12CE35- Surveying-I					
The aim of the camp is to make the student familiar in mapp of area	ping and	cont	ourii	ng an	y type
 table and total station. The camp must involve work on a large area of not the end of the camp, each student shall have mappe 	less that	n 400 ontou	hected the	tares.	At ea.
 field survey. Use the modern surveying equipments such as to levels, along with other conventional equipments compass, plane table etc. Improve their team work qualities as the survey cargoups of four or five. Create excellent leadership qualities as the entire into sub-activities distributed among the students. 	otal sta such a amp is	tion s lev being	and rel, rel, rel, rel, rel, rel, rel, rel,	auto theod nduc is di	matic dolite, ted in
	B.E. Civil Engineering Core 12CE44- Surveying – II, 12CE35- Surveying-I The aim of the camp is to make the student familiar in map of area • Ten days survey camp using Theodolite, cross staff table and total station. • The camp must involve work on a large area of not the end of the camp, each student shall have mappe • The camp record shall include all original field obs plots. 1. Reconnaissance the given area and design the met field survey. 2. Use the modern surveying equipments such as the levels, along with other conventional equipments compass, plane table etc. 3. Improve their team work qualities as the survey compass of four or five. 4. Create excellent leadership qualities as the entire into sub-activities distributed among the students.	B.E. Civil Engineering Core 12CE44- Surveying – II, 12CE35- Surveying-I The aim of the camp is to make the student familiar in mapping and of area • Ten days survey camp using Theodolite, cross staff, levelling table and total station. • The camp must involve work on a large area of not less than the end of the camp, each student shall have mapped and complete. • The camp record shall include all original field observation plots. 1. Reconnaissance the given area and design the methodology field survey. 2. Use the modern surveying equipments such as total state levels, along with other conventional equipments such as compass, plane table etc. 3. Improve their team work qualities as the survey camp is groups of four or five. 4. Create excellent leadership qualities as the entire survey into sub-activities distributed among the students.	B.E. Civil Engineering Core 12CE44- Surveying – II, 12CE35- Surveying-I The aim of the camp is to make the student familiar in mapping and control area • Ten days survey camp using Theodolite, cross staff, levelling statable and total station. • The camp must involve work on a large area of not less than 400 the end of the camp, each student shall have mapped and contour. • The camp record shall include all original field observations, calculated plots. 1. Reconnaissance the given area and design the methodology for field survey. 2. Use the modern surveying equipments such as total station levels, along with other conventional equipments such as level compass, plane table etc. 3. Improve their team work qualities as the survey camp is being groups of four or five. 4. Create excellent leadership qualities as the entire survey projinto sub-activities distributed among the students.	B.E. Civil Engineering Core 12CE44- Surveying – II, 12CE35- Surveying-I The aim of the camp is to make the student familiar in mapping and contouring area • Ten days survey camp using Theodolite, cross staff, levelling staff, to table and total station. • The camp must involve work on a large area of not less than 400 hece the end of the camp, each student shall have mapped and contoured to the end of the camp, each student shall have mapped and contoured to the camp record shall include all original field observations, calculated plots. 1. Reconnaissance the given area and design the methodology for confield survey. 2. Use the modern surveying equipments such as total station and levels, along with other conventional equipments such as level, compass, plane table etc. 3. Improve their team work qualities as the survey camp is being congroups of four or five. 4. Create excellent leadership qualities as the entire survey project into sub-activities distributed among the students.	B.E. Civil Engineering Sem: IV Core 12CE44- Surveying – II, 12CE35- Surveying-I The aim of the camp is to make the student familiar in mapping and contouring an of area • Ten days survey camp using Theodolite, cross staff, levelling staff, tapes, table and total station. • The camp must involve work on a large area of not less than 400 hectares. the end of the camp, each student shall have mapped and contoured the are the end of the camp, each student shall have mapped and contoured the are plots. 1. Reconnaissance the given area and design the methodology for conductively field survey. 2. Use the modern surveying equipments such as total station and auto levels, along with other conventional equipments such as level, theodometric compass, plane table etc. 3. Improve their team work qualities as the survey camp is being conductive groups of four or five. 4. Create excellent leadership qualities as the entire survey project is displaced in the convention of the camp.

LIST OF EXPERIMENTS

- (i) Check Levelling
- (ii) Traversing Compass, Plane Table
 - a. Open Traverse
 - b. Closed Traverse
- (iii) Alignment of Road (LS and CS)
- (iv) Contouring (Radial and Grid)
- (v) Setting out of work
 - a. Curve
 - b. Building
- (vi) Triangulation
- (vii) Trilateration
- (viii) Sun / Star observation to determine azimuth
- (ix) Use of GPS to determine latitude and longitude
- (x) Calculating and plotting the given area using Total Station

Calculating and plotting the given area using GPS1

TOTAL: 45 PERIODS

	Continuo	ous Assessment (25)	End						
Evaluation Criteria &	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks					
Marks	15	7.5	2.5	75	100					
				[Min Pass:	[Min Pass:					
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	85% - 6, 76-80	0% - 4, 75% - 2						
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course					Progra	am Ou	tcomes	(POs)					Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	3	2		1	1				3	2		.3	2	3	2	1	
CO2	3	2		1	2				3	2		3	2	3	2	2	
CO3	2	2		2					3	1		3	2	3	1	2	
CO4	2	2			2				3	1		3	2	3	1	3	
CO5	2	2		1	1				3	1		3	2	2	1	2	

12HS51	ENGLISH FOR EMPLOYMENT - I		L	T	P	C
			0	0	2	1
Programme:	B.E. Civil Engineering	Sem:			III	
Category	Core					
Prerequisites:	12HS41- Professional English – II					
AIM:	To practice English for Enhancing Employability skil	lls				
Course	 To get proficiency in business communication 	n at work	c plac	ce		
Objectives:	 To develop student accuracy in communication 	on	_			
	 To improve learners ability to understand any 	kind of	text			
Course	Develop analytical skill and vocabulary.					
Outcomes:	2. Improve job prospects.					
	3. Predict the main idea of the topic and use verbal cues.					
	4. Develop negotiation skill.					
	5. Utilize documentation methodology.					

Task: 1	Verbal Reasoning	1
Task: 2	Resume and Covering Letter	1
Task: 3	Channel Conversations	2
Task: 4	Debate	10
Task: 5	Mock Interview	6
Task: 6	Documentation methodology for Projects/ Products/ Softwares	10
		DIODG

TOTAL=30 PERIODS

E-MATERIAL:

www.indiabix.com/verbal-reasoning

INTERNAL ASSESSMENT

100 MARKS

(100 Marks to be converted to 25)

	Continuo	ous Assessment (25))	End								
Evaluation Criteria & Marks	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks							
Marks	15	7.5	2.5	75	100							
				[Min Pass:	[Min Pass:							
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	55% - 6, 76-80	% - 4, 75% - 2								
Grade Criteria	S(90-100), A(80-89).	6(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail										

Course	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1			PO12	PSO1	PSO2	PSO3	PSO4				
CO1		2		2					2	3	3	3	2			1
CO2									3	3	3	3	2			2
СОЗ				2					3	3	3	3	2			2
CO4									3	3	3	3	2			3
CO5				2					3	3	2	3	2			2

12MG52	PRINCIPLES OF MANAGEMENT		L	T	P	C
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:		7	V	
Category	Core					
AIM:	The aim of this course is to make the students to have a claskills.	lear idea a	bout	mana	agem	ent
Course Objectives:	 Knowledge on the principles of management is expeople in all kinds of organizations. After studying this course, students will be able to of the managerial functions like planning, organization controlling. Students will also gain some basic knowledge on management 	o have a c zing, staff	lear ı ing, l	ınder eadin	stand ig and	_
Course Outcomes:	 Predict the structure of the management and to list the Realize the purpose and steps involved in planning ar Construct the organizational structure, selection processkills by the organization Identify the motivational and leadership theory an effective communication Summarize the process of controlling and the management and to list the 	nd decision ess, appra nd realize	n mal isal p the	king poroces	proce ss and ortanc	d the

UNIT-I	OVERVIEW OF MANAGEMENT	9
Organization - 1	Management - Role of managers - Evolution of Management thought - Organization and th	ie
environmental	factors - Managing globally - Strategies for International Business.	
UNIT-II	PLANNING	9hrs
Nature and pur	pose of planning - Planning process - Types of plans - Objectives - Managing by objective	(MBO)
	bes of strategies - Policies - Decision Making - Types of decision - Decision Making Proces	ss -
Rational Decisi	on Making Process - Decision Making under different conditions	
UNIT-III	ORGANIZING	9
Nature and pur	pose of organizing - Organization structure - Formal and informal groups I organization - L	ine and
Staff authority	- Departmentation - Span of control - Centralization and Decentralization - Delegation of a	uthority
- Staffing - Sele	ection and Recruitment - Orientation - Career Development Career stages - Training - Perfo	ormance
Appraisal		
UNIT-IV	DIRECTING	9hrs
Creativity and l	Innovation - Motivation and Satisfaction - Motivation Theories Leadership - Leadership the	eories -
Communication	n - Hurdles to effective communication - Organization Culture - Elements and types of cult	ture -
Managing cultu	ral diversity	
UNIT-V	CONTROLLING	9hrs
Process of cont	rolling - Types of control - Budgetary and non-budgetary control techniques - Managing	
Productivity - C	Cost Control - Purchase Control - Maintenance Control - Quality Control - Planning operati	ons
	TOTAL: 45 Pl	ERIODS

TEXT BOOK(S)

- 1."Vijayaraghavan G.K & Sivakumar M." principles of Management, Lakshmi Publications Chennai,2012.
- 2. Hellriegel, Slocum & Jackson, 'Management A Competency Based Approach', Thomson South Western, 10th edition, 2007.

REFERENCE(S)

- 1. Harold Koontz, Heinz Weihrich and Mark V Cannice, 'Management A global & Entrepreneurial Perspective', Tata Mcgraw Hill, 12th edition, 2007.
- 2. Andrew J. Dubrin, 'Essentials of Management', Thomson Southwestern, 7th edition, 2007.
- 3. Stephen P. Robbins and Mary Coulter, 'Management', Prentice Hall of India, 8th edition.
- 4. Charles W L Hill, Steven L McShane, 'Principles of Management', Mcgraw Hill Education, Special Indian Edition, 2007.

	Con	tinuous Assessment (25)	End Semester	
Evaluation	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks
Criteria & Marks	15	7.5	2.5	75	100
				[Min Pass: 37]	[Min Pass: 50]
Attendance Mark	91% and above	e – 10, 86-90% - 8, 81	-85% - 6, 76-80	0% - 4, 75% - 2	
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	E(50-54), U (<50-54)	0)-Fail

Course	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3					3	2					1		2	1
CO2	3	2											1		2	1
CO3	3	2	3							3			1		3	1
CO4	3	2	3							3		2	1		3	2
CO5	3	3						2		3		2	1		3	2

12CE61	STRUCTURAL ANALYSIS - II		L	T	P	C
			3	1	0	4
Programme:	B.E. Civil Engineering	Sem:		1	/I	
Category	Core					
Prerequisites:	12CE52- Structural Analysis – I					
AIM:	To provide adequate skills for finding the forces and mor using flexibility matrix method	nents in th	ie stru	icture	by	
Course Objectives:	 This course is in continuation of Structural Analy Here in advanced method of analysis like Matrix are covered. Advanced topics such as FE method and Space S 	method a	nd Pla	astic	Anal	ysis

UNITI	FLEXIBILITY METHOD	9+3 hrs
	tibility – Determinate vs Indeterminate structures – Indeterminacy - Pr	imary structure –
	s – Analysis of indeterminate pin-jointed plane frames, continuous beauties	•
plane frames (with redu	ndancy restricted to two).	
UNIT II	STIFFNESS MATRIX METHOD	9+3 hrs
Element and global stiff	fness matrices - Analysis of continuous beams - Co-ordinate transform	nations – Rotation
matrix – Transformation	ns of stiffness matrices, load vectors and displacements vectors - Anal	ysis of pin-jointed
plane frames and rigid f	rames(with redundancy restricted to two)	
UNIT III	FINITE ELEMENT METHOD	9+3 hrs
Introduction – Discretis	ation of a structure - Displacement functions - Truss element - Beam	element – Plane
stress and plane strain -	Triangular elements	
UNIT IV	PLASTIC ANALYSIS OF STRUCTURES	9+3 hrs
Statically indeterminate	axial problems - Beams in pure bending - Plastic moment of resistan	ce – Plastic modulus
- Shape factor - Load f	actor – Plastic hinge and mechanism – Plastic analysis of indeterminat	e beams and frames
 Upper and lower bour 	nd theorems	
UNIT V	SPACE AND CABLE STRUCTURES	9+3 hrs
Analysis of Space trusse	es using method of tension coefficients –Suspension cables – suspension	on bridges with two
and three hinged stiffen	ing girders	
	TO	OTAL: 60 PERIODS

TEXT BOOKS

. Vaidyanathan, R. and Perumal, P., "Comprehensive structural Analysis – Vol. I & II", Laxmi Publications, New Delhi, 2007

. BhaviKatti, S.S, "Structural Analysis – Vol. 1 Vol. 2", Vikas Publishing House Pvt. Ltd., New Delhi, 2008

REFERENCE(S)

- 1. Ghali.A, Nebille,A.M. and Brown,T.G. "Structural Analysis" A unified classical and Matrix approach" –5th edition. Spon Press, London and New York, 2003.
- 2. Coates R.C, Coutie M.G. and Kong F.K., "Structural Analysis", ELBS and Nelson, 1990
- 3. Structural Analysis A Matrix Approach G.S. Pandit & S.P. Gupta, Tata McGraw Hill 2004.
- 4. Matrix Analysis of Framed Structures Jr. William Weaver & James M. Gere, CBS Publishers and Distributors, Delhi.
- 5. L.S. Negi & R.S. Jangid, "Structural Analysis", Tata McGraw-Hill Publications, New Delhi, 2003

Evaluation Criteria &	Con	tinuous Assessment (End Semester		
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]
Attendance Mark	91% and above	- 10, 86-90% - 8, 81	0% - 4, 75% - 2		
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	E(50-54), U (<50	0)-Fail

Course		Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	2	2	1	3	2				1		1	2	3	1	1		
CO2	2	2	1	3	2				1		1	2	3	1			
CO3	2	3	2	3	2				2		1	2	3	1	1		
CO4	2	3	2	3	2				2		1	2	3	1	1		
CO5	2	2	2	3	2				2		1	2	3	1	1		

12CE62	DESIGN OF STEEL STRUCTURES		L	T	P	С							
			3	1	0	4							
Programme:	B.E. Civil Engineering	Sem:		VI									
Category	Core		•										
Pre requisite	12CE56- Design of RC Elements												
AIM:	The aim of this course is to make the students familiar winnembers	th the des	ign o	f stee	1								
Course Objectives:	 This course covers the design of structural steel r compressive, tensile and bending loads, as per cu - 2007) including connections. Designs of structural systems such as roof trusses 	rrent code	e prov	ision	ıs (IS								
Course Outcomes:	 Understand the concepts of various design common bolted and welded connections for steel Design tension members and understand the effe Understand the design concept of axially loaded connections Understand specific problems related to the de and unrestrained steel beams. Knowledge about design concepts of trusses and in 	structure ct of shea columns sign of 1	es ar lag s and atera	colu	ımn estra	base							

UNIT I	INTRODUCTION	9+3 hrs
Properties of stee	1 – Structural steel sections – Limit State Design Concepts – Loads on St	ructures – Metal
joining methods u	using rivets, welding, bolting - Design of bolted, riveted and welded joint	ts – Eccentric
connections - Eff	iciency of joints – High Tension bolts	
UNIT II	TENSION MEMBERS	9+3 hrs
Types of sections	- Net area - Net effective sections for angles and Tee in tension - Desig	n of connections in
tension members	– Use of lug angles – Design of tension splice – Concept of shear lag	
UNIT III	COMPRESSION MEMBERS	9+3 hrs
Types of compres	ssion members - Theory of columns - Basis of current codal provision for	or compression
member design -	Slenderness ratio - Design of single section and compound section comp	pression members –
Design of lacing	and battening type columns – Design of column bases – Gusseted base	
UNIT IV	BEAMS	9+3 hrs
Design of laterall	y supported and unsupported beams – Built up beams – Beams subjected	to biaxial bending -
Design of plate g	irders riveted and welded – Intermediate and bearing stiffeners – Web spl	lices – Design of
beam columns		
UNIT V	ROOF TRUSSES AND INDUSTRIAL STRUCTURES	9+3hrs
Roof trusses – Ro	of and side coverings - Design loads, design of purlin and elements of tr	uss; end bearing –
Design of gantry	girder	-
	-	
	TO	OTAL: 60 PERIODS

TEXT BOOK(S)

1 Bhavikatti.SS,"Design of Steel Structure" I.K.International (PVT) LTD,2009 (as per IS 800-2007). N. Subramanian, "Design of Steel Structures", Oxford University

REFERENCE(S)

- 1. "Teaching Resources for Structural Steel Design Vol. I & II", INSDAG, Kolkatta.
- 2. Gaylord, E.H., Gaylord, N.C., and Stallmeyer, J.E., "Design of Steel Structures", 3rd edition, McGraw-Hill Publications, 1992
- 3. Negi L.S.. Design of Steel Structures, Tata McGraw Hill Publishing Pvt Ltd, New Delhi, 2007.
- 4. IS 800-2007 Indian Standard General Construction in Steel code of practice (3rd Revision).
- 5. Dayaratnam, P., "Design of Steel Structures", Second edition, S. Chand & Company, 2003.
- 6. Ramachandra, S. and Virendra Gehlot, "Design of Steel Structures Vol. I & II", Standard Publication, New Delhi, 2007

	Con	tinuous Assessment (25)	End Semester						
Evaluation	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Criteria & Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% and above	-10, 86-90% - 8, 81	-85% - 6, 76-80	0% - 4, 75% - 2	1					
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2	3	2	1				1			2	3	1	1	1
CO2	2	2	3	2	2				1			2	3	1	1	1
СОЗ	2	2	3	3	2				1			2	3	1	1	1
CO4	2	2	3	3	1				1			2	3	1	1	1
CO5	2	2	3	2	1				1			1	3		1	1

12CE63	CONSTRUCTION PLANNING & SCHEDULING	G	L	T	P	C				
			3	0	0	3				
Programme:	B.E. Civil Engineering	Sem:		7	VΙ					
Category	Core									
Pre requisite	12CE34- Building Materials and Construction Techniques									
AIM:	The aim of this course is to make the students as a decision industry	maker i	n the o	const	ructio	n				
Course Objectives:	 At the end of this course the student is expected to be construction projects, schedule the activities using reconstruction projects, schedule the activities using reconstruction projects, control the cost of cash flows and budgeting and how to use the project and decision making tool. 	network f the pro	diagra ject b	ams. y cre	ating					
Course	1. Assemble and use various construction schedules to ma	nage a c	onstr	action	n proj	ect.				
Outcomes:	 Assemble and sketch a WBS (Work Breakdown Struct list with durations. Develop and sketch logic diagrams. Compute and sk Method) diagram and use computer technology to int with planning and scheduling. Prioritize scheduled tasks in order to streamline planning construction schedules and reduce direct cost and indirect. 	ketch a ter-link ng strate	CPM vario	(Cri us pr	tical oject	Path data				
	5. Communicate effectively with team members by recognizing and utilizing best practices for planning and scheduling of construction tasks.									

UNIT I	CONSTRUCTION PLANNING	6 hrs
Basic concepts in the	development of construction plans-choice of Technology and Construction	n method-Defining
Work Tasks- Definit	ion- Precedence relationships among activities-Estimating Activity Duration	ns-Estimating
Resource Requireme	nts for work activities-coding systems.	
UNIT II	SCHEDULING PROCEDURES AND TECHNIQUES	12
Relevance of constru	ction schedules-Bar charts - The critical path method-Calculations for criti	cal path
scheduling-Activity f	Toat and schedules-Presenting project schedules-Critical path scheduling for	or Activity-on-node
	and Windows-Calculations for scheduling with leads, lags and windows-R	
	ng with resource constraints and precedences -Use of Advanced Scheduling	
Scheduling with unce	ertain durations-Crashing and time/cost tradeoffs -Improving the Schedulin	g process –
Introduction to applie	cation software.	
UNIT III	COST CONTROL MONITORING AND ACCOUNTING	11 hrs
The cost control prob	plem-The project Budget-Forecasting for Activity cost control – financial a	ccounting systems
and cost accounts-Co	ontrol of project cash flows-Schedule control-Schedule and Budget updates	-Relating cost and
schedule information		
UNIT IV	QUALITY CONTROL AND SAFETY DURING	8 hrs
	CONSTRUCTION	
Quality and safety Co	oncerns in Construction-Organizing for Quality and Safety-Work and Mate	rial Specifications-
Total Quality control	-Quality control by statistical methods -Statistical Quality control with San	mpling by
Attributes-Statistical	Quality control by Sampling and Variables-Safety.	
UNIT V	ORGANIZATION AND USE OF PROJECT INFORMATION	8 hrs
• 1	rmation-Accuracy and Use of Information-Computerized organization and	
-Organizing informat	tion in databases-relational model of Data bases-Other conceptual Models	of Databases-
Centralized database	Management systems-Databases and application programs-Information tra	
	TOT	TAL: 45 PERIODS

TEXT BOOK(S)

.1 Chitkara, K.K. "Construction Project Management Planning", Scheduling and Control, Tata McGraw-Hill Education., New Delhi, 2010.

Chris Hendrickson and Tung Au, "Project Management for Construction – Fundamentals Concepts for Owners", Engineers, Architects and Builders, Prentice Hall, Pitsburgh, 2000

REFERENCE(S)

- 1. . Moder.J., C.Phillips and Davis, "Project Management with CPM", PERT and Precedence Diagramming, Van Nostrand Reinhold Co., Third Edition, 1983.
- 2. Willis., E.M., "Scheduling Construction projects", John Wiley and Sons 1986.
- 3. Halpin, D.W., "Financial and cost concepts for construction Management", John Wiley and Sons, New York, 1985.
- 5. Srinath, L.S., "Pert and CPM Priniples and Applications", Affiliated East West Press, 2001

	Con	tinuous Assessment (25)	End Semester	
Evaluation	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks
Criteria & Marks	15	7.5	75 [Min Pass: 37]	100 [Min Pass: 50]	
Attendance Mark	91% and above	-10, 86-90% - 8, 81	-85% - 6, 76-80	0% - 4, 75% - 2	
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59),	, E(50-54), U (<50	0)-Fail

Course		Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	1	3		2	1						2				2		
CO2	1	2	1	2	3						2				2		
CO3	1	1	2		1						2				2		
CO4	1	1	2	2	1	2		1			3		2		2		
CO5	1	1	1		1			1			3				2		

12CE64	ENVIRONMENTAL ENGINEERING – II		L	T	P	С				
			3	0	0	3				
Programme:	B.E. Civil Engineering	Sem:		7	VΙ					
Category	Core									
Prerequisites:	12CE54- Environmental Engineering –I									
AIM:	The aim of this course is to help students develop understanding of physical, chemical, and biological pher operation and maintenance of sewage treatment plants.		•	_						
Course Objectives:	 To estimate sewage generation and design sewer pumping stations To understand the characteristics and compositio of streams To perform basic design of the unit operations an sewage treatment 	n of sewa	ge, se	elf-pu	rifica	ition				
Course	1. Describe about wastewater treatment units and their i	mportanc	e in d	omes	stic a	reas.				
Outcomes:	2. Summarize the plumbing system in buildings.	-								
	3. Illustrate the various primary treatment unit operation plant.4. Explain the biological and secondary wastewater treatment.				treat	ment				
	5. Illustrate the self purification of surface water bodies, biogas recovery and land disposal of sludge.									

UNIT I	PLANNING FOR SEWERAGE SYSTEMS	9
Sources of wastewat	er generation – Effects – Estimation of sanitary sewage flow – Estimation of storm	runoff –
Factors affecting Cha	aracteristics and composition of sewage and their significance – Effluent standards	_
Legislation requirem	ents.	
UNIT II	SEWER DESIGN	9
Sewerage – Hydrauli	ics of flow in sewers – Objectives – Design period - Design of sanitary and storm s	ewers –
Small bore systems -	Computer applications – Laying, joining & testing of sewers – appurtenances – Pu	ımps –
selection of pumps a	nd pipe drainage Plumbing System for Buildings - One pipe and two pipe system	1.
UNIT III	PRIMARY TREATMENT OF SEWAGE	9
Objective – Unit Ope	eration and Processes - Selection of treatment processes - Onsite sanitation - Seption	e tank,
Grey water harvestin	g - Primary treatment - Principles, functions design and drawing of screen, grit ch	ambers and
primary sedimentation	on tanks – Operation and Maintenance aspects.	
UNIT IV	SECONDARY TREATMENT OF SEWAGE	9
Objective - Selection	n of Treatment Methods - Principles, Functions, Design and Drawing of Units - Ac	tivated
Sludge Process and T	Frickling filter, other treatment methods - Oxidation ditches, UASB - Waste Stabil	ization
Ponds - Reclamation	and Reuse of sewage - Recent Advances in Sewage Treatment - Construction and	1 Operation
& Maintenance of Se	ewage Treatment Plants. Case Studies.	_
UNIT V	DISPOSAL OF SEWAGE AND SLUDGE	9
Standards for Dispos	al - Methods - dilution - Self purification of surface water bodies - Oxygen sag cu	rve – Land
disposal - Sewage fa	rming – Deep well injection – Soil dispersion system - Sludge characterization – T	hickening
- Sludge digestion -	Biogas recovery – Sludge Conditioning and Dewatering – disposal – Advances in	Sludge
Treatment and dispo	sal.	-
-	TOTAL: 45	PERIODS

TEXT BOOKS

. Garg, S.K., Environmental Engineering Vol. II, Khanna Publishers, New Delhi, 2003.

Punmia, B.C., Jain, A.K., and Jain.A., Environmental Engineering, Vol.II, Lakshmi Publications, Newsletter, 2005.

REFERENCES

- 1. Manual on Sewerage and Sewage Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1997.
- 2. Wastewater Engineering Treatment and Reuse, Tata Mc.Graw-Hill Company, New Delhi, 2003.

	Con	tinuous Assessment (25)	End Semester						
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
	15	7.5	2.5	75	100					
				[Min Pass: 50]						
Attendance Mark	91% and above	e – 10, 86-90% - 8, 81	-85% - 6, 76-80	0% - 4, 75% - 2						
Grade Criteria	S(90-100), A(8	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	3	2	2		1	1					1	2			1
CO2	2	3	2	3	2	1	2					1	2			2
СОЗ	2	3	2	3	2	1	2					1	2			2
CO4	2	3	2	2	1	1	2					1	2			2
CO5	2	3	2	2	1	1	2					1	2			2

12CE65	RAILWAYS, AIRPORTS AND HARBOUR		L	T	P	C
	ENGINEERING					
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:		7	/I	
Category	Core					
Prerequisites:	12CE45- Highway Engineering					
AIM:	The aim of this course is to make the students aware of radesign and planning.	iilways, ai	rport	s and	harb	or
Course Objectives:	 To study the planning, design, construction and main To study the students acquire proficiency in the appl in Railway Engineering. To study conversant with the definition, purpose, loc structures. 	ication of	mod	ern to	echni	ques
Course Outcomes:	 Describe the Engineering Survey for track alignment. Explain the Railway track construction, Maintenance rails and sleepers. Describe the Airport layout and buildings, Airp Highways and Railways Explain Runway and taxiway markings, Lightings, A Classify the harbour, Ports, Docks. 	e, operation	ıg, C	leara		

UNIT I RAILWAY PLANNING AND DESIGN	9
Role of Indian Railways in National Development – Railways for Urban Transportation – LRT of	& MRTS -
Engineering Surveys for Track Alignment - Permanent Way, its Components and their Function	s - Rails – Types –
Sleepers- Ballastless Tracks - Geometric Design of Railway Tracks	
UNIT II RAILWAY TRACK CONSTRUCTION, MAINTENANCE AND OPERATION	9
Points and Crossings - Design of Turnouts, Working Principle - Signalling, Interlocking and Tra	ck Circuiting -
Construction & Maintenance - Conventional, Modern methods and Materials, Track Drainage -	Track
Modernisation –Level Crossings.	
UNIT III AIRPORT PLANNING AND DESIGN	9
Role of Air Transport, Components of Airports - Airport Planning -Runway Design- Drainage -	Taxiway Design –
Geometric Design Elements, Minimum Separation Distances, Design Speed, Airport Drainage -	Airport Zoning,
Clearance over Highways and Railways	
UNIT IV AIRPORT LAYOUTS, VISUAL AIDS, AND AIR TRAFFIC CONTROL	9
Airport Layouts – Airport Buildings – Primary functions, Planning Concept, Principles of Passer	nger Flow
Passenger Facilities - Visual Aids – Runway and Taxiway Markings, Wind Direction Indicators,	
Taxiway Lightings - Air Traffic Control – Basic Actions, Air Traffic Control Network - Helipad	•
Service Equipments.	is, Hangars,
UNIT V HARBOUR ENGINEERING	9
Harbours, Ports, Docks, Tides and Waves, Littoral Drift, Sounding, Area, Depth, Satellite Ports	- Requirements
and Classification of Harbours - Site Selection & Investigation -Geological Characteristics, Wir	nds & Storms,
Position and Size of Shoals - Shore Considerations- Proximity to Towns/Cities, Utilities, Constr	
Coast Lines - Dry and Wet Docks, Planning and Layouts - Entrance, Position of Light Houses, N	
Terminal Facilities - Navigational Aids - Coastal Structures - Coastal Shipping, Inland Water Tra	insport and
Container Transportation.	
TOT	AL: 45 PERIODS

TEXT BOOK

- 1. Saxena Subhash C and Satyapal Arora, A Course in Railway Engineering, Dhanpat Rai and Sons, Delhi, 2006.
- 2. Khanna S K, Arora M G and Jain S S, Airport Planning and Design, Nemchand and Brothers, Roorkee, 2005.

REFERENCE(S)

- . Rangwala, Railway Engineering, Charotar Publishing House, 1995.
- 2. Rangwala, Airport Engineering, Charotar Publishing House, 1996.
- 3. Oza.H.P. and Oza.G.H., "A course in Docks & Harbour Engineering". Charotar Publishing Co.1976.
- 4. J.S. Mundrey, "A course in Railway Track Engineering". Tata McGraw Hill, 2000.
- 5. S P Bindra, A Course in Docks and Harbour Engineering, Dhanpat Rai and Sons, New Delhi, 1993.

	Con	tinuous Assessment (25)	End Semester	
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]
Attendance Mark	91% and above	- 10, 86-90% - 8, 81	1-85% - 6, 76-80	0% - 4, 75% - 2	
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	, E(50-54), U (<5	0)-Fail

Course		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		3		2	2			2				2	3	2	2	3
CO2		3		2	2			2				2	3	2	2	3
CO3		3		3	2			2				2	3	2	2	2
CO4		3		3	2			2				2	3	2	2	2
CO5		3		3	2		2	2				2	3	2	2	3

12CE66	ENVIRONMENTAL AND IRRIGATION ENGINE	ERING	L	T	P	C				
	DRAWING									
			0	0	4	2				
Programme:	B.E. Civil Engineering	Sem:		7	/I					
Category	Core									
Prerequisites:	12CE64- Environmental Engineering-II(CR), 12CE54- E 12CE51- Irrigation Engineering	nvironme	ntal E	Engin	eerin	g –I,				
AIM:	The aim of this course is to make the students familiar was water supply and sewage disposal structures.	th the des	ign o	f irrig	gation	Ι,				
Course Objectives:	 At the end of this course student acquires the cap environmental and public health engineering strue engineering structures. 									
Course	1. To learn the drawing standards.									
Outcomes:	Develop knowledge about different hydraulic structures. Have practice on pumping station and sanitary facilities design and drawing. Develop the knowledge about water treatment plants design and drawing. Develop the knowledge about irrigation and environmental drawings.									

LIST OF EXPERIMENTS

Part A – Environmental Drawings

- 1. Slow sand filter
- 2. Rapid sand filter
- 3. Pumping station
- 4. House service connection for water supply and drainage.
- 5. Trickling filters
- 6. Septic tanks

Part B – Irrigation Drawings

- 1. Tank Surplus Weir
- 2. Tank Sluice with tower head
- 3. Aqueducts
- 4. Canal head works
- 5. Canal Regular
- 6. Canal escape

TOTAL: 45 PERIODS

TEXT BOOK(S)

- 1. Modi, P.N., "Environmental Engineering I & II", Standard Book House, Delhi 6
- 2. Sathyanarayana Murthy "Irrigation Design and Drawing" Published by Mrs L.Banumathi, Tuni east Godavari District. A.P. 2004.

REFERENCE(S)

- 1. Peary, H.S., ROWE, D.R., Tchobanoglous, G., "Environmental Engineering", McGraw-Hill Book Co., New Delhi, 1995.
- 2. Metcalf & Eddy, "Wastewater Engineering (Treatment and Reuse)", 4th edition, Tata McGraw-Hill, New Delhi, 2003.
- 3. Garg S.K., "Irrigation Environmental Engineering and design StructuresI", Khanna Publishers, New Delhi, 17th Reprint, 2003.
- 4. Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 1999

5. Manual on Sewerage and Sewage Treatment, CPHEEO, Government of India, New Delhi, 1993. 6. Sharma R.K. Irrigation Engineering and Hydraulic Structures Oxford and IBH Publishing co., New Delhi 2002.

	Continuo	ous Assessment (25))	End					
Evaluation Criteria &	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks				
Marks	15	7.5	2.5	75	100				
				[Min Pass:	[Min Pass:				
Attendance	91% And Above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100), A(80-89)	0)-Fail							

Course		Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2											2	3		
CO2	3	2		3									2	3		
CO3	3	2		3		2							2	3		
CO4	3	2		3		2							2	3		
CO5	3	2					3						2	3		

12CE67	ENVIRONMENTAL ENGINEERING LABORAT	ORY	L	T	P	С			
		0	0	3	2				
Programme:	B.E. Civil Engineering	Sem:	VI						
Category	Core								
Prerequisites:	12CE64- Environmental Engineering-II(CR), 12CE54- E	Environme	ntal E	Engin	eerin	g –I			
AIM:	The aim of this course is to make the students to have a p testing of water and municipal sewage.	ractical kı	nowle	edge a	about	the			
Course Objectives:	 This subject includes the list of experim characterization of water and municipal sewage. The student is expected to be aware of the processor parameters for water and sewage. 	At the end	l of th	ie coi	urse.				
Course Outcomes:	4. Analyse the biological parameters for microorganism	 Gain knowledge about water and municipal sewage. Illustrate the tests to determine the characteristics of water sample. Analyse the biological parameters for microorganisms present in water. 							

LIST OF EXPERIMENTS

- 1. Sampling and preservation methods and significance of characterization of water and wastewater.
- 2. Determination of i) pH and turbidity ii) Hardness
- 3. Determination of iron & fluoride
- 4. Determination of residual chlorine
- 5. Determination of Chlorides
- 6. Determination of Ammonia Nitrogen
- 7. Determination of Sulphate
- 8. Determination of Optimum Coagulant Dosage
- 9. Determination of chlorination of water.
- 10. Determination of dissolved oxygen
- 11. Determination of suspended, volatile and fixed solids
- 12. B.O.D. test
- 13. C.O.D. test
- 14. Introduction to Bacteriological Analysis (Demonstration only)

TOTAL: 45 PERIODS

REFERENCE(S)

- 1. Sheety, M.S, Concrete Technology, Theory and Practice, S. Chand and Company Ltd, New Delhi, 2005.
- 2. Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and Method of Construction, Dhanpat Rai and Sons, 1991. Standard methods for the examination of water and wastewater, APHA, 20th Edition, Washington, 1998
- 3. Garg, S.K., "Environmental Engineering Vol. I & II", Khanna Publishers, New Delhi
- 4. Modi, P.N., "Environmental Engineering Vol. I & II", Standard Book House, Delhi-67.

	Continuo	ous Assessment (25))	End				
Evaluation Criteria &	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks			
Marks	15	7.5	2.5	75	100			
				[Min Pass:	[Min Pass:			
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	35% - 6, 76-80	% - 4, 75% - 2				
Grade Criteria	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail							

Course		Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3						2								2	2
CO2		2		3											2	2
CO3	1	2		3									2		3	2
CO4	2	2		3									3		3	2
CO5		2		3									1		3	2

12HS61	ENGLISH FOR EMPLOYMENT – II	L	T	P	C					
		0	0	2	1					
Programme:	B.E. Civil Engineering	Sem:			III					
Category	Core									
Prerequisites:	12HS51- English for Employment – I									
AIM:	To Improve learners Communication Skill in English with	the Prof	essio	nal F	Englis	sh				
	Examination Module									
Course	To impart Employment skill among the students									
Objectives:	To improve Technical vocabulary related to work	place								
	T o develop students job prospects through oral co	ommunic	ation							
Course	Develop analytical skill and vocabulary.									
Outcomes:	2. Improve job prospects.									
	3. Predict the main idea of the topic and use verbal cues.	Predict the main idea of the topic and use verbal cues.								
	4. Develop negotiation skill.									
	5. Utilize documentation methodology.									

A)		Reading	6
	1.	Reading for Gist	
	2.	Reading for Structure and detail	
	3.	Understanding General Points	
	4.	Reading-Vocabulary and Texture	
	5.	Structure and Discourse features	
	6.	Understanding sentence structure	
B)		Writing	6
	1.	Describing figure from graphic input	
	2.	Deriving conclusion from illustrations	
	3.	Writing a Report-Describing/Summarizing	
	4.	Explaining a context	
	5.	Writing Apologies	
	6.	Writing for giving assurance	
C)	L	istening	6
	1.	Listening for Specific Information	
	2.	Listening to Identify topic	
	3.	Listening to a context	
	4.	Listening to opinions expressed in a debate	
	5.	Listening for Gist	
	6.	Listening for making Inferences	
D)		Speaking	12
	1.	'Mini-Presentation' on the given topic 6	
	2.	Group Discussion 4	
	3.	Expressing personal opinion about the Social Issues 2	

Total=30 Periods

Text Book:

Business Benchmark Advanced Audio Cassettes BEC Higher, Guy Brook-Hart, 2 Audio cassettes,

ISBN: 9780521672986

Business Benchmark Upper Intermediate Personal Study Book BEC and BULATS Edition, Guy

Brook-Hart, PB, ISBN: 9780521672917

INTERNAL ASSESSMENT

100 MARKS

(100 Marks to be converted to 25)

***Note: Contents for the Internal and External Examinations should be considered only from The BUSINESS ENGLISH oriented Aricles/Extracts/Clips/Illustrations/Audio scripts.

	Continuo	ous Assessment (25))	End				
Evaluation Criteria &	Assess.Observation (60%)			Semester Examination	Total Marks			
Marks	15	7.5	2.5	75	100			
				[Min Pass:	[Min Pass:			
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	55% - 6, 76-80	% - 4, 75% - 2				
Grade Criteria	a S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)							

Course										Program Specific Outcomes (PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		3						2	3				2			1
CO2			2		3					2		3	2			2
CO3		1	2		3				1	2		3	2			2
CO4		2	2		3				2	2		3	2			3
CO5			2		3					2		3	2			2

12CE71	DESIGN OF REINFORCED CONCRETE & BRICK MASONRY STRUCTURES	L	T	P	C				
	MANDOTINE BERNOOF CHEEN	3	1	0	4				
Programme:	B.E. Civil Engineering Sem:		VII						
Category	Core	•	•						
Prerequisites:	12CE56- Design of RC Elements								
AIM:	To design reinforcement and size of concrete and brick masonry	structu	res						
Course	To design of Reinforced Concrete Structures such as Re	taining	Wall	, wat	er				
Objectives:	tank	tank							
	 To design of Reinforced Concrete Structures such as Staircases, Flat slabs 								
	• To study the Principles of design pertaining to Box culverts, Mat foundation								
	and Bridges.								
Course	1. Design dimension and reinforcement details for canti	ever a	nd co	unter	fort				
Outcomes:	type Retaining wall								
	2. Design staircases (ordinary and doglegged), Reinforced			ll and	mat				
	foundation; box culverts and road bridges in any real lif	e situat	ion						
	3. To get knowledge about the design and construction of f	lat slab	٠.						
	4. Design of grid slab and its reinforcement details.								
	Apply principle of virtual work method to square, rectan	gular,	circul	ar and	1				
	triangular slab in any real life situation and evaluate axia	lly and	ecce	ntrica	lly				
	loaded brick walls in real time projects.								

UNIT-I	RETAINING WALLS	9+3 hrs				
Design of car	tilever and counter fort retaining walls					
UNIT-II	WATER TANKS	9+3 hrs				
Design of staircases (ordinary and doglegged) – Design of Reinforced concrete walls – Principles of						
design of mat	foundation, box culvert and road bridges					
UNIT-III	SELECTED TOPICS	9+3 hrs				
Design of Fla	t Slab – Design of Grid Slab					
UNIT-IV	SLABS	9+3 hrs				
Design of Fla	t Slab – Design of Grid Slab					
UNIT-V	BRICK MASONRY	9+3 hrs				
Introduction,	Classification of walls, Lateral supports and stability, effective height of wall	and				
columns, effective length of walls, design loads, load dispersion, permissible stresses, design of						
	centrically loaded brick walls					
	TOTAL: 60	PERIODS				

TEXT BOOK(S)

1. Purushothama raj.P.," Design of RC & Brick Masonry Structures"Lakshmi Publications Chennai,2012.

Krishna Raju, N., "Design of RC Structures", CBS Publishers and Distributors, Delhi, 2006

REFERENCE(S)

- 1.Mallick, D.K. and Gupta A.P., "Reinforced Concrete", Oxford and IBH Publishing Company
- 2. Syal, I.C. and Goel, A.K., "Reinforced Concrete Structures", A.H. Wheelers & Co. Pvt. Ltd., 1994
- 3. Ram Chandra.N. and Virendra Gehlot, "Limit State Design", Standard Book House. 2004.
- 4. Dayaratnam, P, "Brick and Reinforced Brick Structures", Oxford & IBH Publishing House, 1997
- 5. Varghese, P.C., "Limit State Design of Reinforced Concrete Structures" Prentice hall of India Pvt Ltd New Delhi, 2007.

	Con	tinuous Assessment (End Semester					
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks			
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]			
Attendance Mark	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100), A(8	0-89), B(70-79), C(60)-69), D(55-59)	E(50-54), U (<50	0)-Fail			

Course									Prog	Program Specific Outcomes (PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1	1		1			1		2	3	1	2	1
CO2	2	2	1	1	1		1					1	3	1	1	1
СОЗ	2	1	1	1	1					1		1	3	1	1	1
CO4	3	2	2	1	1		1			1		2	3	1	2	
CO5	3	2	1	1	1		1			1		1	3	1	1	

12CE72	ESTIMATION AND QUANTITY SURVEYIN	L	T	P	C				
			3	0	0	3			
Programme:	B.E. Civil Engineering Sem:								
Category	Core		ı						
Prerequisites:	12CE63- Construction Planning & Scheduling								
AIM:	This subject covers the various aspects of estimating of q involved in buildings, water supply and sanitary works, r works. This also covers the rate analysis, valuation of proreports for estimation of various items. At the end of this able to estimate the material quantities, prepare a bill of a specifications and prepare tender documents. Student show value estimates.	oad works operties ar course th quantities,	s and nd pre e stud , make	irriga parat lent s	tion ion o hall b	f be			
Course Objectives:	To know the importance of preparing the types of conditions	f estimate	es und	er dif	ferer	ıt			
	To know about the rate analysis and bill preparations								
	To study about the specification writing								
	To understand the valuation of land and buildings								
Course Outcomes:	 Apply the different types of estimates in different structures. Carry out analysis of rates and bill preparation at diff Describe the concepts for specification writing. Carry out valuation of assets. Describe the importance and preparation of reports for specification. 	erent loca	ations			other			

UNIT I	ESTIMATE OF BUILDINGS	11 hrs					
Load bearing and fram	ed structures - Calculation of quantities of brick work, RCC, PCC,	Plastering,					
white washing, colour	washing and painting / varnishing for shops, rooms, residential buil	ding with					
flat and pitched roof -	flat and pitched roof – Various types of arches – Calculation of brick work and RCC works in arches						
 Estimate of joineries 	– Estimate of joineries for panelled and glazed doors, windows, ventilators, handrails etc.						
UNIT II	ESTIMATE OF OTHER STRUCTURES	10 hrs					
Estimating of septic ta	nk, soak pit – sanitary and water supply installations – water supply	pipe line					
– sewer line – tube we	- sewer line – tube well – open well – estimate of bituminous and cement concrete roads – estimate						
of retaining walls – culverts – estimating of irrigation works – aqueduct, syphon, fall.							
UNIT III	SPECIFICATION AND TENDERS	8 hrs					
Data - Schedule of rat	es - Analysis of rates - Specifications - sources - Detailed and gene	eral					
specifications - Tende	rs – Contracts – Types of contracts – Arbitration and legal requirem	ents.					
UNIT IV	VALUATION	8 hrs					
Necessity – Basics of	value engineering – Capitalized value – Depreciation – Escalation –	Value of					
building – Calculation of Standard rent – Mortgage – Lease							
UNIT V	REPORT PREPARATION	8 hrs					
Principles for report preparation – report on estimate of residential building – Culvert – Roads –							
Water supply and sanitary installations – Tube wells – Open wells.							
TOTAL: 45 PERIODS							

1 Dutta, B.N., "Estimating and Costing in Civil Engineering", UBS Publishers & Distributors Pvt. Ltd., 2003

Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand & Company Ltd., 2004

REFERENCE(S)

PWD Data Book.

	Con	tinuous Assessment (25)	End Semester							
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	2.5	75 [Min Pass:37]	100 [Min Pass: 50]						
Attendance Mark	91% and above	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2									
Grade Criteria	S(90-100), A(8	90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	2	1	2	1	1					2	3		3	1
CO2	2	1	2	1	2	1	1					3	2	1	1	2
СОЗ	1	1	1	2		1						3	2		2	
CO4	2	1					2				1	3	3	1	1	1
CO5	2	2		2		3						3	2		2	

12CE73	BASICS OF DYNAMICS AND SEISMIC DESIG	·N	L	T	P	C							
			3	0	0	3							
Programme:	B.E. Civil Engineering	Sem:		V	'II								
Category	Core		•										
Prerequisites:	12CE62- Design of Steel Structures												
AIM:	tudy dynamic and seismic forces due to earthquake and corresponding design of etures												
Course	 To study basic elements of seismic and dynamic 	forces car	use b	y eart	thqua	ke							
Objectives:	 To calculate the response of structure due to earthquake. To design RC building for mitigate effect of earthquake 												
Course	1. Discriminate the basic elements in static, dynami	c force, o	degre	e of	free	dom,							
Outcomes:	 motion equation and vibrations of mass. Calculate Natural frequencies, Mode shapes for Two system. Describe the causes of earthquake and tectonic plate magnitude and intensity of earthquake in real time sit Examine response of structures, Effect of soil proper ductility, Methods of introducing ductility into earthquake. Design structure as per IS codes using base isolating effects of earthquake on structures. 	and mult theory. To tuation. rties, dam RC struc	i deg appl ping, tures	y seis	f free smog ortane overc	edom gram, ce of come							

UNIT-I	THEORY OF VIBRATIONS	9
Concept of i	nertia and damping - Types of Damping - Difference between static forces and	dynamic
excitation –	Degrees of freedom – SDOF idealisation – Equations of motion of SDOF system	n for mass
as well as ba	se excitation – Free vibration of SDOF system – Response to harmonic excitation	on –
Impulse and	response to unit impulse – Duhamel integral	
•		
UNIT-II	MULTIPLE DEGREE OF FREEDOM SYSTEM	9
Two degree	of freedom system – Normal modes of vibration – Natural frequencies – Mode	shapes -
Introduction	to MDOF systems - Decoupling of equations of motion - Concept of mode sup	perposition
(No derivation	ons).	
UNIT-III	ELEMENTS OF SEISMOLOGY	9
Causes of Ea	arthquake – Geological faults – Tectonic plate theory – Elastic rebound – Epicer	ntre –
Hypocentre -	- Primary, shear and Raleigh waves - Seismogram - Magnitude and intensity of	f
earthquakes	- Magnitude and Intensity scales - Spectral Acceleration - Information on some	e disastrous
earthquakes		
UNIT-IV	RESPONSE OF STRUCTURES TO EARTHQUAKE	9
Stresses and	deformation in circular (solid and hollow shafts) – stepped shafts – shafts fixed	at both
ends – leaf s	prings – stresses in helical springs and deflection of springs	
UNIT-V	DESIGN METHODOLOGY	9
Stability and	equilibrium of plane frames – types of trusses – analysis of forces in truss men	nbers
method of jo	ints, method of sections, method of tension coefficients	
	TOTAL: 60	PERIODS

- 1. Chopra, A.K., "Dynamics of Structures Theory and Applications to Earthquake Engineering", Second Edition, Pearson Education, 2003.
- 2. Paz, M., "Structural Dynamics Theory & Computation", CSB Publishers & Distributors, Shahdara, Delhi, 2000

REFERENCE(S)

- 1. Biggs, J.M., "Introduction to Structural Dynamics", McGraw-Hill Book Co., N.Y., 1964
- 2. Dowrick, D.J., "Earthquake Resistant Design", John Wiley & Sons, London, 1977, NPEEE Publications.

Evaluation Criteria &		Assess (60	.Tests	Ass		essmen eminar/ (30%)	<u> </u>	tendan (10%)		End Ser Examir			То	otal Ma	rks	
Marks		1:			7.5			2.5		75			D. 4:	100	501	
Attendance Mark		91% an	ıd abov	re – 10,	[Min Pass: 37] [Min Pass: 50] - 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2											
Grade Crite	ria	S(90-10	100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail													
Course Program Outcomes (POs)											Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	1	2	1	1			1		1		1	3	2	1	1
CO2	2	2	1	2			1	1			1	1	3	1		1
CO3	2	1	1	1				1		1		1	2	3		
CO4	2	1	3	2	1						1	2	2	3	1	2
CO5	3	2	1	2	1						1	3	1	2		1

12CE74	PRESTRESSED CONCRETE STRUCTURES		L	T	P	С						
			3 0 0									
Programme:	B.E. Civil Engineering	Sem:		V	VII							
Category	Core											
Pre requisite	12CE56- Design of RC Elements											
AIM:	The aim of this course is to make the students to familiar we prestressed concrete structure	ith the c	lesigr	cond	cepts	of						
Course Objectives:	prestressing, advantages of prestressing concrete,	• At the end of this course the student shall have a knowledge of methods of prestressing, advantages of prestressing concrete, the losses involved and the design methods for prestressed concrete elements under code provisions.										
Course Outcomes:	 Explain the terminology related to pre-stressing system Analyse the sections using strength, stress load balan prestressing. Design a prestress concrete pipes and tanks. Analyze the stress and estimate the deflection for comp Examine the general aspects involve in prestressed cond 	osite co	nstru	ction		es of						

UNIT I	INTRODUCTION – THEORY AND BEHAVIOUR	9						
Basic concepts - Advar	ntages - Materials required - Systems and methods of prest	ressing – Analysis						
of sections – Stress con-	cept – Strength concept – Load balancing concept – Effect	of loading on the						
tensile stresses in tendo	ns - Effect of tendon profile on deflections - Factors influence	encing deflections						
 Calculation of deflect 	ions - Short term and long term deflections - Losses of pre	stress – Estimation						
of crack width								
UNIT II	DESIGN CONCEPTS	9						
varying distributed load shear force – bending m	Beams – types of supports – simple and fixed, types of load – concentrated, uniformly distributed, varying distributed load, combination of above loading – relationship between bending moment and shear force – bending moment, shear force diagram for simply supported, cantilever and over hanging beams – Theory of simple bending – analysis of stresses – load carrying capacity of beams – proportioning of sections							
UNIT III	CIRCULAR PRESTRESSING	9						
Design of prestressed co	oncrete tanks – Pipes.							
UNIT IV	COMPOSITE CONSTRUCTION	9						
Analysis for stresses – l	Estimate for deflections – Flexural and shear strength of co	mposite members						
UNIT V	PRE-STRESSED CONCRETE BRIDGES	9						
General aspects – preter	General aspects – pretensioned prestressed bridge decks – Post tensioned prestressed bridge decks							
	TOT	AL: 45 PERIODS						

.1. Krishna Raju N., Prestressed concrete, Tata McGraw Hill Company, New Delhi 2008 Rajagopalan, N, "Prestressed Concrete", Alpha Science, 2002

REFERENCE(S)

- 1. . Ramaswamy G.S., Modern prestressed concrete design, Arnold Heinimen, New Delhi, 1990
- 2. Lin T.Y. Design of prestressed concrete structures, Asia Publishing House, Bombay 1995.
- 3. David A.Sheppard, William R. and Philips, Plant Cast precast and prestressed concrete A design guide, McGraw Hill, New Delhi 1992.
- 4. Mallic S.K. and Gupta A.P., Prestressed concrete, Oxford and IBH publishing Co. Pvt. Ltd. 1997.

	Con	tinuous Assessment (25)	End Semester								
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks							
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]							
Attendance Mark	91% and above	1% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2										
Grade Criteria	S(90-100), A(8	00-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail										

Course		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	2	3	2								2	3	1	1	1
CO2	2	2	2	1	1		1					1	3		2	
CO3	2	2	3	1			1					2	2		1	1
CO4	1	1		3								1	2		2	1
CO5	1	1	2			1						1	2	2	1	1

12CE75	COMPUTER AIDED DESIGN & DRAFTING	j	L	T	P	C						
	LABORATORY											
			0	0	4	2						
Programme:	B.E. Civil Engineering	Sem:		VII								
Category	Core											
Prerequisites:	CE71- Design of Reinforced Concrete & Brick Masonry Structures(CR), 12CE56-esign of RC Elements											
AIM:	The aim of this course is to make the students to familiar computer aided structural drawings.	he aim of this course is to make the students to familiar with the design concepts and										
Course Objectives:	 At the end of the course the student acquires h and preparation of structural drawings for concrencountered in Civil Engineering practice. 		•			_						
Course Outcomes:	 Understand the reinforcement details from the drawing Design both RCC structures and steel structure. Compare various shapes of water tank structures. 	Design and draw the RCC structures and steel structure. Understand the reinforcement details from the drawing. Design both RCC structures and steel structure.										
	5. Construct different types of Girder Bridge.											

LIST OF EXPERIMENTS

- 1. 1 Design and draw the RCC structures
- 2. Understand the reinforcement details from the drawing.
- 3. Compare various shapes of water tank structures.
- 4. Construct different types of Girder Bridge.
- 5. Able to design and draw the column and footing.

TOTAL: 60 PERIODS

TEXT BOOK(S)

. Krishna Raju, "Structural Design & Drawing (Concrete & Steel)", CBS Publishers 2004.

Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Design of steel structures", Lakshmi publications Pvt. Ltd 2003.

REFERENCE(S)

- 1. Krishnamurthy, D., "Structural Design & Drawing Vol. II", CBS Publishers & Distributors, Delhi 1992.
- 2. Krishnamurthy, D., "Structural Design & Drawing Vol. III Steel Structures", CBS Publishers & Distributors, New Delhi 1992.

Evaluation Criteria & Marks	Continuo	ous Assessment (25)	End									
	Assess.Observation (60%)	Record & Viva (30%)	Attendance (10%)	Semester Examination	Total Marks							
	15	7.5	2.5	75	100							
				[Min Pass:	[Min Pass:							
Attendance	91% And Above – 10	0, 86-90% - 8, 81-8	35% - 6, 76-80	% - 4, 75% - 2								
Grade Criteria	S(90-100), A(80-89),	5(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail										

Course		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	3								3	3			
CO2	3	2	3	3								2	3			
CO3	3	2	2	2								3	2			
CO4	3	3	2	3								3	3	1		
CO5	3	2	2	2								2	2	1		

12CE76	DESIGN PROJECT		L	T	P	C			
			0	4	2				
Programme:	B.E. Civil Engineering	B.E. Civil Engineering Sem: VII							
Category	Core								
Prerequisites:	12F2Y5 Engineering Mechanics, 12CE36 Mechanics of S	Solids, 120	CE42	Stre	ngth	of			
	Materials and 12CE56 Design of RC Elements.								
AIM:		The aim of the design project is to make the students to improve the design principles							
	in any of the civil engineering discipline.								
Course	To study a design problem in any one of the disciplin	es of Civi	l Eng	ineer	ing				
Objectives:	To study Design of an RC structure, Design of a wast	te water tr	eatme	ent pl	ant,				
	To study Design of a foundation system, Design of tr	affic inter	sectio	n etc	·.				
Course	1. Apply the knowledge of core subjects in civil engine	ering proje	ects.						
Outcomes:	2. Understand the ethical and professional responsibiliti	es as a Cir	vil Er	ngine	er.				
	3. Understand the need for a continuous learning to b								
	emerging field of engineering.								

OBJECTIVES

The objective of this course is to impart and improve the design capability of the student. This course conceives purely a design problem in any one of the disciplines of Civil Engineering; e.g., Design of an RC structure, Design of a waste water treatment plant, Design of a foundation system, Design of traffic intersection etc. The design problem can be allotted to either an individual student or a group of students comprising of not more than four. At the end of the course the group should submit a complete report on the design problem consisting of the data given, the design calculations, specifications if any and complete set of drawings which follow the design.

TOTAL: 60 PERIODS

EVALUATION PROCEDURE

The method of evaluation will be as follows:

- 1. Internal Marks: 20 marks (Decided by conducting 3 reviews by the guide appointed by the Institution)
- 2. Evaluation of Project Report: 30 marks (Evaluated by the external examiner appointed the University). Every student belonging to the same group gets the same mark
- 3. Viva voce examination: 50 marks (Evaluated by the internal examiner appointed by the HOD with the approval of HOI, external examiner appointed by the University and Guide of the course with equal Weightage)

Course	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	1	3	3	3		1			1		2	3	2	2	1
CO2			2	3	2					1		2	3	2	1	1
СОЗ	2	1	3	3	3		2			1		3	3	1	2	1

12CE81 PROJECT WORK L T

		0	0	12	6			
B.E. Civil Engineering	Sem:		VIII					
Core								
1			_	n vario	us			
1. Infer a contemporary issue in the field of engineering	g and de	sign a	met	hodolo	gy to			
 effective solution to the problem under all realistic co 3. Understand the impact of their solutions in a global, societal context. 4. Understand the professional and ethical responsibilit finding a solution to real life Civil engineering proble 	nstraints , economies while	ic, er	iviro	nmenta	l and			
	Core The aim of the project work is to make the students to corcivil engineering streams through experiments and compute 1. Infer a contemporary issue in the field of engineering solve the problem. 2. Gather knowledge in collecting data, analyzing a effective solution to the problem under all realistic contents. 3. Understand the impact of their solutions in a global societal context. 4. Understand the professional and ethical responsibility.	Core The aim of the project work is to make the students to conceive kr civil engineering streams through experiments and computer appli 1. Infer a contemporary issue in the field of engineering and de solve the problem. 2. Gather knowledge in collecting data, analyzing and desi effective solution to the problem under all realistic constraints 3. Understand the impact of their solutions in a global, econom societal context. 4. Understand the professional and ethical responsibilities while finding a solution to real life Civil engineering problem.	B.E. Civil Engineering Core The aim of the project work is to make the students to conceive knowled civil engineering streams through experiments and computer applications. Infer a contemporary issue in the field of engineering and design a solve the problem. Gather knowledge in collecting data, analyzing and designing effective solution to the problem under all realistic constraints. Understand the impact of their solutions in a global, economic, er societal context. Understand the professional and ethical responsibilities while world finding a solution to real life Civil engineering problem.	B.E. Civil Engineering Core The aim of the project work is to make the students to conceive knowledge is civil engineering streams through experiments and computer applications. Infer a contemporary issue in the field of engineering and design a met solve the problem. Gather knowledge in collecting data, analyzing and designing a feffective solution to the problem under all realistic constraints. Understand the impact of their solutions in a global, economic, environ societal context. Understand the professional and ethical responsibilities while working finding a solution to real life Civil engineering problem.	B.E. Civil Engineering Core The aim of the project work is to make the students to conceive knowledge in vario civil engineering streams through experiments and computer applications. Infer a contemporary issue in the field of engineering and design a methodolo solve the problem. Gather knowledge in collecting data, analyzing and designing a feasible effective solution to the problem under all realistic constraints. Understand the impact of their solutions in a global, economic, environmenta societal context. Understand the professional and ethical responsibilities while working as a teafinding a solution to real life Civil engineering problem.			

OBJECTIVES

The objective of the project work is to enable the students to work in convenient groups of not more than four members in a group on a project involving theoretical and experimental studies related to Civil Engineering. Every Project Work shall have a Guide who is a member of the faculty of Civil Engineering of the college where the student is registered. The hours allotted for this course shall be utilized by the students to receive directions from the Guide, on library reading, laboratory work, computer analysis or field work and also to present in periodical seminars the progress made in the project. Each student shall finally produce a comprehensive report covering background information, literature Survey, problem statement, Project work details and conclusions. This experience of project work shall help the student in expanding his / her knowledge base and also provide opportunity to utilise the creative ability and inference capability.

TOTAL: 60 PERIODS

EVALUATION PROCEDURE

- 1. Internal Marks: 20 marks (decided by conducting 3 reviews by the guide appointed by the Institution)
- 2. Evaluation of Project Report: 30 marks (Evaluated by the external examiner appointed the University). Every student belonging to the same group gets the same mark
- 3. Viva voce examination: 50 marks (evaluated by the internal examiner appointed by the HOD with the approval of HOI, external examiner appointed by the University and Guide of the course with equal Weight age

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	3	2	2	3			2	3			3	3	2	3	2
CO2	3	2	3	2	2			1	2			2	2	3	3	3
CO3	2	1	2	3	2			1	3			2	3	2	2	2
CO4	3	2	3	2	3			2	2			2	3	1	3	2
CO5	2	3	2	1	22			1	1			3	2	3	2	2

12CE7A	HYDROLOGY		L	T	P	C			
			3	0	0	3			
Programme:	B.E. Civil Engineering Sem: VII								
Category:	Elective								
Prerequisites:	12CE51- Irrigation Engineering								
Aim:	The aim of the course is to make the students to familiar	with the w	ater	mana	geme	nt.			
Course Objectives:	 At the end of the semester, the student shall be had of all the components of the hydrological cycle. The mechanics of rainfall, its spatial and temporal applications will be understood. Simple statistical analysis and application of proband run off shall also be understood. Student will also learn simple methods of flood rhydrology. 	al measure pability dis	ment stribu l grou	and ation	their of rai vater	nfall			
Course Outcomes:	 Describe about the spatial relationship, measuremer rainfall Interpolate hydrographs Summarize evapotranspiration process Explain the flood routing, channel routing using varies Illustrate aquifers in groundwater hydrology 		•	d free	quenc	ey of			

UNIT-I	PRECIPITATION	9							
Hydrologic o	cycle - Types of precipitation - Forms of precipitation - Measurement of	Rainfall -							
Spatial measurement methods – Temporal measurement methods – Frequency analysis of point									
rainfall – Intensity, duration and frequency relationship – Probable maximum precipitation									
UNIT-II	ABSTRACTION FROM PRECIPITATION	9							
Losses from	precipitation - Evaporation process - Reservoir evaporation - Infiltration	process -							
Infiltration ca	Infiltration capacity – Measurement of infiltration – Infiltration indices – Effective rainfall.								
UNIT-III	HYDROGRAPHS	9							
Factors affect	cting Hydrograph - Base flow separation - Unit hydrograph - Derivation	on of unit							
hydrograph	- S curve hydrograph - Unit hydrograph of different deviations - Synt	hetic Unit							
Hydrograph									
UNIT-IV	FLOODS AND FLOOD ROUTING	9							
Flood freque	ncy studies – Recurrence interval – Gumbel's method – Flood routing – Rese	rvoir flood							
routing – Mu	skingum's Channel Routing – Flood control								
UNIT-V	GROUND WATER HYDROLOGY	9							
Types of aquifers – Darcy's law – Dupuit's assumptions – Confined Aquifer – Unconfined Aquifer –									
Recuperation test – Transmissibility – Specific capacity – Pumping test – Steady flow analysis only.									
TOTAL: 45 PERIODS									

- 1. Subramanya, K., "Engineering Hydrology", Tata McGraw-Hill Publishing Co., Ltd., 2012
- 2. Chow, V.T. and Maidment, "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2006

REFERENCE(S)

- 1. Singh, V.P., "Hydrology", McGraw-Hill Inc., Ltd., 2000.
- 2. Raghunath, H.M., "Hydrology", Wiley Eastern Ltd., 2000

Evaluation Criteria &	Con	tinuous Assessment (End Semester								
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% a	nd above – 10, 86-90	% - 8, 81-85%	- 6, 76-80% - 4, 7	5% - 2						
Grade Criteria	S(90-100),	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2			2							2	2	3		
CO2	2	3	1	2								2	3	3		2
СОЗ		3	3		2							3	3	2		
CO4	2	3	3		2		3					2	2	2		
CO5	2	2		3	2		2					2	2	3		

12CE7B	REMOTE SENSING TECHNIQUES AND GIS	8	L	T	P	C					
			3	0	0	3					
Programme:	B.E. Civil Engineering	Sem:	VII								
Category:	Elective										
Prerequisites:	12F2Z3- Engineering Physics-II, 12CE44- Surveying – II										
Aim:	The aim of this course is to make the students exposed to techniques	The aim of this course is to make the students exposed to GIS and remote sensing techniques									
Course Objectives:	 To introduce the students to the basic concepts and components of remote sensing. To provide an exposure to GIS and its practical engineering. 										
Course Outcomes:	 Identify the EMR interaction of atmosphere and earth Explain the types of platforms and learn the pay learth resources satellites. Apply the various image improvement techniques. Analyse the basic components of GIS. Learn the data compression techniques used in GIS are civil engineering. 	oad descr	•		Î						

	EMR AND ITS INTERACTION WITH ATMOSPHERE & EARTH	
UNIT-I	MATERIAL	9

Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan-Boltzman and Wein's Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil.

UNIT-II PLATFORMS AND SENSORS

9

Types of platforms – orbit types, Sun-synchronous and Geosynchronous – Passive and Active sensors – resolution concept – Pay load description of important Earth Resources and Meteorological satellites – Airborne and space borne TIR and microwave sensors.

UNIT-III IMAGE INTERPRETATION AND ANALYSIS

9

Types of Data Products – types of image interpretation – basic elements of image interpretation – visual interpretation keys – Digital Image Processing – Pre-processing – image enhancement techniques – multispectral image classification – Supervised and unsupervised.

UNIT-IV GEOGRAPHIC INFORMATION SYSTEM

9

 $Introduction-Maps-Definitions-Map \ projections-types \ of \ map \ projections-map \ analysis-GIS \ definition-basic \ components \ of \ GIS-standard \ GIS \ softwares-Data \ type-Spatial \ and \ non-spatial \ (attribute) \ data-measurement \ scales-Data \ Base \ Management \ Systems \ (DBMS).$

UNIT-V DATA ENTRY, STORAGE AND ANALYSIS

9

 $\label{eq:data-data} Data\ models - vector\ and\ raster\ data\ - \ data\ compression\ - \ data\ input\ by\ digitization\ and\ scanning\ - \ attribute\ data\ analysis\ - \ integrated\ data\ analysis\ - \ Modeling\ in\ GIS\ Highway\ alignment\ studies\ - \ Land\ Information\ System.$

TOTAL: 45 PERIODS

- 1. Anji Reddy, M. (2008). Textbook of Remote Sensing and Geographical Information System. Second edn. BS Publications, Hyderabad.
- 2. Lo. C.P.and A.K.W.Yeung (2002). Concepts and Techniques of Geographic Information Systems. Prentice-Hall of India Pvt. Ltd., New Delhi. Pp:492.

REFERENCE(S)

- 1. Peter A.Burrough, Rachael A.McDonnell (2000). Principles of GIS. Oxford University Press.
- 2. Ian Heywood (2000). An Introduction to GIS. Pearson Education Asia.
- 3. Lillesand, T.M., Kiefer, R.W. and J.W.Chipman. (2004). Remote Sensing and Image Interpretation. V Edn. John Willey and Sons (Asia) Pvt. Ltd., New Delhi. Pp:763.5. Milan Sonka et al, 'Image Processing, Analysis and Machine Vision', Brookes/Cole, Vikas Publishing House, 2nd edition, 1999.

Evaluation Criteria &	Con	tinuous Assessment (End Semester							
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% a	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100),	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2			3		2						3	3		
CO2					3			3	3		1		3	2		
СО3					3		2	2	2		1		2	2		2
CO4					3						3		3	1		2
CO5					3								1	1		

12CE7C	ARCHITECTURE		L	T	P	C						
			3	0	0	3						
Programme:	B.E. Civil Engineering	B.E. Civil Engineering Sem: VII										
Category:	Elective											
Prerequisites:	12CE63- Construction Planning & Scheduling											
Aim:	The aim of this course is to make the students famil application of architecture in buildings.	liar with	the	princ	iples	and						
Course	Demonstrate the basic knowledge on the prin	ciples of	des	ign (of							
Objectives:	buildings relating to the environment and climate.											
Course	1. Conceptualize and coordinate designs, addressing so	cial, cult	ural,	envi	ronm	ental						
Outcomes:	and technological aspects of architecture											
	2. Use basic architectural principles in the design of business	uildings,	inter	ior s _l	paces	and						
	sites 3. Identify the stages of planning process and surveys in planning 4. Apply the town and country plan act and building by-laws. 5. Define the means of controlling the internal environment and provide standards of utility.											

UNIT-I	ARCHITECTURAL DESIGN	9							
Architectura	al Design - an analysis - integration of function and aesthetics - Introduction to b	asic elements							
and princip	and principles of design.								
UNIT-II	SITE PLANNING	9							
Surveys – S	ite analysis – Development Control – Layout regulations- Layout design concepts								
UNIT-III	BUILDING TYPES	9							
Residential,	institutional, commercial and Industrial - Application of anthropometry and sp	ace standards-							
Inter relation	nships of functions - Safety standards - Building rules and regulations - Integrati	on of building							
services – I	nterior design								
UNIT-IV	CLIMATE AND ENVIRONMENTAL RESPONSIVE DESIGN	9							
Man and e	nvironment interaction- Factors that determine climate - Characteristics of climate - Characteristics - Characteristic	mate types -							
Design for	various climate types – Passive and active energy controls – Green building concer	ot							
UNIT-V	DATA ENTRY, STORAGE AND ANALYSIS	9							
Planning –	Definition, concepts and processes- Urban planning standards and zoning regul	ations- Urban							
renewal – C	renewal – Conservation – Principles of Landscape design								
	TOTAL: 45 PERIODS								

- 1. Francis D.K. Ching, "Architecture: Form, Space and Order", VNR, N.Y., 2006.
- 2. Givoni B., "Man Climate and Architecture", Applied Science, Barking ESSEX, 2000

REFERENCE(S)

- 1. Edward D.Mills, "Planning and Architects Handbook", Butterworth London, 1995.
- 2. Gallian B.Arthur and Simon Eisner, "The Urban Pattern City Planning and Design", Affiliated Press Pvt. Ltd., New Delhi, 1995.
- 3. Margaret Robert, "An Introduction to Town Planning Techniques", HutchinsoLondon, 1990.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester						
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% a	nd above – 10, 86-90	% - 8, 81-85%	- 6, 76-80% - 4, 7	5% - 2					
Grade Criteria	S(90-100),	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail								

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3		3		2				2	3		1	1			3
CO2			3		2			2	1			1	3		1	2
СОЗ	2		3		1	3	1	3	1	1		1	3		2	1
CO4	2	3	3		1		3					2				3
CO5	2		3				3						3		2	

12MG71	TOTAL QUALITY MANAGEMENT	L	T	P	C					
		3	0	0	3					
Programme:	B.E. Civil Engineering	Sem:	VII							
Category:	Elective									
Prerequisites:	12MG52- Principles of Management									
Aim:	The aim of this course is to make the students familiar wi	ith the pri	nciple	es in	mana	ging				
	the quality.	the quality.								
Course	At the end of this course the students can ab	le to und	ersta	nd th	ie					
Objectives:	principles of quality management, methods of i			qualit	y					
	and to make aware of organizations to maintain t	he quality								
Course	1. Analyze the various Industrial practices to achieve Q	uality								
Outcomes:	2. Develop Managerial and Entrepreneurial Skills.									
	3. Select suitable tools to audit quality standards									
	4. Develop strategy for achieving quality using FMEA and Benchmarking.									
	5. Summarize the ISO auditing and documentation process.									

UNIT-I	INTRODUCTION	9
Introduction -	Need for quality - Evolution of quality - Definition of quality - Dimensi	ons of
manufacturing	and service quality - Basic concepts of TQM - Definition of TQM - TQM Frame	work -
Contributions of	of Deming, Juran and Crosby – Barriers to TQM.	
UNIT-II	TQM PRINCIPLES	9
Leadership – S	Strategic quality planning, Quality statements - Customer focus - Customer orien	ntation,
Customer satis	faction, Customer complaints, Customer retention - Employee involvement - Moti	vation,
Empowerment,	Team and Teamwork, Recognition and Reward, Performance appraisal - Con-	inuous
process improv	rement - PDSA cycle, 5s, Kaizen - Supplier partnership - Partnering, Supplier sel	ection,
Supplier Rating	g.	
UNIT-III	TQM TOOLS & TECHNIQUES I	9
The seven trad	litional tools of quality - New management tools - Six-sigma: Concepts, method	lology,
applications to	manufacturing, service sector including IT - Bench marking - Reason to bench	mark,
Bench marking	process – FMEA – Stages, Types.	
UNIT-IV	TQM TOOLS & TECHNIQUES II	9
Quality circles	- Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Co	ncepts,
improvement n	eeds – Cost of Quality – Performance measures.	
UNIT-V	QUALITY SYSTEMS	9
Need for ISO	9000- ISO 9000-2000 Quality System - Elements, Documentation, Quality auditing	ng- QS
9000 – ISO 14	4000 - Concepts, Requirements and Benefits - Case studies of TQM implementa	tion in
manufacturing	and service sectors including IT.	
	TOTAL: 45 PE	RIODS

- 1. Dale H.Besterfiled, et at., "Total Quality Management", Pearson Education Asia, 3rd Edition, Indian Reprint (2006).
- 1. 2. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 6_{th} Edition, South-Western (Thomson Learning), 2005.

REFERENCE(S)

- 1. Oakland, J.S., "TQM Text with Cases", Butterworth Heinemann Ltd., Oxford, 3rd Edition, 2003.
- 2. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India)Pvt. Ltd.,2006.

3. Janakiraman, B and Gopal, R.K, "Total Quality Management – Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester							
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2						
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail									

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1						3		3	2	2	3	2			3	2
CO2						2		2	3	1	2	1			3	2
СОЗ					2	2		3	2	1	3	3			3	3
CO4								2	2	2	2	3			3	2
CO5								2	2	3	2	3			3	2

12CE7D	TRAFFIC ENGINEERING AND MANAGEME	L	T	P	C	
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:	VII			
Category:	Elective					
Prerequisites:	12CE45- Highway Engineering					
Aim:	The aim of this course is to make the students familiar with the quality	ith the pri	nciple	es in	mana	iging
Course Objectives:	 The students acquire comprehensive knowledge studies such as 'Volume Count', 'Speed and destination', 'Parking', 'Pedestrian' and 'Accide. They achieve knowledge on design of 'at grade' intersections. They also become familiar with vand traffic management measures. 	delay', ' nt surveys and 'grad	Orig s'. e sepa	n ar	nd d'	
Course	1. Describe the Characteristics of Vehicles, Road Us	sers and	the C	Comp	onen	ts of
Outcomes:	 Traffic Engineering. Examine about origin and destination, parking, pedes and about basic principles of traffic flow. Describe the design of Traffic signals, Signal of applications in Signal design Apply the Principles of Intersection Design, Grade Sci. Describe the Traffic Management system and the System (ITS). 	co-ordinat	ion a	and ontercl	Com _j	puter es.

UNIT-I INTRODUCTION	9
Significance and scope, Characteristics of Vehicles and Road Users, Skid Resista	nce and Braking
Efficiency (Problems), Components of Traffic Engineering- Road, Traffic and Land Use	Characteristics
UNIT-II TRAFFIC SURVEYS AND ANALYSIS	9
Surveys and Analysis - Volume, Capacity, Speed and Delays, Origin and Destination, Pa	rking, Pedestrian
Studies, Accident Studies and Safety Level of Services- Basic principles of Traffic Flow.	•
UNIT-III TRAFFIC CONTROL	9
Traffic signs, Road markings, Design of Traffic signals and Signal co-ordination (P	roblems), Traffic
control aids and Street furniture, Street Lighting, Computer applications in Signal design	
UNIT-IV GEOMETRIC DESIGN OF INTERSECTIONS	9
Conflicts at Intersections, Classification of 'At Grade Intersections, - Channallised	Intersections -
Principles of Intersection Design, Elements of Intersection Design, Rotary design, Grade	e Separation and
interchanges - Design principles.	
UNIT-V TRAFFIC MANAGEMENT	9
Traffic Management- Transportation System Management (TSM) - Travel Demand Mar	nagement (TDM),
Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restrictions on turning movements, Oneway Streets, Traffic Forecasting techniques, Restriction to the Albert Forecasting techniques (Inc.).	affic Segregation,
Traffic Calming, Tidal flow operations, Exclusive Bus Lanes, Introduction to Intellige	nt Transportation
System (ITS).	
	L: 45 PERIODS

- 1. Kadiyali L R, Traffic Engineering and Transport Planning, Khanna Technical Publications, Delhi, 2004.
- 1. 2. Khanna K and Justo C E G, Highway Engineering, Khanna Publishers, Roorkee, 2006.

REFERENCE(S)

- 1. Indian Roads Congress (IRC) specifications: Guidelines and special publications on Traffic Planning and Management
- 2. Guidelines of Ministry of Road Transport and Highways, Government of India.
- 3. Subhash C.Saxena, A Course in Traffic Planning and Design, Dhanpat Rai Publications, New Delhi, 1989.
- 4. Transportation Engineering An Introduction, C.Jotin Khisty, B.Kent Lall, Prentice Hall of India Pvt Ltd, 2006.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester							
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2						
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail									

Course	se Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	3		2	2		3						2	3		
CO2	3	3		3	2								2	3		
СОЗ	2	2	2		3								2	3		1
CO4	3	2	3		2	1	2						2	3		
CO5	2	2	1	2					2					3	3	

12CE7E	WATER RESOURCES ENGINEERING		L	T	P	C
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:	VII			
Category:	Elective					
Prerequisites:	12CE51- Irrigation Engineering					
Aim:	The aim of this course is to make the students to h resources and its management.	ave a kno	wled	ge a	bout	water
Course Objectives:	 The student is exposed to the different phases in planning, collection of relevant data on water res Water Policy. Reservoir planning, management and economic a in detail. 	ources and	d also	on N	Vation	
Course Outcomes:	 Explain the various process of hydrologic cycle. Interpret rainfall data, assess and estimate the water l Learn the use of unit hydrograph, generate the sam and apply it for analysis of runoff from the catchmen Design alluvial and lined canals. Describe the various types and modes of irrigation ar 	ne from th t.	e flo	od h	ydrog	raph

UNIT-I	GENERAL	9 hrs
Water resource	es survey - Water resources of India and Tamilnadu - Description of water	
resources plann	ning – Economics of water resources planning, physical and socio economic data	
- National W	ater Policy - Collection of meteorological and hydrological data for water	
resources devel	opment.	
UNIT-II	NETWORK DESIGN	9 hrs
Hydrologic me	asurements – Analysis of hydrologic data – Hydrologic station network – Station	
network design	- Statistical techniques in network design.	
UNIT-III	WATER RESOURCE NEEDS	9 hrs
Consumptive a	nd non-consumptive water use - Estimation of water requirements for irrigation,	
for drinking an	d navigation - Water characteristics and quality - Scope and aims of master plan	
- Concept of ba	sin as a unit for development - Water budget and development plan.	
UNIT-IV	RESERVOIR PLANNING AND MANAGEMENT	9 hrs
Reservoir - Sin	gle and multipurpose – Multi objective - Fixation of Storage capacity –Strategies	
for reservoir o	peration - Sedimentation of reservoirs - Design flood-levees and flood walls -	
Channel impro	vement.	
UNIT-V	ECONOMIC ANALYSIS	9 hrs
Estimation of	cost and Evaluation of Benefits - Discount rate - Discounting factors - Disc	ounting
techniques – Co	omputer Applications.	
	TOTAL: 45 PE	RIODS

- 1. Linsley R.K. and Franzini J.B, "Water Resources Engineering", McGraw-Hill Inc, 2007.
- 2. Chaturvedi M.C., "Water Resources Systems Planning and Management", Tata McGraw-Hill Inc., New Delhi, 2008.

REFERENCE(S)

- 1. Goodman Alvin S., "Principles of Water Resources Planning", Prentice-Hall, 1984.
- 2. Maass et al. Design of Water Resources Systems, Macmillan, 1968.
- 3. Douglas J.L. and Lee R.R., "Economics of Water Resources Planning", Tata McGraw-Hill Inc. 2000.
- 4. Duggal, K.N. and Soni, J.P., "Elements of Water Resources Engineering", New Age International Publishers

	Con	tinuous Assessment (25)	End Semester		
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks	
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]	
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2	
Grade Criteria	S(90-100),	A(81-89), B(71-80),	C(61-70), D(56	-60), E(50-55), U	(<50)-Fail	

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	3	2		2						2	3		
CO2	3	3	3	3	2							2	1	3		
СОЗ		3	3	2			2							3		1
CO4		3	3	1	1		1							3	2	
CO5	2				3		3				3	1			3	1

12CE7F	GROUND IMPROVEMENT TECHNIQUES		L	T	P	C			
		3	0	0	3				
Programme:	B.E. Civil Engineering	Sem:	VII						
Category:	Elective								
Prerequisites:	12CE34- Building Materials and Construction Technique	s							
Aim:	The aim of this course is to make the studen	ats to har	ve kr	owle	edge	about			
	techniques to improve the strength of the soil to the build	ing.							
Course	After this course, the student is expected to it	dentify ba	asic o	lefici	encie	es of			
Objectives:	various soil deposits and students are in a position	on to decid	de vai	ious	ways	and			
	means of improving the soil and implementing to	chniques	of im	prov	emen	t.			
Course	1. Locate criteria to determine the applicability of e	ach groun	ıd imp	orove	ment	,			
Outcomes:	method for a specific project and soil condition u	ınder cons	sidera	tion					
	2. Explain the concept of using consolidation and v	ertical dra	ins fo	or sof	t soil				
	improvement.								
	3. Analyze the densification consolidation of soils.								
	4. Examine the types of reinforcement materials and use of Geotextiles								
	5. Define the grouting techniques and stabilisation	of expensi	ive so	il.					

UNIT-I	INTRODUCTION	9
Role of groun	nd improvement in foundation engineering - methods of ground improver	nent –
Geotechnical 1	problems in alluvial, laterite and black cotton soils -Selection of suitable	ground
improvement to	echniques based on soil condition.	_
•	•	
UNIT-II	DRAINAGE AND DEWATERING	9
Drainage techr	iques - Well points - Vaccum and electroosmotic methods - Seepage analysis f	or two
dimensional flo	ow-fully and partially penetrating slots in homogenous deposits (Simple cases only)).
TINITE TIT	INSITU TREATMENT OF COHESIONLESS AND COHESIVE SOILS	0
UNIT-III		9
Insitu densific	ation of cohesionless and consolidation of cohesive soils -Dynamic compaction	on and
	Vibrofloation - Sand pile compaction - Preloading with sand drains and fabric d	
	- Lime piles - Installation techniques only - relative merits of various methods ar	
limitations.		
UNIT-IV	EARTH REINFORCEMENT	9
Concept of rein	nforcement - Types of reinforcement material - Applications of reinforced earth -	use of
Geotextiles for	filtration, drainage and separation in road and other works.	
UNIT-V	GROUT TECHNIQUES	9

1. Purushothama Raj, P. "Ground Improvement Techniques", Firewall Media, 2005

Stabilisation with cement, lime and chemicals - Stabilisation of expansive soils.

2. Moseley M.P., Ground Improvement Blockie Academic and Professional, Chapman and Hall, Glassgow, 2002.

Types of grouts - Grouting equipment and machinery - Injection methods - Grout monitoring

TOTAL: 45 PERIODS

REFERENCE(S)

- 1. Jones J.E.P., Earth Reinforcement and Soil Structure, Butterworths, 1995.
- 2. Koerner, R.M., "Design with Geosynthetics", (3rd Edition) Prentice Hall, New Jersey, 2002
- 3. Jewell, R.A., "Soil Reinforcement with Geotextiles", CIRIA special publication, London, 1996 4. Das, B.M., "Principles of Foundation Engineering", Thomson Books / Cole, 2003.
- 5. Koerner R.M., "Construction and Geotechnical Methods in Foundation Engineering", McGraw-Hill, 1994.

	Con	tinuous Assessment (25)	End Semester						
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% a	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail								

Course	urse Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2		2		2		1					2	2	3		
CO2	3		2		2							3	2	3		
СОЗ	3	2		2								1	1	3		
CO4	3	2					2		1			2		3		
CO5	2	2		2	1							2		3		

12CE7G	CONTRACT LAWS AND REGULATIONS	L	T	P	С					
			3	0	0	3				
Programme:	B.E. Civil Engineering	Sem:		V	/II					
Category:	Elective									
Prerequisites:	12MG52- Principles of Management									
Aim:	The aim of this course is to make the students to have	knowle	dge a	bout	laws	and				
	regulations on contracts.									
Course	 At the end of the programme the students are abl 	le to kno	w abo	out th	ie					
Objectives:	legal implications of contracts and detailed re	gulation	s abo	ut th	ne					
	contracts.	<i>6</i>								
Course	1. Define the Indian contracts Act and types of contract.									
Outcomes:	2. Evaluate the tender for Technical, Contractual and con	mmercia	l poin	t of v	iew.					
	3. Explain the arbitration and the legal requirements for		_							
	4. Examine the use of urban and rural land, land revenue	4. Examine the use of urban and rural land, land revenue codes and tax laws.								
	5. Describe the various labour acts.									

	5. Describe the various labour acts.	
UNIT-I	CONSTRUCTION CONTRACTS	9
Indian Cont	racts Act – Elements of Contracts – Types of Contracts – Features – Suitability	– Design
of Contract	Documents - International Contract Document - Standard Contract Document	Law of
Torts.		
UNIT-II	TENDERS	9
Prequalifica	tion - Bidding - Accepting - Evaluation of Tender from Technical, Contr	actual and
Commercial	Points of View - Contract Formation and Interpretation - Potential Contractua	1 Problems
- World Bar	nk Procedures and Guidelines – Transparency in Tenders Act.	
UNIT-III	ARBITRATION	9
Comparison	of Actions and Laws - Agreements - Subject Matter - Violations - Appoint	ntment of
Arbitrators	- Conditions of Arbitration - Powers and Duties of Arbitrator - Rules of E	vidence –
Enforcemen	t of Award – Costs	
UNIT-IV	LEGAL REQUIREMENTS	9
Insurance as	nd Bonding - Laws Governing Sale, Purchase and Use of Urban and Rural La	and – Land
Revenue Co	des - Tax Laws - Income Tax, Sales Tax, Excise and Custom Duties and their	r Influence
on Construc	etion Costs - Legal Requirements for Planning - Property Law - Agency La	ıw – Local
Government	: Laws for Approval – Statutory Regulations	
UNIT-V	LABOUR REGULATIONS	9
Social Secu	rity - Welfare Legislation - Laws relating to Wages, Bonus and Industria	l Disputes,
Labour Adn	ninistration- Insurance and Safety Regulations - Workmen's Compensation A	ct – Indian
Factory Act	- Tamil Nadu Factory Act - Child Labour Act - Other Labour Laws	
<u>*</u>	TOTAL: 45	PERIODS

- 1. Jimmie Hinze, Construction Contracts, Second Edition, McGraw Hill, 2010
- 2. Gajaria G.T., Laws Relating to Building and Engineering Contracts in India, M.M.Tripathi Private Ltd., Bombay, 1982

REFERENCE(S)

- 1. Tamilnadu PWD Code, 1986
- 2. Joseph T. Bockrath, Contracts and the Legal Environment for Engineers and Architects, Sixth Edition, McGraw Hill, 2000.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester						
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2					
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail								

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2		3			2	2	3				1	1			3
CO2	3		2			3		3		1	2		1			3
CO3						3		2		1	1					2
CO4						3		2								2
CO5						3		2	1	1	2					3

12CE7H	INTRODUCTION TO SOIL DYNAMICS AND MA	CHINE	L	T	P	C
	FOUNDATIONS					
			3	0	0	3
Programme:	B.E Civil Engineering	Sem:	VII			
Category:	Elective					
Prerequisites:	12CE55- Geotechnical Engineering –II(CR), 12CE41- G	eotechnica	al Eng	gineer	ring -	I
Aim:	The aim of this course is to make the stude	ents to har	ve kr	owle	dge	about
	dynamic response of soil for machines.					
Course	 At the end of this program the, student is expected 	to assess	the dy	/nami	ic	
Objectives:	properties of soil and various design parame	eters requi	red f	or th	ne	
	design of machine foundation as well as design	ign of fou	ındati	on fo	or	
	various reciprocating machines.					
Course	1. Classify the elements vibration with and without dam	nping on S	DOF			
Outcomes:	2. Analyze waves, wave propagation in an elastic home	geneous i	sotrop	oic m	ediun	n
	3. Determine dynamic properties of soil considering ela	astic prope	rty.			
	4. Design foundations for reciprocating machines,	impact lo	oads	- ro	tary	type
	machines.					
	5. Explain vibration isolation technique, foundation iso	lation and	isolat	ion T	estin	g.

UNIT I	INTRODUCTION	9
Vibration	of elementary systems-vibratory motion-single degree freedom system-free and	forced vibration
with and w	rithout damping	
UNIT II	WAVES AND WAVE PROPAGATION	9
Wave prop	pagation in an elastic homogeneous isotropic medium- Raleigh, shear and com	pression waves-
waves in e	lastic half space	
UNIT III	DYNAMIC PROPERTIES OF SOILS	9
Elastic pro	operties of soils-coefficient of elastic, uniform and non-uniform compression -	- shear effect of
vibration d	issipative properties of soils-determination of dynamic properties of soil codal pro-	visions
UNIT IV	DESIGN PROCEDURES	9
Design cri	teria -dynamic loads - simple design procedures for foundations under reciproca	ating machines -
machines p	producing impact loads - rotary type machines	
UNIT V	VIBRATION ISOLATION	9
Vibration	isolation technique-mechanical isolation-foundation isolation-isolation by locat	ion isolation by
barriers- ac	ctive passive isolation tests.	
	TOTA	L: 45 PERIODS

- 1. S.Prakesh & V.K Puri, Foundation for machines, McGraw-Hill 2004
- 2. Swamisaran, "Soil Dynamics and Machine Foundations", Galgotia Publications Pvt. Ltd., 2002

REFERENCE(S)

- 1. Kramar S.L, "Geotechnical Earthquake Engineering", Prentice Hall International series, Pearson Education (Singapore) Pvt. Ltd.
- 2. Kameswara Rao, "Dynamics Soil Tests and Applications", Wheeler Publishing, New Delhi, 2003
- 3. Kameswara Rao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, New Delhi, 1998
- 4. IS code of Practice for Design and Construction of Machine Foundations, McGraw-Hill, 1996.
- 5. Moore P.J., "Analysis and Design of Foundation for Vibration", Oxford and IBH, 1995.
- 6. Srinivasulu, P & Vaidyanathan, Hand book of Machine Foundations, McGraw-Hill, 1996

	Con	tinuous Assessment (25)	End Semester							
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2						
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail									

Course	Program Outcomes (POs)										Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2										3			
CO2	2	3	1										2	1		
СОЗ	2			3	2								2	3		
CO4	3	2	3										3	1		
CO5	2	1		2	3								2		3	

12CE7I	ROCK ENGINEERING		L	T	P	С						
			3	0	0	3						
Programme:	B.E. Civil Engineering	B.E. Civil Engineering Sem: VII										
Category:	Eletive											
Prerequisites:	12CE31- Applied Geology											
Aim:	The aim of this course is to make the students to have	knowled	ge ab	out n	necha	nics						
	of rocks.											
Course	• Student gains the knowledge on the mechanic	es of ro	ck a	nd i	ts							
Objectives:	applications in underground structures and 1	rock slop	e st	abilit	y							
	analysis.											
Course	1. Classify the Geological and Index properties of rock	system.										
Outcomes:	2. Discriminate basic elements in rock structure and strain.	behaviou	ır un	der s	tress	and						
	3. Estimate stresses in rocks, influence of joints and the of stresses.	eir orienta	ation	in di	stribu	ition						
	4. Identify Simple engineering application, Undergro Foundations and mining subsidence.											
	5. Examine Rock bolt systems, rock bolt installation tech	nniques a	nd Te	esting								

UNIT I	CLASSIFICATION AND INDEX PROPERTIES OF ROCKS	9
Geological	classification - Index properties of rock systems - Classification of rock	masses for
engineering	purpose.	
UNIT II	ROCK STRENGTH AND FAILURE CRITERIA	9
Modes of ro	ock failure - Strength of rock - Laboratory and field measurement of shear,	tensile and
compressive	strength - Stress strain behaviour in compression - Mohr-coulomb failure	criteria and
empirical cri	teria for failure – Deformability of rock.	
UNIT III	INITIAL STRESSES AND THEIR MEASUREMENTS	9
Estimation of	of initial stresses in rocks - influence of joints and their orientation in dist	ribution of
stresses – teo	chnique for measurements of insitu stresses.	
UNIT IV	APPLICATION OF ROCK MECHANICS IN ENGINEERING	9
Simple engi	neering application - Underground openings - Rock slopes - Foundations a	and mining
subsidence.		
UNIT V	ROCK BOLTING	9
Introduction	- Rock bolt systems - rock bolt installation techniques - Testing of rock bolts -	- Choice of
rock bolt bas	sed on rock mass condition.	
	TOTAL: 45	PERIODS

- 1. Goodman P.E., "Introduction to Rock Mechanics", John Wiley and Sons, 2006.
- 2. Brow E.T., "Rock Characterisation Testing and Monitoring", Pergaman Press, 2000.

REFERENCES

- 1. Arogyaswamy R.N.P., "Geotechnical Application in Civil Engineering", Oxford and IBH, 1991.
- 2. Hock E. and Bray J., "Rock Slope Engineering, Institute of Mining and Metallurgy", 1991.
- 3. Stillborg B., "Professional User Handbook for rock Bolting", Tran Tech Publications, 1996.

	Con	tinuous Assessment (25)	End Semester							
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% a	nd above – 10, 86-90	% - 8, 81-85%	- 6, 76-80% - 4, 7	5% - 2						
Grade Criteria	S(90-100),	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail									

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12						PSO1	PSO2	PSO3	PSO4					
CO1	2	2		1									2			
CO2	3			2	2								3			
CO3	2	3			2								3			
CO4	2	1	3										3			
CO5	2			2	3								3		1	

12CE7J	ENVIRONMENTAL IMPACT ASSESSMENT OF ENGINEERING PROJECTS	CIVIL	L	T	P	С						
			3	0	0	3						
Programme:	B.E. Civil Engineering	Sem:		V	'II							
Category:	Elective											
Prerequisites:	12CE64- Environmental Engineering-II, 12CE54- Enviro	onmental l	Engin	eerin	g –I							
Aim:	The aim of this course is to make the students a	ware envi	ronm	ental	effe	ct of						
	construction practice and its assessment.											
Course	This subject deals with the various impacts of :	infrastruct	ure p	rojec	ts							
Objectives:	on the components of environment and metal	hod of as	sessii	ng th	ne							
	impact and mitigating the same. The student											
	about the various impacts of development pro	jects on e	enviro	nmei	nt							
	and the mitigating measures.											
Course	1. Define the basics and importance of Environmental	•		nent.								
Outcomes:	2. Explain the Environmental Impact Statement and me		EIA.									
	3. Examine the methodologies in EIA and Prediction M	lethods.										
	4. Explain the Environmental Management Plan.											
		5. Have broad education necessary to understand the impact of engineering solutions										
	in global, economic, environmental and social conte	xt.										

UNIT I	INTRODUCTION	9
Impact of	development projects under Civil Engineering on environment - Environmen	tal Impact
Assessment	t (EIA) - Environmental Impact Statement (EIS) - EIA capability and limitation	ns – Legal
provisions of	on EIA	
UNIT II	METHODOLOGIES	9
Methods of	EIA - Check lists - Matrices - Networks - Cost-benefit analysis - Analysis of al	ternatives
UNIT III	PREDICTION AND ASSESSMENT	9
Assessment	t of Impact on land, water and air, noise, social, cultural flora and fauna; Ma	thematical
models; pul	blic participation – Rapid EIA	
UNIT IV	ENVIRONMENTAL MANAGEMENT PLAN	9
Plan for mi	tigation of adverse impact on environment – options for mitigation of impact on	water, air
and land, fl	ora and fauna; Addressing the issues related to the Project Affected People – ISO	14000
UNIT V	CASE STUDIES	9
EIA for inf	rastructure projects – Bridges – Stadium – Highways – Dams – Multi-storey E	Buildings –
Water Supp	oly and Drainage Projects	
	TOTAL: 45	PERIODS

- 1. Canter, R.L., "Environmental Impact Assessment", McGraw-Hill Inc., New Delhi, 2005.
- 2. John G. Rau and David C Hooten (Ed)., "Environmental Impact Analysis Handbook", McGraw-Hill Book Company, 2000.

REFERENCES

- 1. "Environmental Assessment Source book", Vol. I, II & III. The World Bank, Washington, D.C., 1991.
- 2. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I & II", Blackwell Science, 1999.
- 3. Shukla, S.K. and Srivastava, P.R., "Concepts in Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester							
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]						
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2						
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail									

Course		Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1					3	3					2				3
CO2		3	2				3					2				3
CO3						3	2	1				2			1	3
CO4		2			2		3					2	1	1		3
CO5		2	2				3					1	1			3

12CE7K	INDUSTRIAL WASTE MANAGEMENT		L	T	P	C							
			3	0	0	3							
Programme:	B.E. Civil Engineering VII												
Category	Elective												
Prerequisites:	12CE64- Environmental Engineering-II, 12CE54- Environmental Engineering –I												
Aim:	The aim of this course is to make the students aware of industrial waste and its proper												
	disposal.												
Course	This subject deals with the pollution from major industries and												
Objectives:	methods of controlling the same. The student is expected to know												
	about the polluting potential of major industries	in the cour	ntry a	and th	ie								
	methods of controlling the same.												
Course	1. Differentiate types of industries and industrial pollut	ion.											
Outcomes:	2. Identify Waste management approach.												
	3. Construct waste treatment flow sheets for selected in	dustries.											
	4. Compare Equalisation and Neutralisation.												
	5. Construct secure landfills.				* *								

Types of industries and industrial pollution – Characteristics of industrial wastes – Population equivalent – Bioassay studies – effects of industrial effluents on streams, sewer, land, sewage treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes UNIT II CLEANER PRODUCTION 9 Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications. UNIT III POLLUTION FROM MAJOR INDUSTRIES 9 Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants, Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts
treatment plants and human health – Environmental legislations related to prevention and control of industrial effluents and hazardous wastes UNIT II CLEANER PRODUCTION 9 Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications. UNIT III POLLUTION FROM MAJOR INDUSTRIES 9 Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
industrial effluents and hazardous wastes UNIT II CLEANER PRODUCTION 9 Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications. UNIT III POLLUTION FROM MAJOR INDUSTRIES 9 Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications. UNIT III POLLUTION FROM MAJOR INDUSTRIES 9 Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
Waste management Approach – Waste Audit – Volume and strength reduction – Material and process modifications – Recycle, reuse and byproduct recovery – Applications. UNIT III POLLUTION FROM MAJOR INDUSTRIES 9 Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
modifications – Recycle, reuse and byproduct recovery – Applications. UNIT III POLLUTION FROM MAJOR INDUSTRIES 9 Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
UNIT III POLLUTION FROM MAJOR INDUSTRIES 9 Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
Tanneries, Pharmaceuticals, Electroplating industries, Dairy, Sugar, Paper, distilleries, Steel plants,
Refineries, fertilizer, thermal power plants – Wastewater reclamation concepts
UNIT IV TREATMENT TECHNOLOGIES 9
Equalisation – Neutralisation – Removal of suspended and dissolved organic solids – Chemical
oxidation – Adsorption - Removal of dissolved inorganics – Combined treatment of industrial and
municipal wastes – Residue management – Dewatering – Disposal
UNIT V HAZARDOUS WASTE MANAGEMENT 9
Hazardous wastes - Physico chemical treatment – solidification – incineration – Secure land fills
TOTAL: 45 PERIODS

- 1. W .W. Eckenfelder Jr., "Industrial Water Pollution Control", McGraw-Hill Book Company, New Delhi, 2006.
- 2. T.T.Shen, "Industrial Pollution Prevention", Springer, 2005.

REFERENCES

- 1. R.L.Stephenson and J.B.Blackburn, Jr., "Industrial Wastewater Systems Hand book", Lewis Publisher, New Yark, 1998
- 2. H.M.Freeman, "Industrial Pollution Prevention Hand Book", McGraw-Hill Inc., New Delhi, 1995.
- 3. Bishop, P.L., "Pollution Prevention: Fundamental & Practice", McGraw-Hill, 2000.
- 4. M.N.Rao & A.K.Dutta, "Wastewater Treatment", Oxford IBH Publication, 1995.

Evaluation Criteria & Marks	Con	tinuous Assessment (End Semester							
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% a	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100),	A(80-89), B(70-79),	C(60-69), D(55	5-59), E(50-54), U	(<50)-Fail					

Course		Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		2		1		2	3						1			3
CO2		2		2		1	3						1			3
CO3		2	3		2	2	3						2			3
CO4		2			3		2							1	1	3
CO5		1			2	2	3								1	3

12CE7L	AIR POLLUTION MANAGEMENT		L	T	P	C				
			3	0	0	3				
Programme:	B.E. Civil Engineering Sem: VII									
Category:	Elective									
Prerequisites:	12GE31-Environmental Science and Engineering									
Aim:	The aim of this course is to make the students aware of air pollution and its									
	management.									
Course	 This subject covers the sources, characteristics and effects of air and 									
Objectives:	noise pollution and the methods of controlling the same. The student									
	is expected to know about source inventory and control mechanism.									
Course	1. Classify the sources of air pollutants and methods of	controllin	ıg.							
Outcomes:	2. Identify the sources of sampling and techniques.									
	3. Illustrate the dispersion of pollutants and plume rise.									
	4. Compute the gaseous pollutant control by adsorpti	on, absor	ption	, con	dens	ation				
	and combustion.									
	5. Define the environmental impact assessment and	air qualit	y an	d sou	ırces	and				
	control method of noise pollution.									

UNIT I	SOURCES AND EFFECTS OF AIR POLLUTANTS	9						
Classification	n of air pollutants - Particulates and gaseous pollutants - Sources of air pollut	ion – Source						
inventory – I	Effects of air pollution on human beings, materials, vegetation, animals - glob	oal warming-						
ozone layer	depletion, Sampling and Analysis – Basic Principles of Sampling – Source	and ambient						
sampling – A	Analysis of pollutants – Principles.							
UNIT II	DISPERSION OF POLLUTANTS	9						
Elements of atmosphere – Meteorological factors – Wind roses – Lapse rate – Atmospheric stability								
and turbulence	ce - Plume rise - Dispersion of pollutants - Dispersion models - Applications	•						
UNIT III	AIR POLLUTION CONTROL	9						
Concepts of	Concepts of control – Principles and design of control measures – Particulates control by gravitational,							
centrifugal, f	iltration, scrubbing, electrostatic precipitation – Selection criteria for equipme	ent - gaseous						
pollutant cor	ntrol by adsorption, absorption, condensation, combustion - Pollution control	l for specific						
major industr	ries.							
UNIT IV	AIR QUALITY MANAGEMENT	9						
Air quality s	tandards - Air quality monitoring - Preventive measures - Air pollution con	trol efforts –						
Zoning – To	wn planning regulation of new industries - Legislation and enforcement - En	nvironmental						
Impact Asses	ssment and Air quality							
UNIT V	NOISE POLLUTION	9						
Sources of no	oise pollution – Effects – Assessment - Standards – Control methods – Preven	tion						
	TOTAL: 45 PERIODS							

- 1. Rao M.N., and Rao H. V. N., Air Pollution Control, Tata-McGraw-Hill, New Delhi, 2005.
- 2. W.L.Heumann, Industrial Air Pollution Control Systems, McGraw-Hill, New Yark, 2003.

REFERENCES

- 1. Mahajan S.P., Pollution Control in Process Industries, Tata McGraw-Hill Publishing Company, New Delhi, 1991.
- 2. Peavy S.W., Rowe D.R. and Tchobanoglous G. Environmental Engineering, McGraw Hill, New Delhi, 1985.
- 3. Garg, S.K., "Environmental Engineering Vol. II", Khanna Publishers, New Delhi

- 4. Mahajan, S.P., "Pollution Control in Process Industries", Tata McGraw-Hill, New Delhi, 1991.
- 5. Anjaneyulu, D., "Air Pollution and Control Technologies", Allied Publishers, Mumbai, 2002.
- 6. Rao, C.S. Environmental Pollution Control Engineering, Wiley Eastern Ltd., New Delhi, 1996.

Evaluation Criteria & Marks	Con	tinuous Assessment (End Semester							
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% a	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100),	A(81-89), B(71-80),	C(61-70), D(56	5-60), E(50-55), U	(<50)-Fail					

Course		Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	2				2	3									3
CO2	2	2			1	1	3					1				3
СОЗ	2		2			3	2		1				1			3
CO4	1					2	2		1						1	3
CO5	1					3	2		1							3

12CE7M	MUNICIPAL SOLID WASTE MANAGEMEN	T	L	T	P	C					
			3	0	0	3					
Programme:	B.E. Civil Engineering	Sem:		7	/II						
Category	Elective										
Prerequisites:	12CE64- Environmental Engineering-II, 12CE54- Environmental Engineering –I										
Aim:	The aim of this course is to make the students to understand the method of managing the solid waste.										
Course Objectives:	 This subject covers the various sources and characterization of municipal solid wastes and the on-site/off-site processing of the same and the disposal methods. The student is expected to know about the various effects and disposal options for the municipal solid waste. 										
Course Outcomes:	 Describe about the part of broader urbanization prob Identify operational guidelines for the efficient muni system Explain the types of solid waste and its characteristic Summarize about the principle of solid waste manag Analyse the public health and economic aspects of solutions for options under Indian conditions for wastes 	cipal solices. es. ement. of onsite s	torag	e an	d dev	/elop					

UNIT I SOURCES AND TYPES OF MUNICIPAL SOLID WASTES	9					
Sources and types of solid wastes - Quantity - factors affecting generation of so	olid wastes;					
characteristics - methods of sampling and characterization; Effects of improper dispos	sal of solid					
wastes - public health effects. Principle of solid waste management - social & econon	nic aspects;					
Public awareness; Role of NGOs; Legislation.						
UNIT II ON-SITE STORAGE & PROCESSING	9					
On-site storage methods – materials used for containers – on-site segregation of solid was	tes – public					
health & economic aspects of storage - options under Indian conditions - Critical Ev	aluation of					
Options.						
UNIT III COLLECTION AND TRANSFER	9					
Methods of Collection - types of vehicles - Manpower requirement - collection rout	es; transfer					
stations – selection of location, operation & maintenance; options under Indian conditions.						
UNIT IV OFF-SITE PROCESSING	9					
Processing techniques and Equipment; Resource recovery from solid wastes - of	composting,					
incineration, Pyrolysis - options under Indian conditions.						
UNIT V DISPOSAL	9					
Dumping of solid waste; sanitary landfills – site selection, design and operation of sanitary landfills –						
Leachate collection & treatment						
TOTAL: 45	PERIODS					

1. George Tchobanoglous et.al., "Integrated Solid Waste Management", McGraw-Hill Publishers, 2004.

2. B.Bilitewski, G.HardHe, K.Marek, A.Weissbach, and H.Boeddicker, "Waste Management", Springer, 2001.

REFERENCES

1. Manual on Municipal Solid Waste Management, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 2000

- 2. R.E.Landreth and P.A.Rebers, "Municipal Solid Wastes problems and Solutions", Lewis Publishers, 1997.
- 3. Bhide A.D. and Sundaresan, B.B., "Solid Waste Management in Developing Countries", INSDOC, 1993.

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% a	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100),	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail							

Course	Program Outcomes (POs)										ogram Specific atcomes (PSOs)				
Outcomes					PO12	PSO1	PSO2	PSO3	PSO4						
CO1						3	2								3
CO2			2			2	3		1			2			3
СОЗ						2	3		1						3
CO4						2	3		1						3
CO5			2		1	3	2					2			3

12CE7N	ECOLOGICAL ENGINEERING		L	T	P	C				
		3	0	0	3					
Programme:	B.E. Civil Engineering	Sem:		V	ΊΙ					
Category:	Elective									
Prerequisites:	12GE31-Environmental Science and Engineering									
Aim:	The aim of this course is to make the students aware	of about	vari	ous (effect	ts of				
	industrialization on environment.									
Course	This subject deals with the scope and applic	ations of	ecol	logica	al					
Objectives:	principles for wastewater treatment and reuse.	principles for wastewater treatment and reuse.								
	The student is expected to be aware of the	e various	effe	cts c	of					
	industrialization on ecology and ecological base	ed waste	purif	catio	n					
	methods.									
Course	1. Differentiate Scope and applications of Ecological En	ngineering	<u>.</u>							
Outcomes:	2. Describe Energy flow and nutrient cycling.									
	3. Construct Root Zone Treatment for wastewater.									
		4. Compare Ecological effects of exploration and production.								
	5. Construct integrated ecological engineering systems.									

UNIT I	PRINCIPLES AND CONCEPTS	9					
Scope and	applications of Ecological Engineering - Development and evolution of eco	osystems –					
principles ar	principles and concepts pertaining to species, populations and community						
UNIT II	ECOSYSTEM FUNCTIONS	10 hrs					
Energy flow	and nutrient cycling - Food chain and food webs - biological magnification, di	versity and					
stability, im	mature and mature systems. Primary productivity - Biochemical cycling o	f nitrogen,					
phosphorous	s, sulphur and carbon dioxide; Habitat ecology - Terrestrial, fresh water, est	tuarine and					
marine habit	ats.						
UNIT III	ECOLOGICAL ENGINEERING METHODS	9					
Bio monitor	ing and its role in evaluation of aquatic ecosystem; Rehabilitation of ecosystem	ms through					
ecological p	rinciples - step cropping, bio-wind screens, Wetlands, ponds, Root Zone Tre	eatment for					
wastewater,	Reuse of treated wastewater through ecological systems.						
UNIT IV	ECOLOGICAL EFFECTS OF INDUSTRIALISATION	9					
Ecological e	ffects of exploration, production, extraction, processing, manufacture & transpo	rt.					
UNIT V	CASE STUDIES	8 hrs					
Case studies	of integrated ecological engineering systems	·					
	TOTAL: 45	PERIODS					

TEXT BOOKS

- 1. Odum, E.P., "Fundamental of Ecology", W.B.Sauders, 2000.
- 2. Mitch, J.W. and Jorgensen, S.E., Ecological Engineering An Introduction to Ecotechnology, John Wiley and Sons, 2002.

REFERENCES

- 1. Colinvaux, P., Ecology, John Wiley and Sons, 1996.
- 2. Etnier, C & Guterstam, B., "Ecological Engineering for Wastewater Treatment", 2nd Edition, Lewis Publications, London, 1996.
- 3. Kormondy, E.J., "Concepts of Ecology", Prentice Hall, New Delhi, 1996

Evaluation Criteria &	Con	tinuous Assessment (25)	End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% ar	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2				
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail							

Course	Program Outcomes (POs)										ram Specific omes (PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1						3	2			1						3
CO2						3	3									3
CO3						3	2			2						3
CO4				1		3	3									3
CO5						3	2									3

12CE8A	BRIDGE STRUCTURES		L	T	P	C
		3	0	0	3	
Programme:	B.E. Civil Engineering	Sem:		V	III	
Category	Elective					
Prerequisites:	12CE56-Design of RC Elements					
AIM:	The aim of this course is to make the students to design the	ne various	type	s of b	ridge	es.
Course Objectives:	 At the end of this course the student shall appropriate bridge structure and design it for give 				se	
Course Outcomes:	 Examine the highway bridges for IRC loading, cross Explain about Design of part type truss girder highwa Describe the Design of solid slab bridges for IRC load Apply the Design of balanced cantilever bridges and Explain the Design of prestressed concrete bridge various sections. 	ny bridges ding and t deck slab	ee be - Ma	am b	ridge der	s.

UNIT I	INTRODUCTION	9
Design of thr	ough type steel highway bridges for IRC loading - Design of stringers, cross §	girders and
main girders	- Design of deck type steel highway bridges for IRC loading - Design of main g	girders
UNIT II	STEEL BRIDGES	9
Design of pra	tt type truss girder highway bridges - Design of top chord, bottom chord, web	members -
Effect of repe	eated loading - Design of plate girder railway bridges for railway loading - Wir	nd effects -
Design of we	b and flange plates - Vertical and horizontal stiffeners.	
UNIT III	REINFORCED CONCRETE SLAB BRIDGES	9
Design of sol	id slab bridges for IRC loading - Design of kerb - Design of tee beam bridges -	- Design of
panel and can	tilever for IRC loading	_
UNIT IV	REINFORCED CONCRETE GIRDER BRIDGES	9
Design of tee	e beam - Courbon's theory - Pigeaud's curves - Design of balanced cantileve	r bridges -
Deck slab - N	Iain girder - Design of cantilever - Design of articulation.	
UNIT V	PRESTRESSED CONCRETE BRIDGES	9
Design of pre	estressed concrete bridges - Preliminary dimensions - Flexural and torsional pa	arameters -
Courbon's the	eory - Distribution coefficient by exact analysis - Design of girder section - Max	ximum and
minimum pre	estressing forces - Eccentricity - Live load and dead load shear forces - cab	ole zone in
girder –Checl	k for stresses at various sections - Check for diagonal tension - Diaphragms - E	End block -
Short term an	d long term deflections.	
	TOTAL: 45	PERIODS

TEXT BOOKS

- 1. Johnson Victor D., "Essentials of Bridge Engineering", Oxford and IBH Publishing Co., New Delhi, 2002.
- 2. Phatak D.R., "Bridge Engineering", Satya Prakashan, New Delhi, 2000.

REFERENCES

- 1. Ponnuswamy S., "Bridge Engineering", Tata McGraw-Hill, New Delhi, 1996.
- 2. Rajagopalan, N.Bridge Superstructure, Alpha Science International, 2006

Evaluation Criteria &	Con	ntinuous Assessment (25)	End Semester					
	Assess.Tests (60%)	Assign/Seminar/ Miniproject (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% a	nd above – 10, 86-90	- 6, 76-80% - 4, 7	5% - 2					
Grade Criteria	S(90-100),	S(90-100), A(80-89), B(70-79), C(60-69), D(55-59), E(50-54), U (<50)-Fail							

Course									rogram Specific utcomes (PSOs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	1	-	-	-	1	-	-	-	2	2	-	2	-
CO2	3	2	3	1	-	-	-	1	-	-	-	2	2	-	2	-
CO3	3	2	3	1	-	-	-	1	-	-	-	2	2	-	2	-
CO4	3	2	3	1	-	-	-	1	-	-	-	2	2	-	2	-
CO5	3	2	3	1	-	-	-	1	-	-	-	2	2	-	2	-

12CE8B	STORAGE STRUCTURES		L	T	P	C			
			3	0	0	3			
Programme:	B.E. Civil Engineering	Sem:		7	VIII				
Category:	Elective								
Prerequisites:	12CE62-Design of Steel Structures								
Aim:	The aim of this course is to make the students aware structures.	about th	e des	ign (of sto	rage			
Course Objectives:	designing structures which have to store different type	designing structures which have to store different types of materials. The student at the end of the course shall be able to design concrete and							
Course Outcomes:	 Differentiate longitudinal and transverse beams. Identify Hoop tension and calculating shear forces at Construct square bunker and cylindrical silo. Compare Top and bottom edge beams. Construct of pre-stressed concrete circular water tank 		ts.						

UNIT I STEEL WATER TANKS	12
Design of rectangular riveted steel water tank - Tee covers - Plates - Stays -Longitud	linal and
transverse beams – Design of staging – Base plates – Foundation and anchor bolts – Design o	f pressed
steel water tank – Design of stays – Joints – Design of hemispherical bottom water tank – side	e plates –
Bottom plates – joints – Ring girder – Design of staging and foundation.	_
UNIT II CONCRETE WATER TANKS	12
Design of Circular tanks – Hinged and fixed at the base – IS method of calculating shear for	orces and
moments – Hoop tension – Design of intze tank – Dome – Ring girders – Conical dome – S	Staging –
Bracings - Raft foundation - Design of rectangular tanks - Approximate methods and IS m	nethods -
Design of underground tanks – Design of base slab and side wall – Check for uplift.	
UNIT III STEEL BUNKERS AND SILOS	7 hrs
Design of square bunker – Jansen's and Airy's theories – IS Codal provisions – Design of side	e plates –
Stiffeners - Hooper - Longitudinal beams - Design of cylindrical silo - Side plates - Ring	girder –
stiffeners.	
UNIT IV CONCRETE BUNKERS AND SILOS	7 hrs
Design of square bunker – Side Walls – Hopper bottom – Top and bottom edge beams – I	Design of
cylindrical silo – Wall portion – Design of conical hopper – Ring beam at junction	
UNIT V PRESTRESSED CONCRETE WATER TANKS	7 hrs
Principles of circular prestressing – Design of prestressed concrete circular water tanks	
TOTAL: 45 Pl	ERIODS

TEXT BOOKS									
1. Krishna Raju N	I., Advance	ed Reinforced	Concrete I	Design,	CBS	Publishers	and	Distributors,	New
Delhi, 1998.									
REFERENCES									
1. Rajagopalan K.,	Storage St	ructures, Tata M	IcGraw-H	ill, New	Delh	i, 1998.			

	Con	tinuous Assessment (25)	End Semester				
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks			
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]			
Attendance Mark	91% a	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2						
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail						

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	2	-	-	1	1	-	-	-	3	3	1	2	-
CO2	3	2	3	2	-	-	1	1	-	-	-	3	3	1	2	-
CO3	3	2	3	2	-	-	1	1	-	-	-	3	3	1	2	-
CO4	3	2	3	2	-	-	1	1	-	-	-	3	3	1	2	-
CO5	3	2	3	2	-	-	1	1	-	-	-	3	3	1	2	-

12CE8C	DESIGN OF PLATE AND SHELL STRUCTUR	RES	L	T	P	C			
			3	0	0	3			
Programme:	B.E. Civil Engineering	Sem:		7	VIII				
Category:	Elective		•						
Prerequisites:	12CE71-Design of Reinforced Concrete & Brick Mason	y Structur	es						
Aim:	The aim of this course is to make the students to analyze	and desig	n the	plate	and	shell			
	structures.								
Course	At the end of this course the student shall under	stand the 1	udim	entar	y				
Objectives:	principles involved in the analysis and design of								
Course	1. Apply the structural mechanics approximations of me								
Outcomes:	2. Examine the equilibrium theories for analysis of 1	plates and	shel	1 stru	ıcture	es in			
	Civil Engineering applications								
	3. Perform critical Analysis and Design of Typical Shell								
	4. Define the various methods for analyzing grids for re		_						
	5. Determine the static, dynamic and non-linear motion of membrane, plate and shell								
	structures.								

UNIT I	THIN PLATES WITH SMALL DEFLECTION	9
Laterally lo conditions	aded thin plates – governing differential equations – Simply supported and fixed	d boundary
UNIT II	RECTANGULAR PLATES	9
Simply supp	ported rectangular plates – Navier's solution and Levy's method.	
UNIT III	THIN SHELLS	9
Classification	on of shells-structural actions – membrane theory	
UNIT IV	ANALYSIS OF SHELLS	9
Analysis of	spherical dome – cylindrical shells – folded plates	
UNIT V	DESIGN OF SHELLS	9
Design of s	pherical dome – cylindrical shells – folded plates	
	TOTAL: 45	PERIODS
TEXT BO	OKS	
•	K, A text book of Plate Analysis, Khanna Publishers, New Delhi, 2005.	
2. G.S. Ran	naswamy, Design and Construction of Shell Structures, CBS Plublishers, New De	elhi, 2001
REFEREN	CES	

- 1. Szilard R, Theory and analysis of plates, Prentice Hall Inc, 1995
- 2. Chatterjee B. K., Theory and Design of Concrete Shells, Oxford & IBH, New Delhi, 1998
- 3. Billington D. P., Thin Shell Concrete Structures, McGraw-Hill, 1995.
- 4. S. Timoshenko & S. Woinowsky Krieger, "Theory of Plates and Shells", McGraw Hill Book Company

	Con	tinuous Assessment (25)	End Semester					
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% a	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail							

Course												Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	1	1	-	1	1	-	-	-	1	3	-	1	1
CO2	3	2	3	1	1	-	1	1	-	-	-	1	3	-	1	1
CO3	3	2	3	1	1	-	1	1	-	-	-	1	3	-	1	1
CO4	3	3	3	1	1	-	1	1	-	-	-	1	3	-	1	1
CO5	3	2	3	1	1	-	1	1	-	-	-	1	3	-	1	1

12CE8D	TALL BUILDINGS		L	T	P	C
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:		7	VIII	
Category:	Elective					
Prerequisites:	12CE34- Building Materials and Construction Technique	es				
Aim:	The aim of this course is to make the students to have k tall buildings.	nowledge	abou	t the	desig	gn of
Course Objectives:	 At the end of this course the student should problems associated with large heights of structures (wind and earthquake and deflections of the structure). He should know the rudimentary principles of designer the existing course. 	s with respre).	pect to	o load	ds	
Course Outcomes:	 Describe the development of high rise building struction Apply the behaviour of shear walls under lateral load Explain the design of flat slab building structures and Examine the approximate design of Rigid Frame building Describe the deep beam systems and high rise support of the structures. 	ling. d tubular s ldings.	•		f buil	lding

UNIT I INTRODUCTION The Tall Building in the Urban Context - The Tall Building and its Support Structure - Development of High Rise Building Structures - General Planning Considerations. Dead Loads - Live Loads-Construction Loads -Snow, Rain, and Ice Loads - Wind Loads-Seismic Loading - Water and Earth Pressure Loads - Loads Due to Restrained Volume Changes of Material - Impact and Dynamic Loads - Blast Loads - Combination of Loads. UNIT II THE VERTICAL STRUCTURE PLANE 9 hrs Dispersion of Vertical Forces- Dispersion of Lateral Forces - Optimum Ground Level Space - Shear Wall Arrangement - Behavior of Shear Walls under Lateral Loading. The Floor Structure or Horizontal Building Plane Floor Framing Systems-Horizontal Bracing- Composite Floor Systems The High - Rise Building as related to assemblage Kits Skeleton Frame Systems - Load Bearing Wall Panel Systems - Panel - Frame Systems - Multistory Box Systems. COMMON HIGH-RISE BUILDING STRUCTURES AND THEIR 9 hrs UNIT III BEHAVIOUR UNDER LOAD The Bearing Wall Structure- The Shear Core Structure - Rigid Frame Systems- The Wall - Beam Structure: Interspatial and Staggered Truss Systems - Frame - Shear Wall Building Systems - Flat Slab Building Structures - Shear Truss - Frame Interaction System with Rigid - Belt Trusses - Tubular Systems-Composite Buildings - Comparison of High - Rise Structural Systems Other Design Approaches Controlling Building Drift Efficient Building Forms - The Counteracting Force or Dynamic Response. **UNIT IV** APPROXIMATE STRUCTURAL ANALYSIS AND DESIGN OF 9 hrs **BUILDINGS** Approximate Analysis of Bearing Wall Buildings The Cross Wall Structure - The Long Wall MStructure The Rigid Frame Structure Approximate Analysis for Vertical Loading - Approximate Analysis for Lateral Loading - Approximate Design of Rigid Frame Buildings-Lateral Deformation of Rigid Frame Buildings The Rigid Frame - Shear Wall Structure - The Vierendeel Structure - The Hollow Tube Structure. UNIT V OTHER HIGH-RISE BUILDING STRUCTURE 9 hrs Deep - Beam Systems - High-Rise Suspension Systems - Pneumatic High -Rise Buildings - Space Frame Applied to High - Rise Buildings - Capsule Architecture. **TOTAL: 45 PERIODS**

TEXT BOOKS

- 1. Bryan Stafford Smith and Alex Coull, "Tall Building Structures", Analysis and Design, John Wiley and Sons, Inc., 2001.
- 2. Coull, A. and Smith, Stafford, B. " Tall Buildings ", Pergamon Press, London, 2007.

REFERENCES

- 1. LinT.Y. and Burry D.Stotes, "Structural Concepts and Systems for Architects and Engineers", John Wiley, 1994.
- 2. Lynn S.Beedle, Advances in Tall Buildings, CBS Publishers and Distributors, Delhi, 1996.
- 4. Taranath.B.S., Structural Analysis and Design of Tall Buildings, Mc Graw Hill,1998.

	Con	tinuous Assessment (25)	End Semester					
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	7.5 2.5		75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% a	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2							
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail							

Course	Program Outcomes (POs)											Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	1	1	-	-	1	-	-	-	1	3	-	1	-
CO2	3	2	3	1	1	-	-	1	-	-	-	1	3	-	1	-
CO3	3	2	3	1	1	-	-	1	-	-	-	1	3	-	1	-
CO4	3	3	3	1	1	-	-	1	-	-	-	1	3	-	1	-
CO5	3	2	3	1	1	-	-	1	ı	-	ı	1	3	-	1	-

12CE8E	PREFABRICATED STRUCTURES		L	T	P	С
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:		7	VIII	
Category:	Elective					
Prerequisites:	12CE74-Prestressed Concrete Structure					
Aim:	The aim of this course is to make the students aware ab techniques.	out the pr	efabr	icated	d buil	ding
Course Objectives:	 At the end of this course the student shall be able to construction, industrialised construction and shall be of the prefabricated elements and also have the construction methods using these elements. 	e able to	desig	n son	ne	
Course Outcomes:	 Explain the prefabricated elements and the technol erection. Identify the production technologies used to making Design floors, stairs, roofs, walls and industrial build Examine the expansion & contraction joints in struc Design the loads for considering abnormal effects s etc. 	prefabrica ings, tural conr	ated s	tructı n	ıres.	

UNIT I	INTRODUCTION	9
Need for pre	fabrication – Principles – Materials – Modular coordination – Standarization –	Systems –
Production –	- Transportation – Erection.	
UNIT II	PREFABRICATED COMPONENTS	9
Behavior of	structural components - Large panel constructions - Construction of roof and fl	oor slabs –
Wall panels	– Columns – Shear walls	
UNIT III	DESIGN PRINCIPLES	9
Disuniting of	f structures- Design of cross section based on efficiency of material used - P	roblems in
design becau	se of joint flexibility – Allowance for joint deformation.	
UNIT IV	JOINT IN STRUCTURAL MEMBERS	9
Joints for dif	ferent structural connections – Dimensions and detailing – Design of expansion	joints
UNIT V	DESIGN FOR ABNORMAL LOADS	9
Progressive	collapse - Code provisions - Equivalent design loads for considering abnormal	mal effects
such as earth	equakes, cyclones, etc., - Importance of avoidance of progressive collapse.	
	TOTAL . 45	DEDIODC

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Gerostiza C.Z., Hendrikson C. and Rehat D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994
- 2. Koncz T., Manual of precast concrete construction, Vols. I, II and III, Bauverlag, GMBH, 1971.

REFERENCES

- 1. Structural design manual, Precast concrete connection details, Society for the studies in the use of precast concrete, Netherland Betor Verlag, 1978.
- 2. CBRI, Building materials and components, India, 1990

	Con	tinuous Assessment (End Semester							
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks					
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]					
Attendance Mark	91% a	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2								
Grade Criteria	S(90-100),	5-60), E(50-55), U	(<50)-Fail							

1	Program Outcom2es (POs)										1					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	1	1	2	1	-	-	1	-	-	2	2	2	-	2	1
CO2	3	2	3	2	1	-	-	1	-	-	1	2	2	-	2	1
CO3	3	2	3	2	1	ı	-	1	ı	-	-	2	2	-	2	1
CO4	3	2	3	2	1	-	-	1	-	-	-	2	2	-	2	1
CO5	3	2	3	2	1	-	-	1	-	-	-	2	2	-	2	1

12CE8F	WIND ENGINEERING		L	T	P	C
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:		7	VIII	
Category:	Elective					
Prerequisites:						
Aim:	The aim of this course is to make the students to have knowledge building considering the effect of dynamic loads of wind.	_	abou	t the	desig	gn of
Course Objectives:	 At the end of this course the student should be all forces generated on structures due to normal wind as He should also be able to analyze the dynamic effective wind forces. 	s well as g	gusts.			
Course Outcomes:	 Determine the wind speed using the wind data collect Apply the concept of effects of wind on structures. Determine the effects of wind on typical structures Design the forces on multistorey buildings, towers an Apply the concepts of wind tunnels on different mode 	d roof tru	sses.			

UNIT I	INTRODUCTION	9
	y – Wind Data – Gust factor and its determination - Wind speed variation with r – Aspect ratio – Drag and lift.	height N-
UNIT II	EFFECT OF WIND ON STRUCTURES	9
	z – Dynamic effect – Interference effects (concept only) – Rigid structure – zoncept only).	Aeroelastic
UNIT III	EFFECT ON TYPICAL STRUCTURES	9
Tail building	gs – Low rise buildings – Roof and cladding – Chimneys, towers and bridges.	
UNIT IV	APPLICATION TO DESIGN	9
Design force	es on multistorey building, towers and roof trusses.	
UNIT V	INTRODUCTION TO WIND TUNNEL	9
Types of mo	odels (Principles only) – Basic considerations – Examples of tests and their use.	
	TOTAL: 45	PERIODS
TEXT BOO	OKS	
	hs, "Wind Forces in Engineering, Pergamon Press, New York, 2002. rt A.G., "Wind Loads on Structures", Division of Building Research, Ottowa, 20	000.

REFERENCES

- 1. Wind Force on Structures Course Notes, Building Technology Centre, Anna University, 1995.
- 2. Lawson T.V., Wind Effects on Buildings, Vols. I and II, Applied Science and Publishers, London, 1993.

Evaluation Criteria &	Con	tinuous Assessment (End Semester						
	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks				
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]				
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2				
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail							

Course	Program Outcomes (POs)									Program Specific Outcomes (PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	-	-	2	-	-	-	1	-	-	1	1	-	-	1	-
CO2	1	1	-	1	-	-	-	1	ı	-	-	1	1	-	1	-
СОЗ	3	2	1	1	-	-	-	1	-	-	-	1	1	-	1	-
CO4	3	3	3	1	-	-	-	1	-	-	-	1	2	-	1	-
CO5	1	2	1	1	1	-	-	1	-	-	-	1	1	-	1	-

12CE8G	COMPUTER AIDED DESIGN OF STRUCTUR	E	L	T	P	C
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:		7	VIII	
Category:	Elective					
Prerequisites:	12F1Z5- Computing Fundamentals and C Programming					
Aim:	The aim of this course is to make the students aware of engineering.	software	appl	icatio	n in	civil
Course Objectives:	 The main objective of this programme is to train the computers and creating a computer code as well as available software for the design of Civil Engineerin 	using co	mme			
Course Outcomes:	 Identify the hardware and software requirement fo drawings. Apply the concepts to develop codes for RCC structures. Analyze and design R.C beam, column through computed the concepts to develop optimization programmed. Apply the concepts of CPM, PERT and artificial intel 	res. uter prog ne			desig	n of

UNIT I	INTRODUCTION	9
Fundamenta	ls of CAD - Hardware and software requirements -Design process - Applic	cations and
benefits.		
TINITE II	COMPUTER GRAPHICS	9
UNIT II		
Graphic prin	nitives - Transformations -Wire frame modeling and solid modeling –Graphic s	standards –
Drafting pac	kages	
UNIT III	STRUCTURAL ANALYSIS	9
Fundamenta	ls of finite element analysis - Principles of structural analysis - Analysis pac	ckages and
applications.		
UNIT IV	DESIGN AND OPTIMISATION	9
	DESIGN AND OPTIMISATION of design of steel and RC Structures -Applications to simple design p	
Principles of		
Principles of	of design of steel and RC Structures -Applications to simple design p	
Principles of Optimisation UNIT V	of design of steel and RC Structures -Applications to simple design per techniques - Algorithms - Linear Programming – Simplex method	roblems –
Principles of Optimisation UNIT V Introduction	of design of steel and RC Structures -Applications to simple design per techniques - Algorithms - Linear Programming – Simplex method EXPERT SYSTEMS	roblems –
Principles of Optimisation UNIT V Introduction	of design of steel and RC Structures -Applications to simple design position techniques - Algorithms - Linear Programming – Simplex method EXPERT SYSTEMS to artificial intelligence - Knowledge based expert systems -Rules and decision	roblems – 9 on tables –
Principles of Optimisation UNIT V Introduction	of design of steel and RC Structures -Applications to simple design per techniques - Algorithms - Linear Programming – Simplex method EXPERT SYSTEMS to artificial intelligence - Knowledge based expert systems -Rules and decision echanisms - Simple applications. TOTAL: 45	roblems – 9 on tables –

REFERENCES

1. Rao S.S., "Optimisation Theory and Applications", Wiley Eastern Limited, New Delhi, 1977.

2. Harrison H.B., "Structural Analysis and Design", Part I and II Pergamon Press, Oxford, 2000.

- 2. Richard Forsyth (Ed), "Expert System Principles and Case Studies", Chapman and Hall, London, 1989.
- 3. Groover M.P. and Zimmers E.W. Jr., "CAD/CAM, Computer Aided Design and Manufacturing", Prentice Hall of India Ltd, New Delhi, 1993.

	Con	tinuous Assessment (25)	End Semester			
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks		
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]		
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2		
Grade Criteria	S(90-100),	A(81-89), B(71-80),	89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-F				

Course Outcomes		Program Outcomes (POs)										Program Specific Outcomes (PSO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		3	2	3	2		1			2		1	2		3	2
CO2		3	2	3	2		1			1			1		2	3
CO3	1	3	2	3	3		1					1	1		2	2
CO4	1	3	2	3	3		1			2		1	1		3	2
CO5		3	2	3	3		1				2		2		1	2

12CE8H	INDUSTRIAL STRUCTURES		L	T	P	C
			3	0	0	3
Programme:	B.E. Civil Engineering	Sem:		7	VIII	
Category:	Elective					
Prerequisites:	12CE62-Design of Steel Structures					
Aim:	The aim of this course is to make the students to have a a industrial structures and its components.	ndequate k	cnowl	edge	abou	t the
Course Objectives:	 This course deals with some of the special aspects Engineering structures in industries. At the end of this course the student shall be able t structures. 	•				
Course Outcomes:	 Describe the planning and functional requirements of Learn about the design concepts and constructional a Analyse and evaluate the importance of various Industrial constructions Design portal frames, tower cranes and bracing syste Analyse and design structural elements used in prefabrication, erection and installation 	spects of is construction in Indu	Indus ction strial	trial s mate	struct erials lings.	for

UNIT I	PLANNING	9
	on of Industries and Industrial structures – General requirements for industries lid steel plants – Planning and layout of buildings and components.	ke cement,
UNIT II	FUNCTIONAL REQUIREMENTS	9
Lighting - V	Ventilation – Acoustics – Fire safety – Guidelines from factories act.	
UNIT III	DESIGN OF STEEL STRUCTURES	9
Industrial ro	ofs – Crane girders – Mill buildings – Design of Bunkers and Silos	
UNIT IV	DESIGN OF R.C. STRUCTURES	9
Silos and bu	nkers – Chimneys – Principles of folded plates and shell roofs	
UNIT V	PREFABRICATION	9
Principles o concrete uni	f prefabrication – Prestressed precast roof trusses- Functional requirements ts	for Precast
	TOTAL: 45	PERIODS
TEXT BOO	OKS	
	d Concrete Structural elements – P. Purushothaman. yaratnam – Design of Steel Structure – 2000.	

REFERENCES

- 1. Henn W. Buildings for Industry, vols.I and II, London Hill Books, 1995.
- 2. Handbook on Functional Requirements of Industrial buildings, SP32 1986, Bureau of Indian Standards, New Delhi 1990.
- 3. Course Notes on Modern Developments in the Design and Construction of Industrial Structures, Structural Engineering Research Centre, Madras, 1982.
- 4. Koncz, J, Manual of Precast Construction Vol I & II Bauverlay GMBH, 1971.

	Con	tinuous Assessment (25)	End Semester							
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks						
Marks	15	7.5	7.5 2.5		100 [Min Pass: 50]						
Attendance Mark	91% a	91% and above – 10, 85-90% - 8, 81-84% - 6, 76-80% - 4, 75% - 2									
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail									

Course Outcomes		Program Outcomes (POs) Program Specific Outcomes (PSO)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		3	2		2		2					1	1	2	1	3
CO2	1	2	3	1			2			2		1	2		3	1
CO3		1	3	2	1	1	1						3	1	2	2
CO4		1	3	2	1	1	1					1	2	1		2
CO5	1	1	3	2	2	2	3		1			1	1		1	3

12CE8I	SMART STRUCTURES AND SMART MATERIA	ALS	L	T	P	C								
			3	0	0	3								
Programme:	B.E. Civil Engineering	Sem:		7	VIII									
Category:	Elective													
Prerequisites:	12CE34- Building Materials and Construction Technique	S												
Aim:	The aim of this course is to make the students to underst	e aim of this course is to make the students to understand about the applications of												
	smart materials in structures.													
Course	This course is designed to give an insight into the latest developments													
Objectives:	regarding smart materials and their use in structures.													
	 Further, this also deals with structures which c 	an self	adjus	t the	ir									
	stiffness with load.													
Course	1. Differentiate instrumented structures functions and re	sponse.												
Outcomes:	2. Identify strain measuring techniques using electrical s													
	3. Construct Chemical and Bio-Chemical sensing in stru	ictural As	sessr	nent.										
	4. Compare Piezoelectric and Electrostrictive Material.													
	5. Construct Signal Processing and Control for Smart Structures.													

UNIT I INTRODUCTION Introduction to Smart Materials and Structures - Instrumented structures functions and response -Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors. **MEASURING TECHNIQUES** Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance Inductance - Wheatstone bridges - Pressure transducers - Load cells - Temperature Compensation -Strain Rosettes. UNIT III SENSORS 9 Sensing Technology-Types of Sensors - Physical Measurement using Piezo Electric Strain measurement - Inductively Read Transducers - The LVOT - Fiber optic Techniques. Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fiber Optic Chemical Sensing Systems and Distributed measurement. **ACTUATORS** 9 Actuator Techniques - Actuator and actuator materials - Piezoelectric and Electrostrictive Material -Magnetostructure Material - Shape Memory Alloys - Electro orheological Fluids- Electro magnetic actuation - Role of actuators and Actuator Materials. SIGNAL PROCESSING AND CONTROL SYSTEMS Data Acquisition and Processing - Signal Processing and Control for Smart Structures - Sensors as Geometrical Processors – Signal Processing – Control System – Linear and Non-Linear. **TOTAL: 45 PERIODS TEXT BOOKS** 1. Brain Culshaw – Smart Structure and Materials Artech House – Borton. London-2006. 2. L. S. Srinath – Experimental Stress Analysis – Tata McGraw-Hill, 2005.

REFERENCES

1. J. W. Dally & W. F. Riley – Experimental Stress Analysis – Tata McGraw-Hill, 1998.

	Con	tinuous Assessment (25)	End Semester								
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks							
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]							
Attendance Mark	91% a	nd above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2							
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail										

Course Outcomes		Program Outcomes (POs) Program Specific Outcomes (PSO)														
0	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		2	3	1	1		2			2		2		2		
CO2	1	2		3	3		1					1	1		3	2
CO3	1	1		3	3		1					1	1	2		2
CO4	1	1		3	2		1					1		2	3	
CO5	1	2		3	3		2			2		2	1		3	

12CE8J	FINITE ELEMENT TECHNIQUES		L	T	P	C							
			3	0	0	3							
Programme:	B.E. Civil Engineering	Sem:	VIII										
Category:	Elective												
Prerequisites:	12CE52- Structural Analysis – I, 12CE61- Structural Analysis - II												
Aim:	The aim of this course is to make the students to analyz element method.	e any stru	cture	thro	ugh f	inite							
Course Objectives:		At the end of this course the student shall have a basic knowledge of finite element method and shall be able to analyze linear elastic structures that he has											
Course Outcomes:	 Define the theoretical basis of the weighted residual 1 Implement the Galerkin residual weak formulated Method for the solution of Ordinary and Partial Differsolution. Select appropriate elements and formulate the structure the real behaviour. Compute the stiffness values of an 8-noded element. Perform finite element analysis using 2-D triangular. 	Finite Eler ion into terential Equation	he F uatio	inite ons y to	Ele: repro	duce							

UNIT I	INTRODUCTION – VARIATIONAL FORMULATION	9
General fie	ld problems in Engineering – Modelling – Discrete and Continuous	models -
	ics – Difficulties involved in solution – The relevance and place of the fini	
method - H	fistorical comments - Basic concept of FEM, Boundary and initial value p	oroblems –
Gradient and	d divergence theorems - Functionals - Variational calculus Variational form	nulation of
VBPS. The	method of weighted residuals – The Ritz method.	
UNIT II	FINITE ELEMENT ANALYSIS OF ONE DIMENSIONAL	10 hrs
UNITI	PROBLEMS	
One dimens	ional second order equations - discretisation of domain into elements - C	Generalised
	approach - derivation of elements equations - assembly of elements en	
	of boundary conditions - solution of equations - Cholesky method - Post pr	
	f the method to fourth order equations and their solutions - time dependant pro	oblems and
their solution	ns – example from heat transfer, fluid flow and solid mechanics.	
UNIT III	FINITE ELEMENT ANALYSIS OF TWO DIMENSIONAL PROBLEMS	10 hrs
Second orde	r equation involving a scalar-valued function - model equation - Variational f	ormulation
– Finite ele	ment formulation through generalised coordinates approach - Triangular ele	ements and
•	elements - convergence criteria for chosen models - Interpolation functions -	
matrices and	vectors – Assembly of element matrices – boundary conditions – solution techniques	niques.
UNIT IV	ISOPARAMETRIC ELEMENTS AND FORMULATION	8 hrs
	dinates in 1, 2 and 3 dimensions – use of area coordinates for triangular elem	
	problems – Isoparametric elements in 1,2 and 3 dimensional Largrangean and	
	formulations of elements equations in one and two dimensions - Numerical integrations	f e
UNIT V	APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSIONALS	8 hrs
	f elasticity – plane elasticity problems – axisymmetric problems in elasticity –	
	s - Time dependent problems in elasticity - Heat - transfer in two din	nensions –
incompressi	ble fluid flow	
	TOTAL: 45	PERIODS
TEXT BOO	OKS	

2. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl. Student Edition, 1985.

1. Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third

Edition, Prentice Hall, India, 2003.

REFERENCES

- 1. Zienkiewics, "The finite element method, Basic formulation and linear problems", Vol.1, 4/e, McGraw-Hill, Book Co.
- 2. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2003.
- 3. C.S.Desai and J.F.Abel, "Introduction to the Finite Element Method", Affiliated East West Press, 1972.

	Con	tinuous Assessment (25)	End Semester								
Evaluation Criteria & Marks	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks							
	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]							
Attendance Mark	endance 91% and above = 10 85-90% - 8 81-84% - 6 76-80% - 4 75% - 2											
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail										

Course Outcomes					Progr	am O	utcom	es (PC) s)					rogram	_	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	1	2	3		1	2	2			1		2	1		2	1
CO2		1	3	2	2	1	1			1		1	1		2	3
CO3	1	2				3	2			1		1	2		1	2
CO4		2								2		1	2		3	2
CO5		2				3	2					1	1	1		2

12CE8K	REPAIR AND REHABILITATION OF STRUCTU	JRES	L	T	P	C							
			3	0	0	3							
Programme:	B.E. Civil Engineering	Sem:		7	VIII								
Category:	Elective												
Prerequisites:	2CE34- Building Materials and Construction Techniques												
Aim:	The aim of this course is to make the students to asses find out the method of rehabilitation.	s the dist	resse	d bui	lding	and							
Course Objectives:		To get the knowledge on quality of concrete, durability aspects, causes of eterioration, assessment of distressed structures, repairing of structures and emolition procedures.											
Course Outcomes:	 Explain the causes of deterioration of concrete ar Apply the different non-destructive tests for asse structures. Identify repairing materials for strengthening of a Examine the different methods of repairing concrete. Demonstrate the different methods of strengthening 	existing strete and	f detestruct	erior aures struc	ation ctures								

UNIT I DURABILITY AND DETERIORATION

9

Physical causes - Introduction - Durability - Causes of distress in concrete structures - Shrinkage - Freezing and thawing - Weathering - Crazing - Swelling - Abrasion, Erosion and Cavitations on concrete - Temperature changes - Formwork movement - Settlement and movement - Foundation settlement - Construction & design errors - Chemical causes - Chemical attack on the concrete - Hydrolysis and Leaching on the concrete - Salt weathering - Soft water attack/aggressive water attack - Crystallization of salts in pores - Sea water attack on the concrete - Biological attack on the concrete - Mechanism of miscellaneous chemical attack - Corrosion - Basic principle of corrosion - Corrosion mechanism & process - Damages due to corrosion - Codal provisions for different exposure conditions - corrosion protection techniques - Relative symptoms to causes of distress and deterioration.

UNIT II DAMAGE ASSESSMENT

10 hrs

Destructive testing systems - Introduction - Purpose of assessment - Rapid assessment - Monitoring - Investigation of damage - Damage assessment procedure - Evaluation of the cracks - Destructive testing system - assessment - assessment of existing concrete structures - NDT methods - Recent development on NDT instruments - Semi-Destructive testing systems - Penetration techniques - Permeability test - Test for determination of cement content - water content and water cement ratio - Chemical testing of concrete - Diagnostic methods for corrosion damage - Investigation strategies - Detailed test and inspection techniques - Determination of structural integrity and location of reinforcement - Determination of steel serviceability and condition - Determination of concrete quality and composition

UNIT III | REPAIR MATERIALS

10 hrs

Selection and evaluation of repair materials - Introduction - Material selection - Classification of repair materials - Evaluation test for repair materials: Physical and mechanical strength test - Durability related tests - Miscellaneous tests - Test for surface quality and other tests - Function of repair materials - Patching materials - Resurfacing materials - Sealing materials - Water proofing materials - Bonding materials - Special repair materials - Chemical and mineral admixtures - Admixtures for rehabilitation - Polymeric materials - Organic polymers - Types of polymer concrete composites - Polymer repair materials - Fibre reinforced concrete - Behaviour of FRC with other fibres - Fibre reinforced polymer composites - FRP composite laminates - Ferrocement - SIFCON & SIMCON materials - Miscellaneous materials - Fulfils for the repair materials.

UNIT IV REPAIR AND REHABILITATION

8 hrs

Repair of cracks – Introduction – Durability of concrete repair – Evaluation of the repairs – Types and classification of repair – Methods of repair – Rehabilitation techniques - Replacement mortar – Replacement concrete - Replaced aggregate concrete – Shotcrete/Gunite – Grouting – Resin injection – Dry pack & Epoxy bonded dry pack – Sprayed concrete – Slab jacking technique – Tremie concrete – Chloride extraction and realkalisation of concrete – Cathodic protection – Member replacement - Strengthening techniques – Need for strengthening – Structure concrete strengthening – Strengthening with external reinforcements – Short spanning – External post tensioning – Section enlargement – Strengthening by SIMCON – Dam safety: Concrete repair techniques – Guidelines for seismic rehabilitation of existing buildings.

UNIT V MAINTENANCE AND DEMOLITION

8 hrs

Necessity and classification of maintenance - Introduction - Necessitate of the maintenance - Inspection periods - Background of maintenance - Maintenance processes - Maintenance procedure - Building maintenance - Steel work maintenance - Wood work maintenance - Inspection of building - Routine building maintenance - Departmental procedure for repairs of buildings - Integral maintenance of building - Safety in maintenance and demolition - Safety in maintenance - Safety in building maintenance - Demolition management - Concrete demolition - Review of advanced demolition techniques.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Dr.B. Vidivelli, Rehabilitation of Concrete Structures, Standard Publishers Distributors, 2007.
- 2. Denison Campbell, Allen and Harold Roper, Concrete Structures, Materials, Maintenance and Repair, Longman Scientific and Technical UK, 2001.
- 3. M.S.Shetty, Concrete Technology Theory and Practice, S.Chand and Company, New Delhi, 2000.

REFERENCES

- 1. Santhakumar, A.R., Training Course notes on Damage Assessment and repair in Low Cost Housing, "RHDC-NBO" Anna University, July 1992.
- 2. Raikar, R.N., Learning from failures Deficiencies in Design, Construction and Service R&D Centre (SDCPL), Raikar Bhavan, Bombay, 1987.
- 3. N.Palaniappan, Estate Management, Anna Institute of Management, Chennai, 1992.
- 4. Lakshmipathy, M. etal. Lecture notes of Workshop on "Repairs and Rehabilitation of Structures", 29 30th October 1999.s
- 5. R.T.Allen and S.C.Edwards, Repair of Concrete Structures, Blakie and Sons, UK, 1987.

	Con	tinuous Assessment (2	End Semester	Total Maulta									
Evaluation Criteria &	Assess.Tests (60%)	Assign/Seminar/ Miniproj (30%)	Attendance (10%)	Examination	Total Marks								
Marks	15	7.5	2.5	75 [Min Pass: 37]	100 [Min Pass: 50]								
Attendance Mark	91% a	and above – 10, 85-90	% - 8, 81-84%	- 6, 76-80% - 4, 7	5% - 2								
Grade Criteria	S(90-100),	S(90-100), A(81-89), B(71-80), C(61-70), D(56-60), E(50-55), U (<50)-Fail											

Course Outcomes					Program Specific Outcomes (PSO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		1	2	2	3	1	2			1		1	1		3	1
CO2		2		3	3	2	1			1		1	2		2	2
CO3		2	1		2		2			1		1	2		3	2
CO4	1			3		1						1	1		2	1
CO5	1		1	3	1	1						1		2	2	2