P.S. R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai) Sevalpatti (P.O), Sivakasi – 626140.

DEPARTMENT OF

CIVIL ENGINEERING

REGULATIONS 2019

CURRICULUM AND SYLLABI

FOR

M.E.STRUCTURAL ENGINEERING

PG - Structural Engineering

DEPARTMENT OF CIVIL ENGINEERING

VISION

The vision of the Civil Engineering Department is to produce the Civil Engineers to meet the dynamic problems in the society with human values.

MISSION

- > To provide high-class engineering education.
- > To join hands with organizations to provide training and internship.
- > To facilitate the students for research and development.
- > To deliver good Civil Engineering graduates with human values.

PROGRAM OUTCOMES (PO's) OF STRUCTURAL ENGINEERING

- a) An ability to independently carry out research/ investigation and development work to solve practical Problems in key areas of Structural Engineering.
- b) An ability to write and present a substantial report/document.
- c) Able to demonstrate Structural Engineering Problems critically in development project and find suitable solution.
- d) Graduate will show the understanding of impact of engineering solutions on the society and also will be aware of contemporary issues.
- e) Able to design a system, component or process as per needs and specifications.
- f) Able to use modern engineering tools, software and equipment to analyze problems.

PROGRAM SPECIFIC OUTCOMES (PSO's) OF STRUCTURAL ENGINEERING

- a) To motivate the graduate students to address the societal needs by interdisciplinary approach through advanced courses such as Finite Element Analysis, Plates & Shell structures, Structural Dynamics, Soil Dynamics, and allied courses.
- b) To enrich the graduate students to get hands on training on latest equipment / software to be industry ready / pursue advanced research.
- c) Engineers will be able to apply concepts for design/ test/implement /analysis system in the area related to civil engineering industry and society.
- d) Excel in the research innovation design and problem solving in structural engineering domain.

REGULATION – 2019 M.E. STRUCTURAL ENGINEERING CURRICULUM- I TO IV SEMESTER

SEMESTER-I

Sl. No.	Subject Code	Course Title	Category	L	Т	Р	С
Theory							
1	192SE11	Advanced Structural Analysis	PC	3	0	0	3
2	192SE12	Advanced Concrete Structures	PC	3	0	0	3
3	192SE13	Research Methodology and IPR	MC	3	0	0	3
4		Elective-I	PE	3	0	0	3
5		Elective-II	PE	3	0	0	3
6		Audit Course-I	MC	2	0	0	0
Practica	1						
7	192SE17	Advanced Concrete Laboratory	PC	0	0	4	2
8	192SE18	Structural Design Laboratory	PC	0	0	4	2
			TOTAL	17	0	8	19

SEMESTER – II

Sl. No.	Subject	Course Title	Category	L	Т	Р	С
Theory							
1	192SE21	Advanced Steel Structures	PC	3	0	0	3
2	192SE22	Advanced Solid Mechanics	PC	3	0	0	3
3	192SE23	Structural Dynamics	PC	3	0	0	3
4		Elective-III	PE	3	0	0	3
5		Elective-IV	PE	3	0	0	3
6		Audit Course-II	MC	2	0	0	0
Practical	l						
7	192SE27	Mini Project	PROJ	0	0	4	2
8	192SE28	Numerical Analysis Laboratory	PC	0	0	4	2
			TOTAL	17	0	8	19

SEMESTER -III

Sl. No.	Subject Code	Course Title	Category	L	Т	Р	С
Theory							
1		Elective-V	PE	3	0	0	3
2		Open Elective	OE	3	0	0	3
Practical	l						
3	192SE31	Project Phase - I	PROJ	0	0	20	10
			TOTAL	6	0	20	16

SEMESTER -- IV

Sl. No.	Subject Code	Course Title	Category	L	Т	Р	C
Practica	1						
1	192SE41	Project Phase - II	PROJ	0	0	32	16
			TOTAL	0	0	32	16

TOTAL NO. OF CREDITS = 70

LIST OF ELECTIVES - (Regulations 2019)

	PROGRAM ELECTIVE (PE)				
	Elective –I				
Code No	Course Title	L	Т	Р	С
192SEE01	Design of Plates and Shells	3	0	0	3
192SEE02	Experimental Methods of Stress Analysis	3	0	0	3
192SEE03	Theory and Applications of Cement Composites	3	0	0	3
192SEE04	Theory of Structural Stability	3	0	0	3
	Elective –II				
192SEE05	Analytical and Numerical Methods for Structural Engineering	3	0	0	3
192SEE06	Corrosion and Durability Studies	3	0	0	3
192SEE07	Structural Health Monitoring	3	0	0	3
192SEE08	Structural Optimization	3	0	0	3
	Elective –III				
192SEE09	Earthquake Analysis and Design of Structures	3	0	0	3
192SEE10	Design of Bridges	3	0	0	3
192SEE11	Design of Formwork	3	0	0	3
192SEE12	Design of High Rise Structures	3	0	0	3
192SEE13	Design of Masonry Structures	3	0	0	3
	Elective –IV				
192SEE14	Advanced Design of Foundations	3	0	0	3
192SEE15	Design of Industrial Structures	3	0	0	3
192SEE16	Finite Element Analysis	3	0	0	3
192SEE17	Soil Structure Interaction	3	0	0	3
	Elective -V	[
192SEE18	Analysis of Laminated Composite Plates	3	0	0	3
192SEE19	Design of Prestressed Concrete Structures	3	0	0	3
192SEE20	Fracture Mechanics of Concrete Structures	3	0	0	3
	OPEN ELECTIVE (OE)				ι
192OE01	Business Analytics	3	0	0	3
192OE02	Industrial Safety	3	0	0	3
192OE03	Operations Research	3	0	0	3
192OE04	Design of Experiments	3	0	0	3
192OE05	Cost Management of Engineering Projects	3	0	0	3
192OE06	Composite Materials	3	0	0	3
192OE07	Waste to Energy	3	0	0	3
192OE08	Nanomaterials and Nanotechnology	3	0	0	3

PG - Structural Engineering

	AUDIT COURSE I & II (AC)										
192AC01	Constitution of India	2	0	0	0						
192AC02	Disaster Management	2	0	0	0						
192AC03	English for Research Paper Writing	2	0	0	0						
192AC04	Sanskrit for Technical Knowledge	2	0	0	0						
192AC05	Value Addition	2	0	0	0						
192AC06	Pedagogy Studies	2	0	0	0						
192AC07	Stress Management by Yoga	2	0	0	0						
192AC08	Personality Development through Life Enlightenment Skills	2	0	0	0						

PC – Program Core, PE – Program Elective, AC – Audit Course, OE – Open Elective

MC - Mandatory Course, PROJ - Project

192	SE11	ADVANCED STRUCTURAL ANALYSIS				L-T-P	С
						3-0-0	3
Progra	amme:	M.E. Structural Engineering	Sem:	Ι	Cat	egory:	PC
Prerec	uisites:	Nil				01	
Aim	•	To understand the energy concepts, analysis of structures by stiff	ness ar	nd f	lexib	ility	
Ann.		approaches.					
							1
BASIC	C CONC	EPTS					9
Indeter	minacy	- Static, Kinematic - Generalized measurements - Degrees	of fr	eed	om -	- Constr	ained
measur	rements –	Behaviour of Structures – Principle of Superposition – Equilibri	ium, Co	omj	patibi	lity and I	force
displac	EXERCISE A	ations.					0
Stiffno	INESS A	ND FLEAIDILIII	h cons	trai	nod r	nageuram	9 onte:
stiffnes	ss and fle	cibility coefficients – basic stiffness and flexibility method applied	to spr	u ai ino	mod	els	ients,
ENER	GY CON	ICEPTS AND TRANSFORMATION OF INFORMATION	a to spi	mg	mou	C 15.	9
Strain	energy: s	iffness and flexibility matrices for strain energy – Betti's law and	d its ap	pli	catior	ns – Prop	erties
of stiff	fness and	flexibility matrices – Contra gradient law – Co-ordinate transfor	mation	ns –	Trai	nsformatio	on of
elemen	nt matrice	s to structure matrices – orthogonal transformations.					
STIFF	FNESS M	ETHOD					9
Develo	opment of	the method - Structure stiffness matrix for beams, frames and	d truss	es	using	displace	ment
transfo	rmation 1	natrix – Internal forces due to thermal expansion and lack of fit	– Dire	ect	stiffn	ess metho	ods –
Static	condensa	tion – Transfer matrix method – Symmetry and anti-symmetry	y of st	ruc	tures	– Reana	alysis
technic	que – A	from and truescas)	nputer	pro	ogran	ns for si	mple
FIFY	Ins(deams	METHOD					0
Flovibil	lity moth	and applied to statically determinate and indeterminate structures:	Choico	of	radu	ndant: Dri	
structur	nty metho re – Gen	eral formulation – Structures flexibility matrix using force training	nsform	ol	n m	atrix –In	ternal
forces d	due to the	mail expansion and lack of fit - Development of computer program	ns	an	/11 111		lermar
				r	Fotal	Periods	45
Refere	ences:						
1. Dev	vdas Men	on, "Advanced Structural Analysis", Narosa Publishing House, Da	aryagai	ng,	New	Delhi,20	09.
2. Mo	she.F.Ru	binstein, "Matrix Computer Analysis of Stuctures", Prentice Hall, 1	1986.				
 Raj Pvt 	jasekaran Ltd. Nev	S, Sankarasubramanian.G, "Computational Structural Mechanics" / Delhi - 110 001, First Edition.2001.	', Prent	ice	Hall	of India	
4. Par Cor	ndit.G.S a mpany,20	nd Gupta.S.P, "Structural Analysis – a matrix Approach", Tata Mo 04.	c Grew	' Hi	ll Pul	blishing	
5. We	aver.J.R	and Gere.J.M, "Matrix Analysis of Framed Structures", CBS Publi	ishers,	Ne	w De	lhi,1986.	
6. Fle	ming.J.F.	, "Computer analysis of Structural Systems", Mcgraw Hill Book C	Co.,198	9.			
Course	e Outcon	les:					
At end	of this co	urse, the students will be able to					
CO1	Able to	identify the degree of freedom, equilibrium compatibility and forc	e displ	ace	ment	relation	
CO2	Able to	apply fundamental characteristics of elements and system by eva	aluatio	n o	f its	flexibility	and
	stiffness	matrices	-		<u>cı</u>	•1•	1 1
<u>CO3</u>	Impart l	nowledge about analysis of system through direct and element app	proach	of	tlexit	oility met	hod
<u>CO4</u>	Impart l	Cnowledge about Betti's law and its application					
CO5	Able to	analysis the structures by direct and element approach of stiffness	metho	d is	to be	e included	1
CO6	Underst	and the energy concepts and transformation					

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	1	3	1			2		2	3
CO2	3	1	2	1			1		2	3
CO3	3	1	2	1		1	1		1	1
CO4	3						1	1	1	
CO5	3		1	2			1		1	1
CO6	2	1	2	1		1	1	1	1	1

100						a
192	SE12	ADVANCED CONCRETE STRUCTURES			L-T-P	C
-			G	TOA	3-0-0	<u>3</u>
Progra	amme:	M.E. Structural Engineering	Sem:	I Cate	egory:	PC
Prerec	uisites:					
Aim:		To study the behaviour, analysis and design of R.C. structures				
		NY / WY / WY /				0
OVER	ALL RE	WIEW	C-11	- 4 ¹	1.61	9
crack v	v of limit	state design of beams, slabs and columns according to IS Codes ording to IS and ACI Codes	s. Calcul	ation of (leffection	n and
DESIC	GN OF S	PECIAL RC ELEMENTS				9
Design	of slend	er columns-Design of RC walls-ordinary and shear walls. Strut	and tie	method of	of analysi	is for
corbels	and deep	beams, Design of corbels, Deep-beams and grid floors.			•	
FLAT	SLABS	AND YIELD LINE THEORY				9
Design	of Colu	mn-Supported Slabs (with/without Beams) under Gravity Lo	ads - D	irect des	ign metł	nod -
Equiva	lent fram	e method - Shear in Column - Supported two-way slabs - Des	ign of s	pandrel l	beams - `	Yield
line the	eory and l	Hillerborg's strip method of design of slabs				-
PLAS	FIC DES	IGN				9
Limit a	analysis -	Moment redistribution - Codal recommendations for Moment n	edistrib	ution - B	aker's me	ethod
of plas	tic design	- Design of cast-in-situ joints in frames.				
DETA	ILING A	AND FIELD PRACTICE				9
Detailin	ng for du	ctility - Measures of ductility - Flexural yielding in frames an	d walls	- Flexura	al membe	ers in
ductile	frames -	Columns and frame members subject to bending and axial load -	Joints in	n ductile	frames -	shear
walls -	Fire resis	tance of structural members – Code requirements - Quality contr	ol of co	ncrete.		
				Total	Periods	45
Refere	ences:					
1. Un: Put	nikrishna olishers C	Pillai and Devdas Menon "Reinforced concrete Design', Tata Company Ltd., New Delhi,2006.	McGrav	w Hill		
2. Va	rghese, P	.C., "Limit State Design of Reinforced Concrete", Prentice Hall	ll of Ind	lia, 2007		
3. Va	rghese,P.	C, "AdvancedReinforcedConcreteDesign", PrenticeHallofIndia,	2000			
4. Pur	ushothan	nan, P, "Reinforced Concrete Structural Elements: Behaviour	Analysis	and		
Des	sign", Ta	ta McGraw Hill,1986				
5. Sin	ha.N.C. a	and Roy S.K., "Fundamentals of Reinforced Concrete", S.Chan	dand Co	mpany		
Lin	nited, Ne	w Delhi,2003.				
Course	e Outcon	nes:				
At end	of this co	purse, the students will be able to				
CO1	Impart l codes.	Knowledge about review of Limit state design of beams, slabs an	d colum	ns accore	ling to IS	
CO2	Calculat	te deflection and crack width of structural Elements.				
CO3	Design	the special elements of reinforced structures like shear wall, corb	els, and	deep bea	ms	
CO4	Design	flat slabs and flat plates according to ACI and Indian standards.		-		
CO5	Design	of slabs by applying, yield line theory and Hillerborg's strip metl	hod			
CO6	Analyze	and design plastic and inelastic frame structures.				
000	1					

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3	1	3	1	3	1	1	1	3	2
CO2	3	1	2		3		1	1	2	1
CO3	3		3		3	1	2	1	2	1
CO4	3		3		2		1		1	1
CO5	2	1	2	1	2		1	1	1	1
CO6	3	2	2	1	1	1	2		2	1

100						ттр	C
192	SE13	RESEARCH METHODOLOGY AND IPR				L-1-P	
Drogra	mmor	M.E. Structural Engineering	Some	Т	Cate	5-0-0	MC
Proroc	misitos.	Nil	Sem.	1	Call	gory.	MC
Aim.	uisites.	To Initiate the learning for fundamental research and development	ent activ	vitie	s		
A IIII .							
PROB	LEM ID	ENTIFICATION					9
Meanin	ng of rese	arch problem, Sources of research problem, Criteria Characterist	tics of a	go	od res	earch pro	oblem,
Errors	in selection	ng a research problem, Scope and objectives of research problem	n. Approa	ach	es of i	nvestigat	tion of
solutio	ns for res	earch problem, data collection, analysis, interpretation, Necessary	vinstrum	nent	ations	C	
LITE	RATURE	STUDY					9
Effecti	ve literati	re studies approaches, analysis Plagiarism, Research ethics.					
PAPE	R AND P	ROPOSAL FORMULATION					9
Effecti	ve techni	cal writing, how to write report, Paper, Developing a Research	Propos	sal,	Form	at of rese	earch
propos	al, a prese	entation and assessment by a review committee.	-				
INTR	ODUCTI	ON TO IPR					9
Nature	of Inte	llectual Property: Patents, Designs, Trade and Copyright.	. Proce	ess	of P	atenting	and
Develo	pment:te	chnological research, innovation, patenting, development. Intern	ational	Sce	nario:	Internat	ional
cooper	ation on I	ITS DEVELOPMENT	nderPC	1.			0
PAIL		115 DEVELOPMENT					9
Patent	Rights: S	cope of Patent Rights. Licensing and transfer of technology. Pa	atent inf	orm	nation	and data	bases.
Geogr	aphical Ir	dications, New Developments in IPR: Administration of Patent	t Systen	n. N	lew de	evelopme	ents in
IPR; I	PR of Bio	logical Systems, Computer Software etc. Traditional knowledge	Case St	tudi	es, IP	R and II7	ſs.
					Total	Periods	45
Refere	ences:						
1. Stu	art Melvi	lle and Wayne Goddard, "Research methodology: an introduction	n for sci	enc	e		
2 Wa	vne Godo	ard and Stuart Melville, "Research Methodology. AnIntroductio	'n"				
2. Wu		n 2nd Edition "Dessenth Mathedalaxy A Star by Star Cuide fo	,11 		"		
5. Kal 4 Ha	ijii Kuma Ibert "Re	r, 2nd Edition, Research Methodology: A Step by Step Guide IC	orbegini	iers			
5. Ma	vall "Ind	hustrial Design" McGraw Hill 1992					
6. Nie	bel, "Pro	duct Design", McGraw Hill, 1974.					
7. Asi	mov , "Ir	troduction to Design", Prentice Hall, 1962.					
8. Ro	bert P. Me	erges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in	n New				
T_{α}	chnologic	al Age",2016.					
	Kamappa.	"Intellectual Property Rights Under WIO", S. Chand, 2008					
9. T. I							
9. T. I	e Outcon	es:					
9. T. J Course At end	e Outcon of this co	es: urse, the students will be able to					
9. T. I Course At end CO1	e Outcon of this co Underst	es: urse, the students will be able to and research problem identification. the approaches of investigation of solutions for research problem	0				
9. T. J Course At end CO1 CO2	e Outcon of this co Underst Identify	es: urse, the students will be able to and research problem identification. the approaches of investigation of solutions for research problem research related information	n				
9. T. J Course At end CO1 CO2 CO3	e Outcom of this co Underst Identify Analyze	es: urse, the students will be able to and research problem identification. the approaches of investigation of solutions for research problem research related information. fective technical papers. Research Proposals	n				
9. T. 1 Course At end CO1 CO2 CO3 CO4	e Outcom of this cc Underst Identify Analyze Write ef	tes: urse, the students will be able to and research problem identification. the approaches of investigation of solutions for research problem research related information. fective technical papers, Research Proposals. pasis the need of information about Intellectual Property Bight	n				
9. T. J Course At end CO1 CO2 CO3 CO4 CO5	e Outcom of this cc Underst Identify Analyze Write ef To empl Underst	es: urse, the students will be able to and research problem identification. the approaches of investigation of solutions for research problem research related information. fective technical papers, Research Proposals. masis the need of information about Intellectual Property Right and that IPR protection provides an incentive to inventors for	n for furth	her	resear	ch work	and
9. T. 1 Course At end CO1 CO2 CO3 CO4 CO5	e Outcom of this cc Underst Identify Analyze Write ef To empl	es: urse, the students will be able to and research problem identification. the approaches of investigation of solutions for research problem research related information. fective technical papers, Research Proposals. hasis the need of information about Intellectual Property Right	n				

Course Outcomes		Pro	ogram Ou	itcomes (H	Program Specific Outcomes (PSO					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO 2	PSO 3	PSO 4
CO1	3	3	2	1		2	2		2	
CO2	3	1	3	2	2		3	2		
CO3	2	2	1				3			2
CO4	3	3	2	2		2		2		2
CO5	2	1		1			2	2		
CO6	2	1				2	2	2		2

1929	SE17	ADVANCED CONCRETE LABORATORY				L-T-P	С				
1/2						0-0-4	2				
Progra	amme:	M.E. Structural Engineering	Sem:	Ι	Cate	egory:	PC				
Prereg	uisites:	Nil		1 1							
A :	•	This paper aims at enabling the students to study the behavior o	f artifici	ial c	constr	uction m	aterial				
Alm:		in fresh and hardened state and strength test to be conducted									
LIST (OF EXP	ERIMENTS									
1. Co	oncrete m	ix design by using IS and ACI codemethod									
2. Te	est on self	-compacting and Geo polymerconcrete									
3. De	termination of Impact resistance										
4. Stu	udy of str	dy of stress-strain curve of high strength concrete, Correlation between cube strength,									
cy	/linder strength, split tensile strength and modulus ofrupture.										
5. Ef	Effect of cyclic loading onsteel.										
6. NO	on-Destru	ctive testing of existing concretemembers.									
/. Be	enavior of	Beams under flexure, Snear and Forsion.		,	Tatal	Dominula	45				
					I Otal	Perious	45				
Refere	ences:										
1	Properti	es of Concrete Neville A M 5th Edition Prentice Hall 2012									
2.	Concret	e Technology. Shetty M. S., S. Chand and Co. 2006.									
Course	e Outcon	les:									
At end	of this co	burse, the students will be able to									
CO1	Design	high grade concrete and study the parameters affecting its perform	nance.								
CO2	2 Conduct Non Destructive Tests on existing concrete structures.										
CO3	O3 Apply engineering principles to understand behavior of structural/ elements.										
CO4	Y To prepare the students to solve problems including design elements and related to their course work.										
COS	To prep	are the students to effectively link theory with practice and a	pplicati	on	and to	o demon	strate				
005	backgro	und of the theoretical aspects.									
CO6	To encourage the students to use computers in analyzing the data.										

Course Outcomes	Program Outcomes (POs) Program Specific Outcomes (PS									
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO 2	PSO 3	PSO 4
CO1	3	2	1	2	1		2	2		
CO2	1	2	2			2	2		3	
CO3	2	2	3	1			2	1		
CO4	3	2	2		1	1	2		3	
CO5	3	2	1					2		2
CO6	2		1	1		2	2	2	2	

192SE18	STRUCTURAL DESIGN LABORATORY				L-T-F	C	•
					0-0-4	2	1
Programme:	M.E. Structural Engineering	Sem:	Ι	Cate	egory:	PC	
Prerequisites:	Nil						
Aim:	To integrate the theoretical design concepts with practical	approa	ch (of des	sign.		

LIST OF EXPERIMENTS

Unit-1

Manual analysis and design of RCC elements

Types of buildings, Loads on a multistoried building, introduction to IS 875 part 1 and part 2, Basic concept of analysis and design, design procedure of slab, beam, column, footing and stair case.

Unit-2

Architectural and structural drawings

Architectural plan, section and elevation, deciding column location, structural framing plan and centerline.

Unit-3

Building modeling using STAAD PRO V8i

Local axis, global axis, coordinates, centerline grids, defining material properties like concrete and steel, defining member properties of slabs, beams, columns and shear wall. Modeling the multistoried building, application of dead load, live load, superimposed dead load. Introduction to IS 1893 and application of seismic loads.

Total Periods 45

References:

1.Subramanian N, "Design of Reinforced Concrete Structures", Oxford University Press, New Delhi, 2014.

2. Varghese P. C, "Limit state Design of Reinforced Concrete", PHI Learning, 2013.

Course Outcomes:

At end of this course, the students will be able to

CO1: Choose advanced testing systems of RC elements

CO2: Cast and Testing of reinforced RC Column

CO3: Analyze the static and dynamic load testing of steel and RC beams

CO4: Analyze the ultimate bearing load and deflection of beam

CO5: Analyze flexure behaviors of simply supported reinforced concrete beam

CO6: Analyze the quality of concretestructuresConduct

Course		Pro	ogram Ou	itcomes (I	POs)		Program	n Specific (Outcomes (PSO's)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	2	1		2	2		
CO2	1	2	2			2	2		3	
CO3	2	2	3	1			2	1		
CO4	3	2	2		1	1	2		3	
CO5	3	2	1					2		2
CO6	2		1	1		2	2	2	2	

192	SE21	ADVANCED STEEL STRUCTURES			L-T-P	С				
					3-0-0	3				
Progra	amme:	M.E. Structural Engineering Sem:	II	Cate	gory:	PC				
Prerec	quisites:		<u> </u>	1.	1 '					
Aim:		To study the behaviourof members and connections, analysis and design	of ste	el tow	ers, chim	neys.				
INTR	ODUCTI	ON				0				
Design	of mem	bers subjected to lateral loads and axial loads. Analysis and design of	Indu	strial I	Buildings	and				
bents,	Sway an	d non-sway frames, Design of Purlins, Louver rails, Gable column a	and C	Sable '	wind gir	der -				
Design	n of Mom	ent Resisting Base Plates – Analysis of Gable Frames.			U					
DESIC	GN OF C	ONNECTIONS				9				
Types	of connec	ctions - Welded and riveted - Throat and Root Stresses in Fillet Welds	– Se	ated (Connecti	ons –				
Unstiff	Unstiffened and Stiffened seated Connections - Moment Resistant Connections - Clip angle Connections -									
Split b	Split beam Connections – Framed Connections.									
ANAL	NALYSIS AND DESIGN OF STEEL TOWERS 9									
calcula	ations. De	sign of Self-supporting Chimney – Design of Base Plates, Foundation	sand I ns an	d Anc	n hor bolts	and				
Guyed	adSteelChimney-Guyropes-Stressesduetowind. Alongwithloadcalculation-GustFactorMethod.									
PLAS Introdu	ASTICANALYSIS OF STRUCTURES 9									
axial f	ntroduction, Snape factor, Moment redistribution, Combined mechanisms, Analysis of portal frames, Effect of shear force on plastic moment. Connections Paguirement Moment resisting									
connec	connections. Design of Straight Corner Connections – Haunched Connections – Design of continuous beams.									
DESIC	GN OF L	IGHT GAUGE STEEL STRUCTURES				9				
Cold f	Cold formed light gauge section – Type of cross sections – stiffened - multiple stiffened and unstiffened element									
- flat v	width ratio	o - effective design width - Design of light gauge compression member	– Effe	ectivev	vidth for	load				
and de	eflection d	etermination - Design of tension members – Design of flexural member	s - Sl	near la	g – Flang	ge				
curling	g.									
				Total	Periods	45				
Refere	ences:									
1. Sut	bramaniar	N, "Design of Steel Structures", Oxford University Press,2008.								
2. Du	ggal, "Lir	nit state design of Steel structures", Tata McGrew Hill, New Delhi, 2010).							
3. Rai	machandr	a, "Design of Steel Structures" Vol.2, Standard Publishing House, New	Delhi	. 2004						
4 Day	varatnam	P "Design of Steel Structures" A H Wheeler India 2007		,						
5 Lin	ton E. Gr	inter "Design of Modern Steel Structures" Eurasia Publishing House N	Jew T)elhi 1	996					
6. Joh	in E. Loth	ers. "Design in Structural Steel". Prentice Hall of India. New Delhi 1990).	<i>i</i> , 1	<i>))</i> 0.					
7. Lvi	nn S Bee	dle "Plastic Design of Steel Frames" John Wiley and Sons New York	1990							
8 Wi	e Wen Yi	"Design of Cold Formed Steel Structures" McGraw Hill Book Comp	inv N	Jew V	ork 1996	í				
0. 11										
Cours	e Outcon	nes:								
At end	of this co	ourse, the students will be able to								
CO1	Discuss	the basic loads, types and methods of analyzing steel structures.								
CO2	Analysi	s Gable Frames.								
CO3	Design	the various types of connections with respect to the appropriate place								
CO4	Analyze	and design steel towers by different kind of method								
CO5	Analyse	the effect of shear Force on plastic moment and Connections.								
CO6	Analyze	steel structures by plastic method								

Course Outcomes		Pro	ogram Ou	itcomes (I	-	Program Specific Outcomes (PSO's)PSO1PSO2PSO3PSO4221221				
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1		2				1	2		2	1
CO2	2	2	1		3		2		2	1
CO3	2	2	1		2		2	1	2	
CO4	1	3			3	1	2		2	2
CO5	1	2			2	3	2	1	2	2
CO6	2	2	1		2		2		2	1

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

192SE22

ADVANCED SOLID MECHANICS

L-T-P C

						3-0-0	3		
Progra	amme:	M.E. Structural Engineering	Sem:	II	Cate	gorv:	PC		
Prereo	uisites:	Nil				8- 1-	_		
Aim:		To understand the concept of 3D stress, strain analysis and its	applicati	ons to	o simp	le proble	ems.		
		· · ·			•				
ELAS	TICITY						12		
Analys Genera	is of stra lized Ho	ess and strain, Equilibrium equations - Compatibility equa oke's law.	tions – s	stress	strain	relation	nship.		
ELAS'	TICITY	SOLUTION					12		
Plane s	stress and	plane strain - Simple two dimensional problems in Cartesian	and pola	r co-c	ordinat	es.			
TORS	TORSION OF NON-CIRCULAR SECTION12								
St.vena section	ant's app is.	roach - Prandtl's approach – Membrane analogy - Torsion	of thin	walle	ed ope	n and c	closed		
ENER	GY ME	THODS					12		
Strain	Strain energy - Principle of virtual work - Energy theorems - Rayleigh Ritz method - Finite difference								
method	method – Application to elasticityproblems.								
PLASTIC DEFORMATION 12									
Strain	Strain Hardening, Idealized Stress- Strain curve, Yield Criteria, von Mises Yield Criterion, Tresca Yield								
Criteric	on, Plastic	stress-Strain Relations, Principle of Normality and Plastic Po	otential, l	sotro	pic Ha	rdening	; .		
Df					Fotal	Periods	60		
Refere	ences:	h "Theory of Electicity" Khanne Duhlishare New Delki1000	,						
1. Sa	iunu Sing nest E Se	chler "Elasticity in Engineering" Dover Publications New Y	ork 1968						
3. Sl	ater R.A.	C. "Engineering Plasticity". John Wiley and Son. New York 1	977.						
4. Cł	nou P.C. a	and Pagano, N.J. "Elasticity Tensor, Dyadic and Engineering	Approach	nes", l	D.Van	Nostr aı	nd Co.,		
In	c., Londo	n,1967.							
5. Ti	moshenk	o, S and GoodierJ.N. "Theory of Elasticity", McGraw Hill Bo	okCo., N	ewyo	rk,198	8.			
6. He	earn, E.J.	"Mechanics of Materials", Vol.2, Pergamon Press, Oxford, 1	985	· •	T 11 C	. " D			
/. Irv	A Now I	ames and James, M.Pitarresi, "Introduction to Solid Mechanic	cs", Pren	tice F	Iall of	India P	vt.		
Course	Course Outcomes:								
At end	At end of this course, the students will be able to								
CO1	Explain	the theory of elasticity including strain/displacement and Hoo	oke's law	relat	ionshii	าร			
CO2	Analysi	s Stress and Strain		Terut					
CO3	Solve th	e two dimensional problems in Cartesian and polar co-ordina	tes						
CO4	Discuss	about St Venant's and Prandtl's approach							
CO5	Derive t	he torsion of thin walled open and closed sections							
CO6	Apply t	he Principle of Virtual work and energy theorems.							
CO6	Apply t	he Principle of Virtual work and energy theorems.							

Course		Pro	ogram Ou	itcomes (I	POs)		Program	n Specific (Outcomes (PSO's)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	2				1	2		1	1
CO2	3	2	2	1		1	2		1	1
CO3	3	2			1	1	2	1	1	1
CO4	1	2			1	1	2		1	
CO5	2	2	1				2		1	
CO6				2			1		1	

1020	2022	STRUCTURAL DVNAMICS				ттр	C		
1928	SE23	STRUCTURAL DYNAMICS				L-1-P 300			
Progre	mmo	M.E. Structural Engineering	Sem·	П	Cate	J-U-U	PC		
Prorec	misitos.	Nil	Jem.	11	Call	gory.	10		
ITCICG	uisites.	To expose the students the principles and methods of dynamic a	nalvsis	of st	ructure	es and to			
Aim:		prepare them for designing the structures for wind, earthquake a	nd othe	er dyn	namic 1	loads.			
				J					
PRINC	CIPLES	OF DYNAMICS					12		
Vibrati	on and i	s importance to structural engineering problems - Simple ha	rmonic	e mot	ion -	Mathema	atical		
modell	modelling of dynamic systems - Degree of freedom - Equation of motion for S.D.O.F - Damped and								
undam	ped free	vibrations – Undamped forced vibration – Critical damping – F	Respons	se to	harmo	onic excit	ation		
– Dam	ped or un	damped							
TWO	WO DEGREE OF FREEDOMSYSTEMS [12]								
forced	ons of Me vibration	- Normal modes of vibration – Applications	bed free	e vibi	ations	– Undai	nped		
DYNA	DYNAMIC ANALYSISOFMDOF 12								
Multid	Multidegree of freedom system, undemped free vibrations. Orthogonality relationship. Approximate methods								
- Holzer - Rayleigh - Rayleigh-Ritz - mode superposition technique - Numerical integration procedure- Central									
Differe	Difference – Newmark's method.								
DYNA	MIC AN	ALYSIS OFCONTINUOUSSYSTEMS					12		
Free a	nd forced	l vibration of continuous systems- axial vibration of a beam-	Flexur	al vi	bratio	ı of a be	am -		
Raylei	gh – Ritz	method –Formulation using Conservation of Energy – Formula	tion us	ing V	/irtual	Work.	um		
PRAC	TICALA	PPLICATIONS		0			12		
Idealiz	ation and	d formulation of mathematical models for wind, earthqua	ake, bl	ast a	and ir	npact lo	ading,		
aerody	namics, g	ust phenomenon - Base isolation techniques – Earthquake Resis	stant D	esign	•	•	C.		
					Total	Periods	60		
Refere	nces:								
1. Paz	z, Structu	ral Dynamics: "Theory and Computation", Kluwer Academic	Public	ation	,2004				
2. An	il K.Chop	ora, "Dynamics of Structures", Pearson Education, 2001.							
3. Ma	nickaSel	vam K., "Elementary structural dynamics", Dhanpatraiandson	s, New	delhi	i, 200	1.			
4. Clo	ugh,R.W	andPenzien.J,"Dynamicsofstructure",McGrawHill,NewYork.	,1993.						
5. Ber	g.Glen.,	"Element of structure dynamics", Prentice hall Englewood Cl	iffs, N	ew je	rsy,				
198 6 Wi	William Thomson "Theory of vibration and its applications" George Allen Pub								
Course Outcomes:									
At end of this course, the students will be able to									
CO1	Discuss	the various elements of vibration and its importance to structura	al Engi	neeri	ng nro	blems.			
CO2	Calculat	e undamped forced vibration and critical damping.			0 1-0				
CO3	Analyze	vibrations in Two Degree of Freedom System.							
CO4	Analyze	MDOF vibrations and its elements.							
CO5	Explain	dynamic analysis of continuous system and its application.							
COG	Underst	Understand base Isolation techniques							

Course		Pro	ogram Ou	itcomes (H	POs)		Program	n Specific (Outcomes (PSO's)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1		2		1	1	3	1	2	
CO2		1		1	1	2	1		2	2
CO3	1	2	2		1		1		2	2
CO4		2	1	3		2	1		2	2
CO5	1	2	1		1		2		1	1
CO6				1	1	2	2	1		

192SE27	MINI PROJECT				L-T	'-P	С
					0-0	-4	2
Programme:	M.E. Structural Engineering	Sem:	II	Catego	ory:	PR	OJ
Prerequisites:	Nil						
Aim:	To train the students in the field work so as to have problems related to Structural Engineering in carrying o	a firstha ut engine	ind kno ering ta	owledge isks.	of p	racti	cal

SYLLABUS CONTENTS

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution. Continuous assessment of Mini Project at Mid Sem and End sem will be monitored by the departmentalcommittee.

	Total Periods 60
Course	e Outcomes:
At end	of this course, the students will be able to
CO1	Identify structural engineering problems reviewing availableliterature.
CO2	To develop Technical skills in facing and solving the fieldproblems
CO3	Study different techniques used to analyze complex structuralsystems.
CO4	To innovate the project and solve the societyproblems
CO5	Demonstrate the design methodology for the project
C06	Work on the solutions given and present solution by using his/her technique applying engineering
000	principles.

Mapping with Programme Outcomes:

Course Outcomes		Pro	ogram Ou	itcomes (I	POs)		Program	n Specific (Outcomes (PSO's)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1		2		1	1	3	2		2
CO2		1		1	1	2	3	2	1	1
CO3	1	2	2		1		1	3	3	2
CO4	1		2		2	1		2	3	2
CO5	2	1		1	2	2	1	2	2	3
CO6	3	2	1	1	2	1	2	2	1	2

192	SE28	NUMERICAL ANALYSIS LABORATORY				L-T-P	С
						0-0-4	2
Progra	amme:	M.E. Structural Engineering Set	em:	II	Cate	gory:	PC
Prerec	quisites:	Nil				•	
Aim:		To solve each method in this course to find Roots of Non linear of	equa	tions			
SYLL	ABUS C	ONTENTS					9
1. Fi	ind the Ro	ots of Non-Linear Equation Using BisectionMethod.					
2. Fi	ind the Ro	ots of Non-Linear Equation Using Newton's Method.					
3. Ci	urve Fittir	ng by Least SquareApproximations.					
4. So	olve the S	ystem of Linear Equations Using Gauss –EliminationMethod.					
5. II	ntegrate	numerically using Simpson's Rules.					
6. N	umerical	Solution of Ordinary Differential Equations ByRunge-Kutta	ta Me	etho	t		
7. N	umerical	Solution of Ordinary Differential Equations by Euler's Meth	hod				
				,	Total	Periods	45
Refere	ences:						
1.	Fausett	L.V. (2007) Applied Numerical Analysis Using MATLAB, 2nd Ec	Ed., Po	earso	n		
_	Educati	on.					
2.	Chapra	S.C. and Canale R.P. (2006) Numerical Methods for Engineers, 5th	th Ed	••			
C	0-4						
Cours At and	e Outcon	les:					
At end	Eind Do	ourse, the students will be able to					
	Find Ro	ots of non-linear equations by Disection method					
CO2		of itting by loss aguar annoving ting					
CO3	Do curv	e nuing by least square approximations					
C04	Solve th	e system of Linear Equations using Gauss - Elimination					
C05	Integrat	e Numerically Using Simpson's Kules		<i>K</i> .1	1		
CO6	Find Nu	merical Solution of Ordinary Differential Equations by Runge- Ku	uttaN	letho	d		

Course Outcomes		Pro	ogram Ou	tcomes (F	POs)		Program	n Specific C	Outcomes (PSO's)
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	1	3	2		1	2		2	2
CO2	1		1		2		1	3	1	1
CO3	2	2		3	1	3	2		2	2
CO4	1		1		2		2		2	2
CO5		2		1		1	2		2	2
CO6	1		2		2	1	1	2		2

192SE31	PROJECT PHASE-I				L-T-P	С
					0-0-20	10
Programme:	M.E. Structural Engineering	Sem:	III	Ca	ategory:	PROJ
Prerequisites:	Nil					
	To identify a specific problem for the current need of the	society	and c	olle	cting info	rmation
Aim:	related to the same through detailed review of literature.					

SYLLABUS:

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner

Total Periods | 180hrs

Course	e Outcomes:
At end	of this course, the students will be able to
CO1	Do a literature review independently
CO2	Develop the methodology to solve the identified problem.
CO3	An ability to use various techniques, engineering knowledge and skill, and modern engineering tools
CO4	Analysis and designing of engineering projects like building, roads, geotechnical works/problems
CO5	Identify their weaker areas and helps to improve.
CO6	To train the students in preparing project reports and to face reviews and viva- voceexamination.

Mapping with Programme Outcomes:

Course Outcomes		Pro	ogram Ou	tcomes (I	POs)		Program	n Specific (Dutcomes (PSO's)
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1		2		2			2		3	
CO2	2	2	2		2		2	2	2	
CO3	2		2	2	3	2		2		2
CO4		2	2		2	3	2	1		2
CO5	1	1		2		1		2	1	1
CO6	1	2	1	2	2		2		2	

192	SE41	PROJECT PHASE-II			L-T-P	С
					0-0-32	16
Progra	amme:	M.E. Structural Engineering	Sem:	IV	Category:	PROJ
Prerec	quisites:	Nil				
Aim:		Creativity of students applied to solve development p through Science and Technology	problem	ns of c	our people and	d State
SYLL	ABUS:					
The stu end of detaile through examin	ident sho the seme d report s h based o her.	uld continue the phase I work on the selected topic as per ester, after completing the work to the satisfaction of the hould be prepared and submitted to the head of the departs on the report and the viva-voce examination by a panel of	the form supervise ment. The of exam	nulate sor an he stud iners	d methodolog d review com dents will be e including one	y. At the mittee, a evaluated external
Total]	Periods					180hrs
Course	e Outcon	nes:				
At end	of this co	purse, the students will be able to				
CO1	An unde	erstanding of professional and ethical responsibilities				
CO2	Train tl	ne students in preparing project reports and to face rev	riews an	nd viv	a-voceexami	nation
CO3	Underst	and the impact of their solutions in a global, economic, env	vironmei	ntal an	d societal con	text.
CO4	Recogn	ition of the need for, and ability to engage in life-long learn	ning.			
CO5	Acquire	d enough confidence to enter into an industry				
CO6	Develop	skills to analyze and discuss the test results, and make cor	nclusion	s.		

Course Outcomes		Pro	ogram Ou	itcomes (I	POs)		Progran	n Specific (Outcomes (PSO's)
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2		3		2	2	2		2	
CO2	2		2	3				3		2
CO3	2		2	2	3	2	3	2	2	
CO4		2	2	3					2	2
CO5		3		3	2	2		2		3
CO6	2		1		2		2	2		3

192S	EE01	DESIGN OF PLATES AND SHELLS L-T-	P C
		3-0-	0 3
Progra	amme:	M.E. Structural Engineering Sem: - Category:	PE
Aim:		Understand the rudimentary principles involved in the analysis and design of plates and	d shells.
THIN	PLATES	S WITH SMALL DEFLECTION	9
Lateral	ly loaded	d thin plates - governing differential equations - Simply supported and	fixed
bounda	ryconditi	ions	
RECT	ANGUL	AR PLATES	9
Simply	supporte	ed rectangular plates – Navier's solution and Levy's method.	
THIN	SHELLS	8	9
Classif	ication of	f shells-structural actions – membrane theory	
ANAL	YSIS OF	FSHELLS	9
Analys	is of sphe	erical dome – cylindrical shells – folded plates,	
DESIC	GN OF S	HELLS	9
Design	of spheri	cal dome – cylindrical shells – folded plates	
		Total Period	ds 45
Refere	nces:		
1. Szi	lard R, Tl	heory and analysis of plates, Prentice Hall Inc, 1995	
2. Tin	noshenko	, S. and Krieger S.W. "Theory of Plates and Shells", McGraw Hill Book Company,	
Nev	w York, 1	1990.	
3. Cha	atterjee B	K., Theory and Design of Concrete Shells, Oxford & IBH, New Delhi, 1998	
4. Dal	lington D	D P Thin Shell Concrete Structures McGraw-Hill 1995	
6 Rec	ldv I N "	Theory and Analysis of Elastic Plates and Shells" McGraw Hill Book Company 2006	
7. Cha	andrashek	kahara, K. Theory of Plates, University Press (India) Ltd., Hyderabad, 2001.	
Course	e Outcon	nes:	
At end	of this co	purse, the students will be able to	
CO1	Calculat	te deflection on Laterally Loaded thin plates.	
CO2	Design	rectangular plates for various edge conditions	
CO3	Explain	Narier's solution and Levy's method.	
CO4	Knowle	dge to classify shells.	
CO5	Adequa	te knowledge in design of shell structures	
CO6	Analyse	es the spherical done and cylindrical shell.	
	~	↓ ✓	

Course Outcomes		Pro	ogram Ou	itcomes (H	POs)		Progran	n Specific (Outcomes (PSO's)
0 400011105	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3		2	2	3		1	2		1
CO2	2		3	2	3	1	1		2	2
CO3	1	1	2	3	2		1		1	1
CO4	1		3	1	2		2		1	
CO5	1		3	3	1	2	2		3	3
CO6	2		2	2	2	2	2		1	1

192S	SEE02	EXPERIMENTAL METHODS OF STRESS ANALYSIS		L-T-P	С
				3-0-0	3
Progra	amme:	M.E. Structural Engineering Sem:	- Cate	gory:	PE
Aim:		To learn the principles of measurements of static and dynamic response carryout the analysis of results.	e of struct	ures and	
FORC	ES AND	STRAIN MEASUREMENT			9
Choice	e of Expe	rimental stress analysis methods, errors in measurements - Strain gas	uge - prin	ciple - ty	ypes,
perform	mance ar	d uses- Hydraulic jacks and pressure gauges - Electronic load ce	lls – Prov	ving Rin	gs –
Calibra	ation of T	esting Machines – Long-term monitoring – Vibrating wire sensors– Fibr	re optic se	nsors	r
VIBR	ATION N	MEASUREMENTS			9
Charac	eteristics	of structural vibrations – Linear variable differential Transformer (LV	DT) - Tr	ansducer	s for
velocit	y and acc	relevation measurements - Vibration meter – Seismographs – Vibration	Analyzer -	- Display	and data
Acquis	ing of s	ngnais – Cathode Ray Oscilloscope – A'r Plotter – Chart Pl	otters –	Digital	data
	ISTICS	AND WIND FLOW MEASURES			0
Princir	les of Pr	essure and flow measurements – Pressure transducers – sound level me	eter – Ven	turimeter	and
flow n	neters – V	Vind tunnel and its use in structural analysis - structural modeling $-\Gamma$	Direct Mod	iel Study	and
Indirec	t Model	study.			
DISTI	RESSME	ASUREMENTS ANDCONTROL			9
Diagno	osis of di	stress in structures - Crack observation and measurements - Corrosi	on of reir	forcemei	nt in
concre	te – Hal	f cell, construction and use - Damage assessment - Controlled bla	sting for	demolitio	on –
Techni	ques for	residual stress measurements.			
NON I	DESTRU	CTIVE TESTING METHODS			9
Load	testing c	n structures, buildings, bridges and towers - Rebound Hammer -	- Acoustic	e emissio	on –
Ultras	onic testi	ng principles and application - Holography - Use of laser for stru	ctural test	ting – B	rittle
coatin	g, Advan	ced NDT methods – Ultrasonic pulse echo, Impact echo, impulse rada	ır techniqu	ies, GEC	'OR-
Groun	d penetra	ting radar (GPR).			
			Total	Periods	45
Refere	ences:				
1. Sa	adhu Sing	h "Experimental Stress Analysis" Khanna Publishers NewDelhi 1996			
2. Sr	inath.L.S	, Raghavan.M.Ringaiah.K, Gargesha.G, Pant.BandRamachandra.K, "Exp	perimental	Stress	
Aı	nalysis", '	Tata McGraw Hill Company, New Delhi, 1984.			
3. Da	alley.J.W	andRiley.W.F, "Experimental Stress Analysis", McGraw Hill BookCom	pany, N.Y	7. 1991.	
4. Si	rohi.R.S.	Radhakrishna.H.C, "Mechanical Measurements", New Age Internationa	ıl (P) Ltd.		
19	997.				
5. Ga	anesan T.	P., "Model Analysis of Structures", Universities Press (India) Ltd2005.			
Course	e Outcon	nes:			
At end	of this co	purse, the students will be able to			
CO1	Discuss	about forces and strain measurement in multi stage testing systems.			
CO2	Measur	e the basic elements of vibration using different aids			
CO3	Get idea	of acoustics and wind flow measuring systems with modeling techniqu	es.		
CO4	Comput	e the value of corrosion of reinforcement and distress measurements.			
CO5	Differen	ntiate application of Destructive Testing methods from other Systems.			
CO6	Know t	ne uses of Laser for Structural Testing.			

Course		Pro	gram Ou	tcomes (F		Program Specific Outcomes (PSO's)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	
CO1	1		2	1	2		3		2	1	
CO2	2		1	2	1	2	2		1		
CO3	2		1	3	1	3	2		1		
CO4	3		2	2	1	3	2		2		
CO5	1		3	1	1	3	2		1	1	
CO6	1		1	2	2	2	2	2	1		

192S	SEE03	THEORY AND APPLICATIONS OF CEMENT COMPOSITES	L-T-P	С				
			3-0-0	3				
Progra	amme:	M.E. Structural Engineering Sem: - Cate	egory:	PE				
Aim·		To impart knowledge about Formulate constitutive behaviour of composite mate	erials –					
Ann.		Ferrocement, SIFCON and Fibre Reinforced Concrete						
				1				
INTR	ODUCT	ION		9				
Classif	ication a	nd Characteristics of Composite Materials- Basic Terminology, Advantages.	Stress-S	strain				
Relatio	ons- Ort	hotropic and Anisotropic Materials, Engineering Constants for Orthotrop	nc Mate	rials,				
Restric	TANK	Elastic Constants, Plane Stress Problem, Blaxial Strength, Theories for an Orthotr	opic Lam	nna.				
Mech	HANICA	L BEHAVIOUR Materials Annuagh to Stiffness Determination of Deletions between Elect	in Comm	9				
Flastic	ity Appr	materials Approach to Stiffness- Determination of Relations between Elastic pach to Stiffness- Bounding Techniques of Elasticity Exact Solutions - Elastic	city Solu	tions				
with C	ontinuity	Halpin Tsai Equations Comparison of approaches to Stiffness	city bolu	lions				
CEMI	ENT CO	MPOSITES		9				
Tunad	ofComon	tCompositor Terminology Constituent Materials and their Properties Construct	ion					
Techn	iques for	Fibre Reinforced Concrete – Ferrocement - SIECON Polymer Concretes -F	Prenaratio	on of				
Reinfo	rcement	- Casting andCuring.	reparation	JII 01				
MECI								
MECH		L PROPERTIES OF CEMENT COMPOSITES	F (*	9				
Bena and Im	avior of F	erro cements - Fiber Reinforced Concrete in Tension, Compression, Flexure, She	ar, Fatigu	.e				
	IPACI - DI	N OF CEMENT COMPOSITES		0				
	ICATIO	are Housing Water Storage Doots and Missellaneous Structures Compo	aita Mata	 				
Crthotr	in reno	Anisotropic behavior Constitutive relationship Electic Constants	site Mate	riais-				
Ortiloti	opic and	Anisotropic benavior - Constitutive relationship - Elastic Constants.	Pariode	15				
Refere	nces	101a	1 erious	43				
	1 .							
1. M	echanics	of Composite Materials, Jones R. M., 2 ^m Ed., Taylor and Francis, BSP Books, 1998	•					
2. Fe	crrocemer	n – Theory and Applications, Pania K. P., IFIC, 1980.	• 0- II-11	1002				
5. INC		ete Materiais, Swamy K.N., 1 Ed., Blackle, Academic and Professional, Chapman	i & пан,	1965.				
At and	of this of	ues.						
	Closeify	y and identify the characteristic behavior of composite materials						
	Eormul	and recently the characteristic behavior of composite materials.						
CO_2	Trained	are constitutive defiavior of composite materials						
CO_4	Cleasif	the metericle as per orthotronic and enjectronic behaviour						
C04	Eatimet	a stroin constants using theories applicable to composite materials						
CO5	Estimate su am constants using theories applicable to composite materials.							
	Analyze	e and design structural elements made of cement composites						

Course Outcomes		Pro	ogram Ou	itcomes (F	Program Specific Outcomes (PSO's)					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1			2	3	3	1	2	1		
CO2	2		2	3	2		1		1	
CO3	1		3	2	2		2		1	1
CO4			1	2	2	1	2		1	2
CO5			2	2	3	3	2			1
CO6	1		2	1	2	2	2	1	3	3

192S	EE04	THEORY OF STRUCTURAL STABILITY		L-T-P	С					
				3-0-0	3					
Progra	amme:	M.E. Structural Engineering	Sem: -	Category:	PE					
Aim:		To study the concept of buckling and analysis of structural elem	nents.							
BUCK	LING O	F COLUMNS			9					
States	of equili	prium - Classification of buckling problems - concept of equ	ilibrium, e	nergy, imperf	ection					
and	vibration	approaches to stability analysis - Eigen value problem. Gove	erning equa	ation for colu	mns -					
Analys Ravlei	Analysis for various boundary conditions - using Equilibrium, Energy methods. Approximate methods -									
onbuck	onbuckling									
BUCK	LING O	F BEAM-COLUMNS AND FRAMES			9					
Theory	of bear	n column - Stability analysis of beam column with single ar	nd several	concentrated	loads,					
distribu	uted load	and end couples Analysis of rigid jointed frames with and witho	out sway - I	Moment distrib	oution					
- Slope	e deflectio	n and stiffness method.	-							
TORS	IONAL .	AND LATERAL BUCKLING			9					
Torsio	nal buckl	ng - Torsional and flexural buckling - Local buckling. Buckling	g of Open S	Sections. Num	erical					
solutio	ns. Latera	I buckling of beams, pure bending of simply supported beam and	d cantilever	r.	-					
BUCK	LING O	F PLATES			9					
Govern	ing differe	ntial equation - Buckling of thin plates, various edge conditions - Ar	alysis by ea	quilibrium and	energy					
approac	ch - Appro	ximate and Numericaltechniques								
INELA	ASTIC B	UCKLING			9					
Double buckling	modulus g of plates	theory - Tangent modulus theory - Shanley'smodel- Eccentrically l - Post buckling behaviourofplates	oaded inela	stic column. Ir	elastic					
				Total Periods	45					
Refere	ences:									
1. Tin	noshenko	, S., and Gere., "Theory of Elastic Stability", McGraw Hill Book	Company,	, 1963.						
2. H.C	G.Allen&	P.S.Bulson, "Background to Buckling", Mc Graw Hill Co., 1980.								
3. Cha	ajes.A, "I	rinciples of Structural Stability Theory", Prentice Hall, Inc., New	v Jersey,19	74.						
4. Cha	ajes, A. "	Principles of Structures Stability Theory", Prentice Hall, 1974.								
5. Asl	nwini Ku	nar, "Stability Theory of Structures", Tata Mc Graw Hill Publish	ning Compa	any Ltd., New						
Del	lhi,1995.									
6. Iye	Iyenger. N.G.R. "Structural stability of columns and plates", Affiliated East West Press, 1986.									
7. Gai	mbhir, "S	tability Analysis and Design of Structures", springer, New York,	2004.							
Course	e Outcon	nes:								
At end	of this co	burse, the students will be able to								
CO1	Achieve	Knowledge of analysis for various boundary conditions.								
CO2	Solve Eigen value problems.									
CO3	Underst	and the principles of strength and stability								
CO4	Design	orsional buckling.								
CO5	Appraise the Stability analysis by finite element approach.									
CO6	Underst	and the concepts of Lateral buckling of beams.								

Course Outcomes		Pro	ogram Ou	itcomes (I	POs)		Progran	n Specific (Outcomes (PSO's)
0 40001105	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1		2	2	3		2	1	1	
CO2	1		1	1	3		2		1	
CO3	1		1	2	3		2		1	
CO4	1		1	1	3		2		3	2
CO5	1		2	1	2		2		2	1
CO6	1		2	1	2	1	3		1	

1928	EE05 ANALYTICAL AND NUMERICAL METHODS FOR STRUCTURAL L-T-P C											
1/20		ENGINEERING				• • •						
			a		<u> </u>	3-0-0	3					
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cate	gory:	PE					
Aim:		To impart knowledge in numerical methods, algebra, interpolat	ion, diff	eren	tiatio	n and so	olve					
the structural engineering field problems												
FUND	AMENT	ALS OF NUMERICAL METHODS	~				9					
Intro	duction -	Error Analysis - Polynomial Approximations and Interpolations	- Curve	Fitt	ing;Iı	nterpola	tion					
and	extrapola	tion - Solution of Nonlinear Algebraic and Transcendental Equat	ions									
ELEM	IENTS O	F MATRIX ALGEBRA					9					
Introdu	iction - S	blution of Systems of Linear Equations - Eigen Value Problems.										
NUMERICAL DIFFERENTIATION & INTEGRATION							9					
Introduction - Solution of Ordinary and Partial Differential Equations												
FINITE DIFFERENCE SCHEME												
Introdu	iction – I	nplicit scheme - Explicit scheme.										
COM	PUTER A	ALGORITHMS					9					
Introdu	ction - N	umerical Solutions for Different Structural Problems - Fuzzy Log	gic and N	Neur	al Ne	twork.						
			-	T	'otal I	Periods	45					
Refere	ences:											
1. An	Introduct	ion to Numerical Analysis, AtkinsonK.E., J. Wiley and Sons, 198	89.									
2. The	eory and l	Problems of Numerical Analysis, Scheid F, McGraw Hill Book C	Company	y, (S	haum	l						
Ser	ies), 1988	B Analysis, Sastry S. S, Prentice Hall of India, 1998.										
Course	e Outcon	nes:										
At end	of this co	burse, the students will be able to										
CO1	Solve or	dinary and partial differential equations in structural mechanics	using nu	mer	ical n	nethods.						
CO2	2 Solve Eigen Value Problems.											
CO3	Find out	solution for Non Linear Algebraic and Transcendental equation	s.									
CO4	Derive s	olution of ordinary and PDE										
CO5	Know th	e Implicit and Explicitscheme.										
CO6	Find nu	nerical solutions for different problem Structures.										
	1	*										

Course Outcomes		Pro	ogram Ou	itcomes (H	POs)		Progran	n Specific (Outcomes (PSO's)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
C01	2		1	2		2	2		1	1
CO2	1		2	1	2	1	2		1	1
CO3				2	2		2	1	1	
CO4			1	1	2		2	1		1
CO5			2		2		1	1		
CO6			2	1	1		2	1		1

192S	SEE06	CORROSION AND DURABILITY STUDIES	S		L-T-P	С			
					3-0-0	3			
Progra	amme:	M.E. Structural Engineering	Sem:	Categ	ory:	PE			
Aim:		To make the students to have knowledge about corrosion and Du	ırability	of concre	te struct	ures.			
CORR	ROSION					9			
Introdu	Introduction of corrosion of steel in concrete – factors responsible for corrosion of steel in concrete –transport								
mecha	nisms of	ions in concrete – corrosion of reinforced and prestressed con	icrete –	corrosion	of bler	ided			
cement	t concrete	e - expressions for corrosion rate, emi and galvanic series, m	nerits and	d demeri	ts, Pour	baix			
corrosi	101 101 110 100 - Cor	rosion fatigue - Dezincification - Frosion corrosion - Crevice co	, piung, prosion	- Cause a	ind reme	ness dial			
measur	res. Pillin	g Bed worth ratio. High temperature oxidation.	<i>m</i> rosion	Cuuse u		Jului			
CORF	ROSION	MONITORNG AND TESTING ON R.C.C				9			
Corrosi	ion monit	oring in R.C.C. and pre-stressed concrete structures – special steels	s and cor	ncretes –	coating	to			
concret	e – coatir	gs to steel – repairing of corroded concrete structures – repair ma	terials –	residual l	life				
estimat	ion-dete	rioration of concrete. Purpose of corrosion testing, classification, l	humidity	and porc	osity test	s,			
accelera	ated weat	hering tests - Chloride ion test and impedance analysis - ASTM st	tandards	for corro	sion test	ing.			
POLA	RIZATI	ON				9			
Polariz	zation - E	xchange current density, Activation polarization, Tafel Equation	ı, Passiv	ating met	tals and	non			
passiva	ating met	als, Effect of oxidizing agents. Coating based on cements $-ca$	atholic p	rotection	of conc	rete			
structu	res - saci	ificial anodes – impressed current cathode.				0			
Durch	BILLI Y	OF CONCRETE	a diffusi	on Cor	honotion	9			
Concre	nity of c te - Suln	bate attack - Acid attack on concrete – Alkali - Silica reaction	r = Abra	sion resis	tance -	li ol Fire			
resistar	nce - Ero	sion resistance – Cavitations - Flame resistance - corrosion resist	ance - C	hemical i	resistanc	ce of			
concre	te and oth	er durability tests methods on concrete							
CRAC	CKS, CRA	ACK DETECTION AND CONTROL				9			
Classifi	ications o	f cracks in plain and reinforced concrete - Types of cracks Shear	· crackin	g- Mome	nt crack	ing -			
Torsion	nal cracki	ng - Settlement cracks - Cracks due to force transfer - Cracking	due to d	earthquak	e forces	and			
crackin	g due to	other factors. Long term effects of cracking - Material and loading	g effects	- Creep e	ffect – E	3ond			
- Slip tl	heory - St	raight line theory - Flexural stiffness - Computation of crack wid	lth and c	rack spac	cing's. C	rack			
detectio	on - Crac	k measuring techniques - Control of cracking in plain and re	inforced	concrete	e beams	and			
column	is- Crack	control by material selection - Advanced crack control and repair	techniqu	T-4-LD		45			
Dofore	naas			1 otal P	eriods	45			
	ences.		z 1 100 ⁴						
1. FC	ontana and	Greene., Corrosion Engineering, McGraw Hill Book Co, New Y	Ork, 198.	5. DII Marri	Dalk: 10	002			
2. Kč	dinalii V	$C_{\rm s}$ Surface Engineering for Wear Desistence. Promise Hell Inc.	Diu allun	od Cliff	Denn, r	905.			
J. Due	$\Delta 1988$	G., Surface Engineering for wear Resistance, Prenuce Han Inc., I	Engelwo	ou Ciiii,	inew jer	sey,			
	$1: \sim 11 11$	Comparison and Comparison Control John Wiley and Song New Y	Contra LIC	1005					
4. Unlig, n.n., Corrosion and Corrosion Control, John Wiley and Sons, New York, USA, 1985									
At end	At and of this course, the students will be able to								
	Identify	the necessity of corrogion studies with respect to places							
$\frac{001}{002}$	Monitor	the rate of corrosion in steel and concrete of RCC and pre-stresse	d struct	ires					
CO2	Explain	testing methodology and standards of corrosion at various condition	ions						
CO3	Illustrat	e the process of polarization and its techniques	10113.						
C04	Discuss	the concents of electro less plating and apodizing							
005	Discuss	the concepts of creetto ress platting and anouizing.							

CO6 Know the concepts of Chemical resistance of concrete and other durability tests methods on concrete.

Mapping with Programme Outcomes:

Course Outcomes		Pro	ogram Ou	itcomes (I	POs)		Program	n Specific (Outcomes (PSO's)
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1		1	2	1		3	2	1	
CO2	1		2	2	2		3		2	1
CO3			2	1	2		2	1	1	
CO4			2	2	3	3	2	1		
CO5	1		1	2	1	2	2	1		
CO6	1		1	1	2		2	2	1	1

3-0-0 3 Programme: M.E. Structural Engineering Sem: - Category: PE Aim: To learn the principles of measurements of static and dynamic response of structures carryout the field test and rehabilitation of the structures 9 STRUCTURAL HEALTH 9 Introduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural Health Monitoring – introduction – Concepts - Various Measures - Structural Safety in Alteration. 9 Introduction - Assessment of Health of Structure - Collapse and Investigation – Investigation Management - SHM Procedures. 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DynAMIC FIELD TESTING 9 Introduction - Supes of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro-mechanical impedance (EMI) technique - adaptations of EMI technique. 9 Instructural Health Monitoring Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 4 5 Instructural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. O	192S	EE07STRUCTURAL HEALTH MONITORINGL-T-PC										
Programme: M.E. Structural Engineering Sem: Category: PE Aim: To learn the principles of measurements of static and dynamic response of structures carryout the field test and rehabilitation of the structures To learn the principles of measurements of static and dynamic response of structures carryout the field test and rehabilitation of the structures Image: Structural Engineering 9 Introduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural Maintenance - Structural Safety in Alteration. 9 STRUCTURAL AUDIT 9 Introduction - Assessment of Health of Structure - Collapse and Investigation – Investigation Management - SHM Procedures. 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro-mechanical impedance (EMI) technique - adaptations of EMI technique. 9 Introduction - Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 4 5 Itelath Monitoring of Structure understanding the causes and factors.							3-0-0	3				
Aim: To learn the principles of measurements of static and dynamic response of structures carryout the field test and rehabilitation of the structures STRUCTURAL HEALTH 9 Introduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural Health Monitoring – introduction – Concepts - Various Measures - Structural Safety in Alteration. 9 Introduction - Assessment of Health of Structure - Collapse and Investigation – Investigation Management - SHM Procedures. 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - System S - Remote Structural Health Monitoring. 9 Repairs AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Introduction - Gase Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique adaptations of EMI technique. 9 Introduction - Gase Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 20	Progra	amme:	M.E. Structural Engineering	Sem:	-	Cate	gory:	PE				
Interduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural Health Monitoring - introduction - Concepts - Various Measures - Structural Safety in Alteration. STRUCTURAL AUDIT 9 Introduction - Assessment of Health of Structure - Collapse and Investigation - Investigation Management - SHM Procedures. 9 STATIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Memote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Instructural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 4 I. Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4 At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure understanding the causes and factors.	Aim		To learn the principles of measurements of static and dynamic r	response	ofs	tructu	ires carry	yout				
STRUCTURAL HEALTH 9 Introduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural Health Monitoring - introduction - Concepts - Various Measures - Structural Safety in Alteration. STRUCTURAL AUDIT 9 Introduction - Assessment of Health of Structure - Collapse and Investigation - Investigation Management - SHM Procedures. 9 STATIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Instructural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 4 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 5 3. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course, the students will be able	Ann.		the field test and rehabilitation of the structures									
STRUCTURAL HEALTH 9 Introduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural Health Monitoring - introduction - Concepts - Various Measures - Structural Safety in Alteration. STRUCTURAL AUDIT 9 Introduction - Assessment of Health of Structure - Collapse and Investigation - Investigation Management - SHM Procedures. 9 STATIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 45 References: 1 Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 45 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 3 3. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: 3. Structural He												
Introduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural Health Monitoring – introduction – Concepts - Various Measures - Structural Safety in Alteration. STRUCTURAL AUDIT 9 Introduction - Assessment of Health of Structure - Collapse and Investigation – Investigation Management - SHM Procedures. STATIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- mechanical impedance (EMI) technique - adaptations of EMI technique. Total Periods 45 References: 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons,2007. 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. COU Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using static field methods. CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Supes of static tests, simulation and Louding methods.	STRUCTURAL HEALTH 9											
Health Monitoring – introduction – Concepts - Various Measures - Structural Safety in Alteration. 9 STRUCTURAL AUDIT 9 Introduction - Assessment of Health of Structure - Collapse and Investigation – Investigation Management - SHM Procedures. STATIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro-mechanical impedance (EMI) technique - adaptations of EMI technique. 9 Instructural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 45 References: . . 1. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. . 2. Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. . Course Outcomes: . . . At end of this course, the students will be able to	Introduction - Factors affecting Health of Structures - Causes of Distress, Regular Maintenance - Structural											
STRUCTURAL AUDIT 9 Introduction - Assessment of Health of Structure - Collapse and Investigation – Investigation 9 Introduction - Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro-mechanical impedance (EMI) technique - adaptations of EMI technique. 9 Instructural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 45 References: 1 Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4 Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the hea	Health	Monitori	ng – introduction – Concepts - Various Measures - Structural Sa	tety in A	lter	ation.						
Introduction - Assessment of Health of Structure - Collapse and Investigation – Investigation Management - SHM Procedures. STATIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- mechanical impedance (EMI) technique - adaptations of EMI technique. References: 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons,2007. 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: Cool Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using static field methods. CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various types of static tests, simulation and Louding methods.	STRU	CTURA	LAUDIT					9				
Management - SHM Procedures. 9 STATIC FIELD TESTING 9 Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Instructural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 45 References: 1 Structural Mealth Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 45 At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO4 Suggest repairs and rehabilitation measures of the structure CO4	Intro	duction -	Assessment of Health of Structure - Collapse and Investigation -	– Investi	gat	ion						
Introduction - Types of Static Tests - Simulation and Loading Methods - sensor systems and hardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Introduction - Gase Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Introduction - Scare Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique adaptations of EMI technique. 9 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 45 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 3. 3. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end		ement - S	D TESTINC					0				
Introduction - Types of State Tests - Simulation and Eodeling Methods - Sensor Systems and nardware requirements - Static Response Measurement. 9 DYNAMIC FIELD TESTING 9 Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 9 Introductral Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 45 References: 1. Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 45 Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulati	JIAI	IC FIEL	DIESTING	annan a	t	oma d	nd hor	9				
Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- 9 Introduction - Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 45 Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the student	require	ements - S	tatic Response Measurement	sensor s	syst	enis a	ing nare	Iwale				
Introduction - Types of Dynamic Field Test - Stress History Data - Dynamic Response Methods - Hardware for Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electromechanical impedance (EMI) technique - adaptations of EMI technique. 45 References: Total Periods 45 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 4 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 5 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006. 4 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using dynamic field tests CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO4 Suggest repairs and hardware for EDAS	DYNA	MIC FI						9				
Remote Data Acquisition Systems - Remote Structural Health Monitoring. 9 REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro- mechanical impedance (EMI) technique - adaptations of EMI technique. 45 References: Introduction of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2006. 45 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 5 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 5 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. 5 Course Outcomes: At end of this course, the students will be able to 5 CO2 Assess the health of structure using static field methods. 5 CO3 Assess the health of structure using dynamic field tests 5 CO4 Suggest repairs and rehabilitation measures of the structure 5 CO5 Know the various Sensor state tests, simulation and Louding methods. 5 CO4 Suggest repairs and rehabilitation measures of the structure 5	Introdu	iction - T	vpes of Dynamic Field Test - Stress History Data - Dynamic Res	ponse M	leth	ods -	Hardwa	re for				
REPAIRS AND REHABILITATIONS OF STRUCTURES 9 Introduction - Case Studies (Site Visits) - piezo- electric materials and other smart materials - electro-mechanical impedance (EMI) technique - adaptations of EMI technique. 45 Total Periods 45 References: 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various types of static te	Remote	e Data A	equisition Systems - Remote Structural Health Monitoring.	ponse n	1001	1045	1141474	10 101				
Introduction - Case Studies (Site Visits) - piezo– electric materials and other smart materials - electro- mechanical impedance (EMI) technique - adaptations of EMI technique. Total Periods 45 References: 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons,2007. 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using static field methods. CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Seneor sweares and hardware for PDAS	REPA	IRS ANI	REHABILITATIONS OF STRUCTURES					9				
mechanical impedance (EMI) technique - adaptations of EMI technique. Total Periods 45 References: 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods.	Introdu	ction - C	Case Studies (Site Visits) - piezo- electric materials and oth	ner smai	rt n	nateria	als - ele	ectro-				
Total Periods 45 References: 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons,2007. 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6	mechan	ical impe	dance (EMI) technique - adaptations of EMI technique.									
References: 1. Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. 2. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons, 2007. 3. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK, 2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods.					[Fotal	Periods	45				
 Structural Health Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo Güemes, John Wiley and Sons, 2006. Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons,2007. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. 	Refere	ences:										
 Health Monitoring of Structural Materials and Components Methods with Applications, Douglas E Adams, John Wiley and Sons,2007. Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. 	1. Stru Son	uctural H ns, 2006.	ealth Monitoring, Daniel Balageas, Claus Peter Fritzen, Alfredo	Güemes,	Joł	nn Wi	ley and					
 Structural Health Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H. Li and Z. D. Duan, Taylor and Francis Group, London, UK,2006. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. 	2. Hea Ada	alth Moni ams, Johr	toring of Structural Materials and Components Methods with Ap Wiley and Sons,2007.	plication	ns, Ì	Dougl	as E					
 and Francis Group, London, UK,2006. 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS 	3. Stru	uctural H	ealth Monitoring and Intelligent Infrastructure, Vol1, J. P. Ou, H	. Li and	Z. I	D. Du	an, Taylo	or				
 4. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc, 2007. Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS 	and	Francis	Group, London, UK,2006.									
Course Outcomes: At end of this course, the students will be able to CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS	4. Stru	uctural H	ealth Monitoring with Wafer Active Sensors, Victor Giurglutiu, A	Academi	ic P	ress I	nc, 2007					
At end of this course, the students will be able toCO1Diagnosis the distress in the structure understanding the causes and factors.CO2Assess the health of structure using static field methods.CO3Assess the health of structure using dynamic field testsCO4Suggest repairs and rehabilitation measures of the structureCO5Know the various types of static tests, simulation and Louding methods.CO6Know the various Sensor systems and hardware for PDAS	Course	e Outcon	nes:									
 CO1 Diagnosis the distress in the structure understanding the causes and factors. CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS 	At end	of this co	ourse, the students will be able to									
 CO2 Assess the health of structure using static field methods. CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS 	CO1	CO1 Diagnosis the distress in the structure understanding the causes and factors.										
 CO3 Assess the health of structure using dynamic field tests CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS 	CO2	2 Assess the health of structure using static field methods.										
 CO4 Suggest repairs and rehabilitation measures of the structure CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS 	CO3	CO3 Assess the health of structure using dynamic field tests										
CO5 Know the various types of static tests, simulation and Louding methods. CO6 Know the various Sensor systems and hardware for PDAS	CO4	4 Suggest repairs and rehabilitation measures of the structure										
CO6 Know the various Sensor systems and hardware for PDAS	CO5	Know th	ne various types of static tests, simulation and Louding methods.									
COU KIOW the various period systems and hardware for KDAS.	CO6	Know th	ne various Sensor systems and hardware for RDAS.									
Course Outcomes		Pro	ogram Ou	itcomes (I		Program Specific Outcomes (PSO's)						
--------------------	-----	-----	----------	------------	-----	-----------------------------------	------	------	------	------		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4		
CO1	1		3	2	1	1	1			1		
CO2	3		1	3	1		1	2	1	1		
CO3	3		1	3	1		1	2	1	1		
CO4	2		2	2	2	2	1	1	1	1		
CO5	1		3	2	1	3	1		1			
CO6			2	1	2	3	1	2	2	2		

192 S	EE08	STRUCTURAL OPTIMIZATION		L-T-P	C
				3-0-0	3
Progra	amme:	M.E. Structural Engineering Sem:	- Cate	gory:	PE
Aim:		To study the optimization methodologies applied to structural engineeri	ng appro	aches.	
BASIC	C PRINC	IPLES AND CLASSICAL OPTIMIZATION TECHNIQUES			9
Definit	tion - Ob	jective Function; Constraints - Equality and inequality - Linear and	non-linea	r, Side,	Non-
negativ	vity, Beha	viour and other constraints - Design space- Feasible and infeasible - G	Convex a	nd Conc	ave -
Active	constrai	nt - Local and global optima. Differential calculus – Optimality cr	riteria Si	ngle var	iable
optimiz	zation - N	Iultivariable optimization with no constraints - (Lagrange Multiplier me	thod) – w	ith inequ	iality
		III-I UCKET CHIERAD DDOCDAMMINC			0
	AK AND	NON-LINEAR PROGRAMMING			9
LINEA	AR PRO	GRAMMING: Formulation of problems - Graphical solution - A	nalytical	methods	\$ - 1
Standa	ra iorm -	Slack, surplus and artificial variables - Canonical form - Basic feasible	e solutio	n - simpl	lex
	1-1wop I INFAR	PROCRAMMINC: One Dimensional minimization methods: Uni dir	nensional	l - Uni n	lebon
functio	n - Exha	ustive and unrestricted search - Dichotomous search - Fibonacci Meth	nod - G	olden se	ction
method	l - Interpo	blation methods. Unconstrained optimizationTechniques.	104 0	oraen se	Ction
GEON	IETRIC	PROGRAMMING			9
Polyno	mial - de	gree of difficulty - reducing G.P.P to a set of simultaneous equation	s - Unco	onstrained	d and
constra	ined prob	blems with zero difficulty - Concept of solving problems with one degree	ofdifficu	ılty	
DYNA	MIC PR	OGRAMMING			9
Bellman	n's princij	ble of optimality – Representation of a multistagedecisionproblem concept	of		sub-
optimiz	ationprob	emsusingclassicalandtabularmethods.			
STRU	CTURA	LAPPLICATIONS			9
Method	sforoptim	aldesignofstructural elements, continuousbeamsand singlestoriedframes	usingplast	ic theor	ту –
Minimu	mweightc	lesignfortrussmembers-Fullystresseddesign- Optimization principles to desig	n of R.C.	structures	s such
as multi	storeybuil	dings, water tanks andbridges.		.	4.5
D.C			Total	Periods	45
Refere	ences:				
1. Rac	o,S.S. "O	ptimization theory and applications", Wiley Eastern (P)Ltd., 1984			
2. Uri	Krish, "(Detimum Structural Design", McGraw Hill Book Co. 1981			
3. Spi	int, "Opti	mization in Structural Design", Civil Engineering and Engineering Mech	nanics		
Ser	vices, Pre	entice-Hall, New Jersey1971.			
4. Iye	ngar.N.G	.R and Gupta.S.K, "Structural Design Optimisation", Affiliated East Wes	st Press L	.td,	
Nev Comme	w Deini, I	997.			
Course	e Oulcon	les:			
At end					
COI	Apply t	he basic ideas in optimization to make the structures as lightly as possible	e .		
CO2	Apply t	ne linear programming techniques in engineering optimization.			
CO3	Apply N	Ion Linear programming techniques in Engineering problem optimization	n.		
CO4	Solve th	e unconstrained and constrained optimization problems in structural desi	gn		
CO5	Underst	and the methods in solving the problems related to geometric and dynam	ic Progra	mming.	<u></u>
CO6	Have k	nowledge in advanced techniques of optimization such as genetic alg	gorithm	and Arti	ficial
	Neural l	Networks.			

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1		3	1	2	1	2		2	1
CO2	1		1	2	2	1	2	1	2	1
CO3	1		3	2	1		2	1	2	1
CO4	2		3	2	2		2	1	2	1
CO5	2		3	3	2		2	1	2	1
CO6	1		3	2	2		1	2	2	1

<u>192</u> S	EE09	EARTHQUAKE ANALYSIS AND DESIGN OF STRUC	CTURI	ES		L-T-P	C
						3-0-0	3
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cate	gory:	PE
Aim:		To study the effect of earthquakes, analysis and design of earthqu	iake re	sista	ant St	ructures	•
EART	HQUAK	EGROUNDMOTION					9
Engine	ering Se	ismology (Definitions, Introduction to Seismic hazard, Earth	quake	Phe	enome	enon), S	Seism
tectoni	cs and Se	ismic Zoning of India, Earthquake Monitoring and Seismic Instru	umenta	tion	, Cha	racterist	ics of
Strong	Earthqua	ke Motion, Estimation of Earthquake Parameters, Microzonation.					
EFFE	CTS OF	EARTHQUAKEONSTRUCTURES					9
Dynam	nics of St	ructures SDOFS MDOFS - Response Spectra - Evaluation of Ea	rthqual	ke I	Forces	s as per	codal
provisi	ons - Effe	ect of Earthquake on Different Types of Structures - Lessons Learr	nt Fron	n Pa	st Ea	rthquake	ès.
EART	HQUAK	E RESISTANT DESIGN OFMASONRYSTRUCTURES				-	9
Structu	ıral Svste	ms - Types of Buildings - Causes of damage - Planning Cons	siderati	ions	- Ph	ilosoph	v and
Princip	ole of Ear	thquake Resistant Design - Guidelines for Earthquake Resistant D	Design	- Ea	arthqu	ake Res	sistant
Mason	ry Buildi	ngs - Design consideration – Guidelines.	0		1		
EART	HOUAK	E RESISTANT DESIGN OFRCSTRUCTURES					9
Eartho	uake Resi	stant Design of R.C.C. Buildings - Material properties - Lateral lo	oad ana	lvsi	is - C	apacity	based
Design	and deta	iling – Rigid Frames – Shear walls.				apaenty	04004
VIBR	ATIONC	ONTROLTECHNIQUES					9
Vibrati	ion Contr	of Tuned Mass Dampers – Principles and application Basic Cond	cent of	Sei	smic	Rase Isc	lation
viorio		ns Casa Studios Important structures	cept of	bei	sinc		nation
- vario	us Syster	ns- Case Studies, important su detures.				D • 1	1 4 7
Defense	2000				otal	Periods	45
1 Drok	his C A	"Earthquake Desistant Engineering Structures VIII" WIT Press 20	011				
1. DIEL 2. \mathbf{Dru}	Dula C. A.	"Earthquakes" W H Ereamon and Company, New York 2004	011				
2. Druc	$\frac{1}{2}$ A DOU	"Earthquakes with Freeman and Company, New York, 2004.	ross 20	07			
J. Dug	$gal S \mathbf{K}$,	Earthquake Resistant Design of Structures, Oxford University F.	ofit" E	$\frac{1}{100}$	ior		
4. Mon	nce & Te	chnology, 2012	ont, E	1500	ici		
5. Panl	kai Agarw	al and Manish Shrikhande. "Earthquake Resistant Design of Struc	ctures".	Pre	entice		
Hall	of India,	2009.		,			
6. Paul	ay,T and	Priestley, M.J.N., "Seismic Design of Reinforced Concrete and Ma	asonry	bui	lding	s",	
John	n Wiley a	nd Sons,1992.					
Course	e Outcon	les:					
At end	of this co	burse, the students will be able to					
CO1	Underst	and the causes and effect of earthquake.	.1 .		<u>c</u>		
CO2	They w	and the structures to the ear and the structures to the ear and the structures of IS codes of practice	irthqua	ке	torces	s as pe	r the
CO3	Estimate	the Earthquake parameters and microzonation					
C03	Learned	Lessons from past Farthquakes					
C04	Know fl	ne guidelines for Earthquake resistant Design					
CO6	Design	of earthquake resistant Structures					
000	2051511	en e					

Mapping wit	n Programme	Outcomes:
-------------	-------------	------------------

Course Outcomes		Pro	ogram Ou	itcomes (I		Program Specific Outcomes (PSO's)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3		3	2	1		2		1	
CO2	3		3	3	2		2	1	3	2
CO3	2		3	2	2	2	1	1	1	
CO4	2		3	2	1	1	1			1
CO5	2		3	1	2	3	1	1	3	2
CO6	2		1	1	3	2	1	1	3	2

1928	SEE10	DESIGN OF BRIDGES				L-T-P	С		
						3-0-0	3		
Progra	amme:	M.E. Structural Engineering	Sem:	-	Ca	tegory:	PE		
Aim:		To study the loads, forces on bridges and design of several type	es of brid	lges					
INTR	ODUCT	ON					9		
Classif	fication, i	nvestigations and planning, choice of type, I.R.C.specifications	for road	l bri	idge	s, standar	d live		
loads,	other force	es acting on bridges, Theories of Lateral Load distribution, gener	ral desig	n co	onsi	derations.			
SHOR	<u>ET SPAN</u>	BRIDGES					9		
Load c	listributio	n theories, analysis and design of slab culverts, tee beam and slal	b bridges	s.					
LONG SPAN GIRDER BRIDGES									
Design principles of continuous bridges, box girder bridges, and balanced cantilever bridges.									
DESIG	GN OF P	RESTRESSED BRIDGES					9		
Flexur	al and to	sional parameters – Carbon's theory – Distribution co-efficient	by exac	ct a	naly	sis – Desi	ign of		
girder	Section –	Tong in girder check for stresses at various sections	Live loa	d a	na (diaa	dead load	snear		
Dianh	- Caule	nd block – short term and long term deflections	CHECK I	01	ulag	gonal tens	1011 -		
DESIGN OF PLATE GIRDER BRIDGES. BEARINGS AND									
SUBS'	TRUCTU	URES					9		
Design	of rivete	d and welded plate girder bridges for highway and railway l	oading -	– w	vind	effects -	main		
section	, splicing	curtailment, stiffeners – Different types of bearings – Design of	f bearing	gs –	Des	sign of ma	asonry		
and cor	ncrete pie	rs and abutments – Types of bridge foundations – Design of four	dations.			-	-		
]	Fota	al Periods	45		
Refere	ences:								
1. Pon	nuswamy	S., "Bridge Engineering", Tata McGraw Hill,2008.							
2. Johr	nson Vict	or, D. "Essentials of Bridge Engineering", Oxford & IBH Publish	ning Co.	Ne	w D	elhi.			
3. Jaga	deesh.T.I	R. andJayaram.M.A., "Design of Bridge Structures", PrenticeHal	l of Indi	a P	vt. L	Ltd. 2004.			
4. Ran	na V.K."	Concrete Bridge Practice" Tata McGraw Hill Publishing Compar	ıy, New	De	lhı,	1991.			
5. Kab	Inson J.K	(1996), Plers abutments and form work for bridges, B.I.Public	cations,	30m	ibay	/.			
6. Kris	nnaraju r	(1998), "Design of bridges", Oxford and IBH Publishing house	, NewDo		•	10 11			
7. Tay	lor, F.W.,	Thomson, S.E., and Smulski E., "Reinforced Concrete Bridges"	, John W		y an	id Sons, N	ew		
Cours	$\mathbf{K}, 1955.$	2001							
At and	of this co	urse, the students will be able to							
	Underst	and the design theories for super structure and substructure of hr	idaas						
	Know 4	and the design meetres for super structure and substructure of br	iuges						
		and Design of slab culverts, the beam and slab bridges							
C03	Underst	and the behavior of continuous bridges how girder bridges							
C04	Decign	and the behavior of continuous bridges, box grider bridges							
CO5	Anal	the short term and Long term deflections							
	Analyze	the short term and Long term deflections.							

Course Outcomes		Pro	ogram Ou	itcomes (H	POs)		Program	am Specific Outcomes (PSO'				
0 400011105	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4		
CO1	2		1	2	3	1	2	1	3	2		
CO2		2	1	2			2	1	1	1		
CO3	1		2	1		1	2	2	3	2		
CO4	1	3			1		1	1	2	1		
CO5	1		3	2		1	1	2	3	2		
CO6			1		2	3	2	1	2	2		

192S	EE11	DESIGN OF FORMWORK				L-T-P	С				
						3-0-0	3				
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cate	egory:	PE				
Aim		To impart knowledge on common form work and special f	form wo	orks	s, and	l design	of				
Ann;		form work with different materials for various structural el	lements	3							
FORM	IWORK	MATERIALS					9				
Introdu	ction -	Requirements and Selection of Formwork - Formwork Mater	ials- Ti	mbe	r, Pl	ywood, l	Steel,				
Alumir	nium, Pla	stic, and Accessories. Horizontal and Vertical Formwork Support	ts.								
FORM	IWORK	DESIGN					9				
Introdu	iction - C	Concepts, Formwork Systems and Design for Foundations, Walls,	Colum	ns, S	Slab a	nd Beam	IS				
FORM	IWORK	DESIGN FOR SPECIAL STRUCTURES					9				
Introdu	iction - H	Formwork Design for Special Structures -Shells, Domes, Folded I	Plates, C)ver	head	Water T	anks,				
Natura	I Draft C	ooling Tower, Bridges.									
FLYIN	NG FOR	MWORK	D				9				
Flying	Formw	ork - Table Form, Tunnel Form, Slip Form, Formwork for	Precast	Co	oncret	e, Form	work				
		Sues –Pie- and Post-Award.					0				
FURN			•		1.1.1		<u> </u>				
Formwo	ork Failu	res - Causes and Case studies in Formwork Failure, Formwork I	ssues ir	1 MI	ulti- S	Story Bu	ilding				
Constit	iction.				Fatal	Dorioda	45				
Doforo	noos				lotai	renous	45				
1 For	mwork f	or Concrete Structures Peurify Mc Graw Hill India 2015									
1. For 2. For	mwork f	or Concrete Structures, Kumar NeeraiJha, Tata McGraw Hill Edu	cation.2	2012	2.						
3. IS	14687: 1	999. False work for Concrete Structures - Guidelines, BIS.	,	-							
Course	e Outcor	nes•									
At end	of this c	ourse, the students will be able to									
	Select r	proper formwork accessories and material									
CO^2	Design	the form work for Beams Slabs, columns, Walls and Foundation	e								
CO2	Design	the form work for Special Structures									
CO4	Unders	tand the working of flying formwork									
C05	Indoe f	he formwork failures through case studies									
CO6	Able to	when to understand Formwork management issues									
	AUIC 10	understand Formwork management issues.									

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
0 4000 1105	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	1			1	1	1			1
CO2	1		1	2	3	2	1	1	3	2
CO3	1		1	2	3	2	2	2	3	2
CO4	1	3	2	1			2	2	3	2
CO5	2	2	1		1	2	1		1	1
CO6	1	3	2	2			1	1	1	1

192S	92SEE12 DESIGN OF HIGH RISE STRUCTURES									
						3-0-0	3			
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cate	egory:	PE			
Aim:		To study the behaviour, analysis and design of tall structures.								
DESIC	GN PRIN	CIPLES AND LOADING					9			
Gene	eral - Fac	ctors affecting growth, height and structural form - Design phil	losophy	- I	oadin	g - Grav	vity			
load	ing - Wir	d loading - Earthquake loading - Combinations of loading - Stre	ngth an	d St	ability	y - Stiffn	ess			
and	drift limi	tations - Human comfort criteria- Creep effects - Shrinkage eff	fects - 7	Гem	perati	are effect	ts -			
Fire	1									
- Foun	dation set	tiement – Soil structure interaction, Material.					0			
BEHA	VIOUR	OF VARIOUS STRUCTURAL SYSTEMS	Divid		aa ha	and fu	9			
Factors	s affectin	shear wells, coupled shear wells, well frames, tubulars, cores	futrico	ran	brook	aced in	umes,			
megasy	i francs, vstems	shear wans, coupled shear wans, wan-names, tubulars, cores,	Tuttigg	,01 -	Diaco		yonu			
ANAI	VSIS O	F TALL BUILDINGS					9			
Mod	leling for	analysis - Assumptions - Modeling for approximate analyses - M	Iodeling	g foi	accu	rate analy	vsis			
- Redu	ction tecl	iniques - Dynamic analysis - Response to wind loading - Along	-wind r	espo	onse -	Across-	wind			
respon	se - Estir	nation of natural frequencies & damping - Types of excitation	- Desig	n to	mini	mise dyr	namic			
respon	se - Resp	onse to earthquake motions - Response to ground accelerations	- Respo	nse	spect	rum anal	ysis -			
Estima	tion of na	atural frequencies and damping - Human response to building mo	otions.							
STRUCTURAL ELEMENTS 9										
Section	al shapes.	properties and resisting capacity, design, deflection, cracking, pre-	stressing	, sh	ear flo	w, Desig	gn for			
differen	ntial move	nent, creep and shrinkage effects, temperature effects and fire resistance	2.				-			
STAB	ILITY O	F TALL BUILDINGS					9			
Overall	buckling	analysis of frames, wall-frames, Approximate methods, second orde	r effects	of	gravity	of loadi	ng, P-			
Delta a	analysis,	simultaneous first-order and P- Delta analysis, Translational,	Torsi	ona	in	stability,	out			
otplum	peffects,st	thessofmemberinstability, effect of foundation rotation.								
D. 6					Fotal	Periods	45			
Refere	ences:									
1. Bry	an Staff	ord Smith and Alexcoull, "Tall Building Structures - Analysi	s and I	Desi	gn", .	John				
Wi	ley and S	ons, Inc.,1991.		0.0						
2. Tai	anath B.	S., "Structural Analysis and Design of Tall Buildings", Mc Graw	Hill,19	88. D		a n d				
5. Gu	pla. I.P.,	Editor), Proceedings of National Seminar on High Kise Su	ad Nov	- D	esign	and 005				
4 Lin	T Y and	Stotes Burry D "Structural Concepts and systems for Archit	ects an	d F	noine	ers"				
Joh	n Wilev.	1988.	cets un	u L	inginie	,				
5. Bee	edle.L.S.,	"Advances in Tall Buildings", CBS Publishers and Distributors,	Delhi, 1	986	.					
Course	e Outcon	nes:								
At end	of this co	purse, the students will be able to								
CO1	Describ	e the development of high rise building structures.								
CO2	Know t	ne shiftness and drift limitation								
CO3	Apply t	he behavior of shear walls under lateral loading.								
CO4	Know t	ne factors affecting growths height ans structural form.								
CO5	Explain	the design of flat slab building structures and tubular system.								
CO6	Examin	e the approximate design of Rigid Frame buildings.								
		· · · · · · · · · · · · · · · · · · ·								

Course Outcomes		Pro	ogram Ou	itcomes (H	POs)		Program Specific Outcomes (PSO's)				
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	
CO1	2	1	1	3			1			1	
CO2		2			1		1		1		
CO3	2	2		1		1	1	1	2	1	
CO4		3			2		1	1		1	
CO5	1	2	2		1	1	2	2	3	2	
CO6	2		1	2	3		2	2	3	2	

r

192S	EE13	DESIGN OF MASONRY STRUCTURES				L-T-P	C			
						3-0-0	3			
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cat	egory:	PE			
A :		To impart knowledge about the engineering properties and	l uses o	f m	asor	nry units,				
Alm:		defects and crack in masonry and its remedial measures.				-				
INTRO	ODUCTI	ON					9			
Histori	cal Persp	ective, Masonry Materials, Masonry - Design Approaches, C	Verview	v o	f Lo	ad Condi	tions,			
Compr	ession Be	ehaviour of Masonry, Masonry Wall Configurations, Distribution	of Late	ral	Force	es				
FLEX	URAL S	FRENGTH					9			
Introdu	ction -Fl	exural Strength of Reinforced Masonry Members: In plane and C	Out-of-pl	lane	e Loa	ding.	-			
SHEA	R STRE	NGTH					9			
Interac	tions: Str	uctural Wall, Columns and Pilasters, Retaining Wall, Pier and F	oundation	on.	Shea	r Strengt	h and			
Ductili	ty of Rei	nforced Masonry Members.					-			
PRES	FRESSE	D MASONRY					9			
Introdu	ction- St	ability of Walls, Coupling of Masonry Walls, Openings, Column	s, Beam	ıs.						
ELAS	ΓΙC ANI	DINELASTIC ANALYSIS					9			
Introdu	ction -Mo	odeling Techniques, Static Push Over Analysis and use of Capacit	ity Desig	gn S	Spect	ra	-			
					Fota	l Periods	45			
Refere	nces:									
1. De	esign of R	einforced Masonry Structures, Narendra Taly, ICC, 2ndEdn,								
2. M	asonry St	ructures: Behavior and Design, Hamid Ahmad A. and Drysdale F	Robert G	i.,19	994.					
3. M	echanics	of Masonry Structures, Editor: Maurizio Angelillo,2014.								
4. Ea	rthquake-	resistant Design of Masonry Buildings, TomaeviMiha, Imperial Coll	ege Pres	s,19	999.					
Course	e Outcon	les:								
At end	of this co	purse, the students will be able to								
CO1	Underst	and the masonry design approaches.								
CO2	Analyze	Reinforced Masonry Members.								
CO3	Determi	ne interactions between members.								
CO4	D4 Determine shear strength and ductility of Reinforced Masonry members.									
CO5	Check t	ne stability of walls								
CO6	Perform	elastic and Inelastic analysis of masonry walls.								

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
0 40000000	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1	3		2	1		2	1	2	2
CO2			2	2	1	3	2	1	2	2
CO3	1	2			2		1		1	1
CO4	2	1		3			2	1	1	1
CO5	2		1		3	1	1			1
CO6			2		2		1	1	2	1

192S	EE14	ADVANCED DESIGN OF FOUNDATION	S			L-T-P	С					
						3-0-0	3					
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cat	egory:	PE					
Aim:	Aim: To Gain knowledge of about advanced topics of foundation design and analyses, supplementing their comprehensive knowledge acquired in basic foundation engineering course											
SHAL	LOW FO	DUNDATION					9					
Introduction, Planning of Soil Exploration for Different Projects, Methods of Subsurface Exploration, Methods of Borings along with Various Penetration Tests.Shallow Foundations, Requirements for Satisfactor Performance of Foundations, Methods of Estimating Bearing Capacity, Settlements of Footings and Raft Proportioning of Foundations using Field Test Data, Pressure - Settlement Characteristics from Constitutive Laws.												
PILE	FOUNDA	ATION					9					
Introdu Founda Estima Uplift(action, P ations, Pi tion of Capacity of	ile Foundations, Methods of Estimating Load Transfer of le Group Capacity and Settlement, Laterally Loaded Piles, H Load- Settlement Behavior of Piles, Proportioning of Pile of Piles.	Piles, S Pile Loa Found	Sett ad 7 atio	lemer Fests, ons, l	nts of P Analytic Lateral a	ile cal ind					
WELI	LFOUND	ATION					9					
Introdu	iction, W	ell Foundation, IS and IRC Code Provisions, Elastic Theory and	Ultimat	e Re	esista	nce						
Metho	dsTunnels	and Arching in Soils, Pressure Computations around Tunnels										
OPEN	CUT						9					
Introdu Types.	iction, Op	en Cuts, Sheeting and Bracing Systems in Shallow and Deep Op	en Cuts	in	Diffe	rent Soil	•					
COFF	ERDAM						9					
Introdu structur	ction, Correction	ffer Dams, Various Types, Analysis and Design, Foundations un ion	der upli	ftin	g loac	ls, Soil-						
				, r	Fotal	Periods	45					
Refere	ences:											
 Desi Four Ana 	gn of fou ndation A lysis and	ndation system, N.P. Kurian, NarosaPublishingHouse nalysis and Design, J. E. Bowles, Tata McGraw Hill NewYork. Design of Substructures, Sawmi Saran, Oxford and IBH Publish	ing Co.	Pvt.	Ltd,	NewDell	hi.					
Course	e Outcon	les:										
At end	of this co	urse, the students will be able to										
CO1	Decide	he suitability of soil strata for different projects.										
CO2	Know n	nethod of borings along with various penetration test.										
CO3	Know th	ne methods of estimating load transfer of piles.										
CO4	Design	shallow foundations deciding the bearing capacity of soil.										
CO5	Analyze	and design the pile foundation.										
CO6	Underst	and analysis methods for well foundation										

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
0 40001100	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1		3	2			2		3	1
CO2			3			2	2		2	1
CO3			2	1		2	1		1	1
CO4	2			2	3		2	1	3	2
CO5			2	1	3	1	2	2	3	2
CO6	1			2	2	3	2	1	3	2

192S	EE15	DESIGN OF INDUSTRIAL STRUCTURES	L-T-P	С
			3-0-0	3
Progra	amme:	M.E. Structural Engineering Sem: - Ca	tegory:	PE
Aim:		To study the requirements, planning and design of Industrial structures.		
PLAN	NING A	ND FUNCTIONAL REQUIREMENTS		9
Classif	ication	of Industries and Industrial structures - planning for Layout Requirement	ents rega	rding
Lightin	ig, Venti	lation and Fire Safety - Protection against noise and vibration - Guidelines of	Factories	Act.
INDUS	STRIAL	BUILDINGS		9
Design	of Sing	le & Multi-bay Industrial Structures in Concrete & Steel - Roots for Industr	ial Buildi	ngs -
	Girders	- Design of Corders and Nids – Machine foundations.		0
Turned	of power	nlanta Design of Turbo generator foundation containment structures		9
Types of		plants – Design of Turbo generator foundation – containment structures.		0
Transm		NSIVILISSION STRUCTURES		9
		SEDUCEUDES		•
AUXII		SIRUCIURES		9
Chimne	eys and co	boling Towers – Bunkers and Silos – Pipe supporting structures.		
5		Tota	l Periods	45
Refere	nces:			
I. Man	ohar S.N	, "Tall Chimneys - Design and Construction", Tata McGraw Hill, 1985.	-	
2. Sant	hakumar	A.R.an d Murthy S.S., "Transmission Line Structures", Tata Mc Graw Hill, 199	2.	
3. Srini	ivasulu P	and Vaidyanathan.C, "Handbook of Machine Foundations", Tata Mc Graw		
Hill,	1976.			
4. Jurg	en Axel A	Adam, KatharriaHausmann, Frank Juttner, Klauss Daniel, "Industrial Buildings:	A	
Des1	gn Manu	al", Birkhauser Publishers,2004.		
5. Proc	s. of Adv	anced course on "Industrial Structures", Structural Engineering Research Centre	,	
CODE	$\frac{111}{2}$	2. Q.		
	1005 (Dor	D. # D. 1074 Critaria for design of rainformed concrete hing for the storage of gran		
1. 15 - and	1995 (Pal	r 1) - 1974 - Chiena for design of remitorced concrete bins for the storage of gran	ular	
2 IS	1005 (Dat	Halchais. t II) 1074 General Requirements and assessment of hinl oads		
2. 13 ² 3 IS 6	+995 (Fai 5060 -19'	71 - Code of practice for Day lighting of factorybuildings		
4 IS 3	3103 -19	75- Code of practice for industrial ventilation		
5 IS 3	3483 -190	55 - Code of practice for Noise reduction in industrialbuildings		
6. IS:4	456-2000	- Code of Practice for Plain and ReinforcedConcrete.		
7. IS 6	5533 (Pai	t 2) -1989 - Code of practice for design and construction of steelchimneys.		
8. IS:8	375 (Part	1 to 5) - Code of Practice for Designloads.		
9. IS:8	802-1977	(Part 2) - Code of practice for use of structural steel in Over Head transmission 1	inetowers.	
10. IS:3	3370-196	7 - Part 2 to 4 - Code of Practice for Concrete Structures for the storage of liquid	ls –	
Rei	nforced (ConcreteStructures.		
11. IS:4	4091-197	9 - Code of Practice for Design and Construction of Foundations for Transmissio	on	
Lin	e Towers	andPoles.		
12. IS:9	7178-198	U - Uriteria for Design of Steel Bins for Storage of BulkMaterials.		
13. IS:2	29/4 (Pai	τ (τ (τ) - Code of practice for design and construction of machinefoundations		
Course	e Outcon	nes:		
At end	of this co	burse, the students will be able to		
CO1	D1scuss	the planning and functional requirements of Industrial structures.		
CO2	Know t	he guidelines of factories act		

CO3	Design of single and multi bay Industrial Structures in concrete and steel.									
COA	Discover the need to learn about the design concepts, and constructional aspects of Industrial									
004	structures.									
CO5	Analyse and evaluate the importance of various construction materials for Industrial constructions.									
CO6	Design portal frames, tower cranes and bracing system in Industrial buildings.									

Course Outcomes		Pr	ogram Oı	utcomes (l	Program Specific Outcomes (PSO's)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2		3	2			2	1	1	1
CO2		2	2	3			1		1	2
CO3	2		3		3		2	2	3	2
CO4	1		1		3		2	1	2	2
CO5			2	3		2	2	1	2	2
CO6	1				3		2	1	3	2

192SEE	16	FINITE ELEMENT ANALYSIS				L-T-P	С
						3-0-0	3
Programm	ne:	M.E. Structural Engineering	Sem:	-	Cat	egory:	PE
Aim:		To study the energy principles, finite element concept, stress and problems and applications.	llysis, m	eshi	ng, n	onlinear	
FUNDAM	IENT	TAL CONCEPTS					9
Introductio	on –	stresses and equilibrium - boundary conditions (Strain disp	placeme	ent	relati	ions) $-$ S	Stress
strain rela	tions	(potential energy and equilibrium) – Weighted integra	al and	we	ak f	ormulati	on –
	I app	roach – Rayleigh filz method.					0
UNE DIVI		to alement modeling, according to and along functions). The mo	4				9
– Assembly	n (Fii y of g v con	to bal stiffness matrix and load vector – Properties of k, finite element ditions – One dimensional prolems – Quadratic shape functions	ment eq	uati	ons a	nd treatm	ient
TRUSSES	<u>5</u>						9
Introductio	n (P	ane trusses) - Local and global coordinate systems - Elen	nent stif	fne	ss m	atrix – S	Stress
calculations structures).	s - P	roblems in finding stresses in truss members – Introduction to the	ree dim	ens	ional	trusses (space
TWO DIM	IENS	SIONAL PROBLEMS					9
two point for quadrature MISCELI	ormu form	la- Two dimensional integral – Problems in numerical integratio ula.	n using	gau	ss		9
		ments alots her diag and shell elements. EEM for dynami			En		
Auto Adapt	ive N	Intents – plate bending and shell elements – FEW for dynamic Iesh Generation Techniques – Introduction to three dimensional	problem	1115 15 -	FEM	software	auon-
Thurs Thoupt			prooren	10 7	Fotal	Periods	45
References	5:						
1. S. S. Bł	navik	atti, "Finite Element Analysis", New Age Publishers,2007.					
 C. S. Ku David H New Detection 	rishn Hutto elhi,2	amoorthy, "Finite Element Analysis: Theory and Programming", n, "Fundamentals of Finite Element Analysis", Tata McGraw Hi 005.	, Tata M llPublisl	lcG1 hing	raw- g Con	Hill, npany Li	1995 mited
4. Bathe, I	K.J., '	"Finite Element Procedures in Engineering Analysis", PrenticeH	all Inc.,	199	6.		
5. Zienkie	wicz	O.C. and Taylor, R.L., "The Finite Element Method", McGraw	– Hill, 1	987	7.		
6. Tirupat Prentice	hi R. e Hali	Chandrupatla, and Ashok D. Belegundu, "Introduction to Finite of India, 1997.	Elemen	ts ir	n Eng	ineering'	, ,
7. Moaver	1i, S.,	"Finite Element Analysis Theory and Application with ANSYS	", Prenti	ice	Hall I	Inc., 1999).
8. Rajasek 2003.	aran.	S, "Finite Element Analysis in Engineering Design", S.Chand an	nd Comj	pan	y Ltd	.,	
Course On	itcon	nes:					
At end of th	his co	burse, the students will be able to					
CO1 De	fine t	he theoretical basis of the weighted residual Finite Element Metl	hod.				
CO2 Im	plem	ent the Galerkin residual weak formulation into the Finite Elem	ent Met	hod	l for	the soluti	on of

	Ordinary and Partial Differential Equations
CO3	Select appropriate elements and formulate the structure accordingly to reproduce the real behavior.
CO4	Compute the stiffness values of an 8-noded element
CO5	Perform finite element analysis using 2-D triangular and rectangular elements.
CO6	Analyze two dimensional problems.

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2		3	2			3	2	3	2
CO2	2		3		2		2	3	3	2
CO3	3		2		2		1	2	1	1
CO4	2		3	1	2		2	1	3	2
CO5	2		3		2		2	2	3	2
CO6	2		2		3		2	1	2	2

ſ

٦

192S	SEE17	SOIL STRUCTURE INTERACTION				L-T-I	<u>'</u> C				
						3-0-0	3				
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cat	egory:	PE				
Aime		To get exposed to the behavioral aspects of structures when it is	s found	ed o	n diff	erent sc	ils with				
Ann:		different characteristics.									
SOIL-	FOUND	ATION INTERACTION					9				
Introduction to soil-Foundation interaction problems, soil behaviour, Foundation behaviour, Interfa											
behaviour, Scope of soil foundation interaction analysis, soil response models, Winkler, Elastic continuum											
Two parameter elastic models, Elastic plastic behaviour and Time dependent behavior.											
BEAN	1 ON EL	ASTIC FOUNDATION-SOIL MODELS					9				
Infinite	e beam, T	wo parameters, Isotropic elastic half space, Analysis of breams	of finit	te le	ngth,	Classif	cation				
of finit	e beams i	n relation to their stiffness.									
PLAT	E ON EI	ASTIC MEDIUM					9				
Infinite	e plate, V	Vinkler, Two parameters, isotropic elastic medium, Thin and t	hick pl	ates	, Ana	alysis of	finite				
plates,	rectangu	ar and circular plates, Numerical analysis of finite plates, simple	solutio	ns.							
ELAS'	TIC ANA	ALYSIS OF PILES					9				
Elastic	analysis	of single pile, Theoretical solutions for settlement and load distri	butions	, an	alysis	of pile	group,				
Interac	tion anal	vsis, Load distribution in groups with rigidcap.									
LATE	RALLY	LOADED PILE					9				
Load de	eflection	prediction for laterally loaded piles, subgrade reaction and elasti	c analy	sis,	Intera	ction ar	alysis,				
Pile raf	t system,	Solutions, through influence charts.									
					Total	Period	s 45				
Refere	ences:										
1. Sel	vadurai, A	A.P.S, "Elastic Analysis of Soil Foundation Interaction", Elsevier	.,1979.								
2. Pot	ulos, H.G	, and Davis, E. H, "Pile Foundation Analysis and Design", John	Wiley,1	980	•						
3. Sco	ott, R.F, "	Foundation Analysis", Prentice Hall, 1981.									
4. "St	ructure S	oil Interaction-State of Art Report", Institution of Structural	Engine	ers.	1978	3. 336.2	R-88:				
Sug	ggested A	nalysis and Design Procedures for Combined Footings and Mats	(Reapp	orov	ed20(92).					
Course	e Outcon	nes:									
At end	of this co	burse, the students will be able to									
CO1	To deve	lop an idea about soil-foundation interaction									
CO2	Know t	ne soil foundation interaction analysis and soil response models.									
CO3	To unde	rstand the solid models									
CO4	Analyze finite plate's rectangular and circular plates.										
CO5	Numeri	cal analysis of finite plates									
CO6	To fami	liarize with elastic analysis of pile									

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	1	2	2			2	1	2	2
CO2	1		2		3	3	1		2	
CO3	1	2	3	1			1	2	3	1
CO4				2	3	3				2
CO5	2		2	1	3	1	2		2	1
CO6		2	2	1		1		2	2	1

192S	SEE18	ANALYSIS OF LAMINATED COMPOSITE PLATES		L-T-P	С
				3-0-0	3
Progra	amme:	M.E. Structural Engineering Sem:	- Cate	gory:	PE
Aim		To study the behaviourof composite materials and to investigate the fail	ure and frac	cture	
AIII.		characteristics.			
					1
INTRO	ODUCT	ON			9
Introdu	iction to	Composites, Classifying composite materials, Commonly used fiber	and matrix	constitu	ents,
Compo	osite Con	struction, Properties of Unidirectional Long Fiber Composites, Short Fi	ber Compo	osites.	0
STRE	<u>SS STRA</u>	IN RELATIONS	1 T '	F1 (* *)	9
Concep	pts in so	lid mechanics, Hooke's law for orthotropic and anisotropic materia.	ls, Linear	Elasticity	y for
Anisot	ropic Ma	terials, Rotations of Stresses, Strains, Residual Stresses			0
ANAL		LAMINATED COMPOSITES		atio dam	9
Govern	nng equa	usis for simpler cases of composite plates. Inter laminer stresses	minates. St	auc, dyn	amic
		FRACTURE OF COMPOSITES			0
FAIL Netting		C Failure Criterion Maximum Stress Maximum Strain Fracture M	echanics o	f Compo	9 Sites
Sandwi	chConstru	ction	xnames 0.	r compo	51105,
		NS AND DESIGN			9
Motol o	and Corror	nia Mateix Compositos Applications of Compositos Composito Joints	Docion wit	h Comp	
Review	Environ	nic Main Composites, Applications of Composites, Composite Johns,	Design wit	n Compo	Jsnes,
ICVICW,	, LIIVIIOIII		Total	Dorioda	15
Doforo	ncos		10141	I er lous	43
1 Day	niel and I	shai "Engineering Mechanics of Composite Materials" Oxford Univer	sity Press ?	2005	
2 Ion	les R M	"Mechanics of composite materials" McGraw-Hill Kogakusha I td. T	okvo 1975	2002.	
2. Jon 3. Ag	arwal B I) and Broutman L.J. "Analysis and Performance of fiber composites"	John-Wile	· ev	
and	Sons, 19	180.		5	
4. Mie	chael W.I	Hyer, "Stress Analysis of Fiber-Reinforced Composite Materials", McG	braw Hill, 19	999.	
5. Mu	ikhopadh	yay.M, "Mechanics of Composite Materials and Structures", University	Press, Ind	ia, 2004	
CODE	E BÔOK	S:		-	
1. BS	5950-1 :	2000 Structural use of steel work in building. Code of practice for desig	gn – Rolled	1	
and	l weldeds	ections.	-		
2. EN	1994 Eu	ro code 4 : Design of composite steel and concrete structures, composite	eslabs.		
3. IS1	1384 - 1	985 code of practice for composite construction in structural steel and co	oncrete.		
Course	e Outcon	ies:			
At end	of this co	burse, the students will be able to			
CO1	Explain	the terminology related to concrete composite materials			
CO2	Explain	about properties of unidirectional Long fiber Composites and short Fib	er Compos	ites.	
CO3	Underst	and the Hooke's Law for orthotropic and Anistropic materials.			
CO4	Explain	Concepts in solid mechanics			
CO5	Analysi	soflaminatedcompositematerials			
CO6	Design	failure and fracture of composites and stress strain behavior			

Course Outcomes		Pro	ogram Ou	itcomes (H	Program Specific Outcomes (PSO's)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	
CO1	3		2	2		1	2	1	2	2	
CO2	3		2	1		2	2	1	2	2	
CO3	1	1	3	2	1	1	2	1	2	2	
CO4	3		3	1	1	3	1		2	1	
CO5	2		2	3		2	3	1	2	2	
CO6	3	1	2	2		2	3	2	3	2	

Mapping with Programme Outcomes:

192 S	EE19	DESIGN OF PRESTRESSED CONCRETE STRU	DESIGN OF PRESTRESSED CONCRETE STRUCTURES L-T-P C									
					3-0-0	3						
Progra	amme:	M.E. Structural Engineering	Sem:	- Cat	tegory:	PE						
Aim:		Principle of prestressing, analysis and design of prestressed con	ncrete str	uctures.								
PRINC	CIPLES	OF PRESTRESSING				9						
Princip	oles of Pi	estressing - types and systems of prestressing, need for High	Strengt	h mater	ials, An	alysis						
method	ls losses,	deflection (short-long term), camber, cablelayouts										
ANAL	YSIS AN	DESIGN OF MEMBERS FOR FLEXURE		5		9						
Analys	is and d	esign of members for flexure, shear, bond and bearings. Cat	ole layou	its. Des	ign of ci	rcular						
system	s, domes	and slabs - Design of end blocks.				0						
DESIC	$\frac{1}{1}$ N OF C	UNTINUOUS BEAMS	·· ·,			<u> </u>						
Analys	1s and	design of continuous beams - Methods of achieving co	ntinuity	- cond	cept of	Inear						
DESIC	Inations	RE-STRESSED BRIDGES				0						
Design	of Pre-st	ressed Bridges (Super-structure only)				,						
DESIGN	$\frac{101110-50}{1000}$	OMDOSITE MEMBEDS				0						
			1	01		9						
Analysi	is of stres	ses – Estimate for deflections – Flextural strength of compositions	e memb	ers – Sr	iear stren	gth of						
compos	site memo	ers.		T - 4 -	D	45						
Dofono	maaga			1 ota	l Periods	45						
1 Vri	chro Doi	"Prostroggad Congrate" Tata MaGray Hill Publishing Co 2000)									
	silla Kaji ha NG	and Deer S.K. "Evendence of the stressed Concerts" S. Change). 1 1 - C -	1000								
2. Sin 3 Lin	na. N.C. TV "F	and Koy. S.K., Fundamentals of Prestressed Concrete, S.Chand	1 and Co	.,1998.								
J. LIII	LI.I., L	and Demotty E.W. "Destrossed Concrete", John whey and John	110,1901 1 Janda									
4. EV	ins, K.H.	N Drestrossed Concrete Nerses Publications New Dalti 2008	i, Lonac	n,1938.								
5. Kaj	agopalan	IN, Prestressed Concrete, Narosa Publications, New Deini,2008.										
CODE	BOOK											
1. IS4	56 - 200) - IS Code of Practice for Plain and ReinforcedConcrete.										
2.151	343 - 19	80 – IS Code of Practice for PrestressedConcrete.	Tractic	n and								
5. 151 Tel	070-199 ecommu	b-specification for Freshessed Concrete Fore for Verneau Fower	Tractio	II and								
4 IRC	7.6-2010	Standard Specifications and Code of Practice for Road Bridges	Section	II – Loa	ds							
and	Stresses	(FifthRevision).	Section	II 200	ab							
5. IRC	C:18-2000) Design Criteria for Prestressed Concrete Road Bridges(Post-Te	ensioned	Concret	te)							
(3rc	dRevisior	ı).										
6. IRS	5 – Indian	Railway StandardSpecifications.										
7. BS	8110 - 19	985 – Code of Practice for Design andConstruction.										
8. IS7	84 - 200	1 – IS Specification for PrestressedConcretePipes.			_							
9. IS3	370 - 19	99 - Part III - IS Code of Practice for Concrete Structures for the	storage	of liquic	ls.							
10.158	$\frac{1}{2} - \frac{1}{2}$	I - Part I - IV - IS Code of Practice for Designloads.										
Course	e Outcon											
At end	of this co	burse, the students will be able to										
CO1	Explain	the terminology related to pre-stressing and pre-stressing system	ns									
CO2	Analyze	the sections using strength, stress load balancing concept and lo	osses of j	prestress	ıng.							
CO3	Design	the flexural member and stress distribution in the end block.										

CO4	Design a prestressed concrete pipes and tanks.
CO5	Analyze the stress and estimate the deflection for composite construction.
CO6	Design Prestressed Bridges.

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1	2	2	1	1	3	2		2	1
CO2	2	1	3	1		2	3	1	3	2
CO3	1	1	3	3	1	3	3	1	2	2
CO4	3		3	2	1	2	3	1	2	2
CO5	3	2	3	2		3	2	2	2	2
CO6	2	2	3	3	1	2	3	2	3	2

192SEE20	FRACTURE MECHANICS OF CONCRETE STRUCTURES	L-T-P	С
		3-0-0	3
Programme:	M.E. Structural Engineering Sem: - Cate	gory:	PE
	To impart knowledge in to predict the crack front growth and instability under	r elastic	and
Aim:	elastic plastic conditions and to compute the stress intensity factors and	stain ene	rgy
	releaserate.		
INTRODUCT	TON		9
Introduction -	Review of Engineering Failure Analysis-Brittle fracture-Ductile fracture Mod	es of fra	cture
failure, The Gr	iffith energy Balance Approach-Crack tip Plasticity-Fracture toughness.		
LINEAR ELA	ASTIC FRACTURE MECHANICS		9
Introduction -	Elastic crack tip stress field Stress and displacement fields in isotropic elastic	tic mate	rials-
Westergaard's	approach (opening mode)- Plane Strain Fracture toughness (KIC) testing-Fedde	rsen appi	roach
Determination	of R curve, Energy released rate for DCB specimen-Anelastic deformation at	crack tip	-K1c
Testtechniques	Various test specimens-Critical energy release rate.		
ELASTIC PL	ASTIC FRACTURE MECHANICS		9
Limitation of I	K approach - Approximate shape and size of the plastic zone- Effective crack leng	th-Effect	of
plate thickness	s-Elastic plastic fracture concept-Crack tip opening displacement-Dugdale ap	proach-Pa	ath
independence,	Critical J integral-Evaluation of CTOD-Relationship between CTOD, K1 and G1 f	or small	
scale yielding.			
FATIGUE CI	RACK GROWTH		9
Fatigue crack	growth to sharpen the tip-methods to determine J1cMechanism of Fatigue, Fa	tigue cra	ck
propagation-Pa	aris law-Crack closure mechanism-Residual stresses at crack tip-Retardation ef	fect fatig	ue
crack growth to	est, stress intensity factor, factors affecting stress intensity factor-Variable amplitud	le service	;
loading, Intera	ction effects		
CRACK ARR	EST & NUMERICAL METHODS		9
Principles of c	rack arrest, crack arrest in practice, K-R Curves, Crack resistance curve, Numeric	al Metho	ods
and Approache	es in Fracture Mechanics, Direct methods to determine fracture parameters Indire	ect metho	ods
to determinefra	actureparameters.		
	Total	Periods	45
References:			
1. Barson M	&Stanely T. Rolfe, "Fracture and Fatigue Control in Structure," Prentice Hall Inc,	USA,198	37.
2. Bhushan I	. Karihaloo, "Fracture Mechanics and Structural Concrete," Longman Scientific P	ublishers,	
USA, 1972.		-	
3. David Bro	ek, "Elementary Engineering Fracture Mechanics, " MartinusNijhoff Publishers, T	he Hague	,
1982.			
4. Gdoutos E	2. E., "Fracture Mechanics – An introduction," Kluwer Academic publishers, Dord	recht, 199) 3.
5. Jean Lema	tive& Jean Louis Chboche, "Mechanics of Solid Materials," Cambridge University	/ Press,	
Cambridge,19	87.		
6. Knott J. F	., "Fundamentals of Fracture Mechanics," John Wiley & Sons, New York1973.		
7. Simha K. Hyderabad, 20	R. Y., "Fracture Mechanics for Modern Engineering Design," University Press (In 001.	dia) Ltd,	
8. Suresh S.,	"Fatigue of Materials," Cambridge University Press, Cambridge1991.		

Course	e Outcomes:
At end	of this course, the students will be able to
CO1	Evaluate the fracture failure parameters
CO2	Evaluate the linear elastic fracture mechanics problems
CO3	Explain the concept of elastic plastic fracture mechanics
CO4	Estimate the residual life of fatigue Crack Growth in structure.
CO5	Suggest suitable crack arrest parameters using various techniques
CO6	Evaluate the fracture parameters using direct and indirect methods

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1	1	3	1	1		1	1	3	2
CO2	1		2	3			1	1	2	2
CO3	2	1		1		2	1	1	2	1
CO4	1		1		3	1	2	1	1	1
CO5	3	2	3			1	2	1	2	1
CO6		1	3		2	2	2	1	2	2

1920	OE01	BUSINESS ANALYTICS	L-T-P	С
			3-0-0	3
Progra	amme:	M.E. Structural Engineering Sem: - Cate	egory:	OE
Aim:		To Understand the role of business analytics within an organization.		
BUSIN	NESS AN	ALYTICS		9
Overvi	ew of B	usiness analytics, Scope of Business analytics, Business Analytics Process, Re	elationshi	p of
Busine	ss Analyt	ics Process and organization, competitive advantages of Business Analytics. Sta	tistical T	ools:
Statisti	cal Notat	ion, Descriptive Statistical methods, Review of probability distribution and da	ta model	ling,
sampli	ng and es	timation methods overview.		
TREN	DINESS	AND REGRESSION ANALYSIS		9
Modell	ling Rela	tionships and Trends in Data, simple Linear Regression. Important Resource	ces, Busi	iness
Analyt	ics Perso	nnel, Data and models for Business analytics, problem solving, Visualizing a	nd Explo	oring
	NIZATI	Analytics Technology.		0
Orgonic	INIZATI	UN SIRUCIURES	a Inform	9 ation
Dalian		ing Ensuring Date Quality Measuring contribution of Pusiness analytics, Measuring	g miorma	1000
Policy,		ing, Ensuring Data Quanty, Measuring contribution of Business analytics, Manag	ging Chai	iges.
Descrip	nive Ana	iyucs, predictive analytics, predicative Modelling, Predictive analytics analysis,	Data Mi	inng,
Data M	lining Me	ethodologies, Prescriptive analytics and its step in the businessanalytics Process	, Prescrij	ptive
Modell	ing, nonli	near Optimization		
FORE	CASTIN	G TECHNIQUES		9
Qualita	ative and	Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models f	or Statio	nary
Time S	Series, F	orecasting Models for Time Series with a Linear Frend, Forecasting Time	e Series	With
Carlo	Simulatio	n and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform	New_ Prc	onte
Develo	onment M	odel Newsvendor Model Overbooking Model Cash Budget Model		Juuci
DECIS	SION AN	IALVSIS AND RECENT TRENDS		9
Formul	lating De	cision Problems. Decision Strategies with the without Outcome Probabilities. Dec	ision	
Trees 7	TheValue	ofInformation UtilityandDecisionMaking RecentTrendsinEmbeddedandcollaborat	ive busir	less
intellio	ence Vis	ual data recovery Data Storytelling and Data journalism		
memg	,ence, vis	Total	Dorioda	15
Doforo	ncos	10ta	I erious	43
I. Bus	siness and	lytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. S	schnieder	jans,
2 Bug	inoss An	M. Starkey, Pearson Firess.		
2. Dus	Outcon	arytics by James Evans, persons Education.		
At and	of this co	urse the students will be able to		
CO1	Demons	trate knowledge of data analytics		
	Demons	of probability distribution and data modeling sampling		
$\frac{CO2}{CO2}$	Viewalit	v and Evaluring Data Dusinges analytic technology		
	Visualit	y and Exploring Data Business analytic technology.	Intion	
004	Demons	strate the admity of think critically in making decisions based on data and deep ana	lytics	

CO5	Demonstrate the ability to use technical skills in predicative and prescriptive modeling to support
CO5 De bu CO6 De	business decision-making.
CO6	Demonstrate the ability to translate data into clear, actionable insights

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2		2	1	1	2	1	2	2	2
CO2	1	1	2	1	2	1	1	2	2	2
CO3		1		1		2	1	1	2	1
CO4	2	1	1	2	1	2	2	3	2	2
CO5	2	1	2	3		1	2	3	2	2
CO6	3	2		1		3	1	3	2	1

192OE02 INDUSTRIAL SAFETY							
					3-0-0		3
Programme:	M.E. Structural Engineering	Sem:	-	Cat	tegory:	C)E
Aim:	To understand about fire and explosion, preventive methods, re-	elief and	its	sizin	g method	ls	
INDUSTRIAL	SAFETY						9
Accident, cause	es, types, results and control, mechanical and electrical hazard	s, types,	ca	uses a	and prev	ent	ive
steps/procedure	, describe salient points of factories act 1948 for health and safe	ety, wasł	1 ro	oms,	drinking	wa	ater
layouts, light,	cleanliness, fire, guarding, pressure vessels, etc, Safety cold	or codes	3. F	ire p	preventio	n a	and
FUNDAMENT	Ipment and methods.						0
FUNDAMEN Definition and	aim of maintenance engineering. Primary and secondary f	unctions	ar	d ra	enoneihil	ity.	$\frac{9}{\text{of}}$
maintenance d	enartment Types of maintenance Types and applications of	f tools	an 11se	d for	r mainte	nan	lce
Maintenance co	st & its relation with replacement economy, Service life of equi	oment.	ube	a 101	mannee		,
WEAR AND (CORROSION AND THEIR PREVENTION					(9
Wear- types ca	uses effects wear reduction methods lubricants-types and an	plication	18]	Lubri	ication m	neth	lods
general sketch	working and applications i Screw down grease cup ii F	Pressure	ore	ease	oun iii	Sr	olasł
lubrication iv	Gravity lubrication v Wick feed lubrication vi Side feed lu	ibricatio	n '	vii R	gun, m. ling luhr	ica [.]	tion
Definition princ	sinle and factors affecting the corrosion. Types of corrosion corr	osionnr	n, evei	ntion	methods	Icu	tion
	INC	osionpi			methous	/	0
Fault tracing	concept and importance, decision tree concept, need and application	tions se	20114	nce (of fault f	ind) ina
activities. show	as decision tree, draw decision tree for problems in machin	ie tools.	hv	drau	lic. pneu	ma	tic.
automotive, the	rmal and electrical equipment's like, i. Any one machine tool, i	i. Pump	iii.	Air (compress	or,	iv.
Internal combu	stion engine, v. Boiler, vi Electrical motors, Types of faults in	machine	toc	ols an	d their g	ene	eral
causes.							
PERIODIC A	ND PREVENTIVE MAINTENANCE						9
Periodic inspect	ion-concept and need, degreasing, cleaning and repairing schen	nes, over	hau	ling	of mecha	anic	cal
components, ov	verhauling of electrical motor, common troubles and remed	lies of	elec	tric	motor, 1	repa	air
complexities an	d its use, definition, need, steps and advantages of preventive ma	aintenan	ce. S	Steps	/procedu	re f	for
periodic and pre	ventive maintenance of: I. Machine tools, ii. Pumps, iii. Air con	pressor	s, iv	[,] Die	sel gener	rati	ng
(DG) sets, Pro	gram and schedule of preventive maintenance of mechanic	cal and	ele	ctric	al equip	me	nt,
advantages of pr	eventive maintenance. Repair cycle concept and importance						
				Tota	l Periods	5 4	45
References:							
1. Maintenan	ce Engineering Handbook, Higgins & Morrow, Da InformationS	ervices.					
2. Maintenan	ce Engineering, H. P. Garg, S. Chand andCompany.						
3. Pump-hydr	aulic Compressors, Audels, McgrewHillPublication.						
4. Foundation	Engineering Handbook, Winterkorn, Hans, Chapman & HallLor	ndon.					
Course Outcou	nes•						

At end of this course, the students will be able to

CO1 To provide exposure to the students about safety and health provisions related to hazardous processes

	as laid out in Factories act1948.
CO2	Know the maintenance engineering responsibility.
CO3	Find out the Corrosion prevention methods.
CO4	To make the decision from draw decision tree for problems.
CO5	Desire solution of types of fault in machine tools and causes.
CO6	To know the periodic inspection, cleaning and repairing scheme.

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
C01	2	1		3	2		1	1		
CO2	3		1	2		3	2			1
CO3	2	2		1		1	2	1	2	2
CO4		1		2	3	3	1		1	1
CO5	1	2	2			1	1		1	1
CO6	1	1		3			2	1	1	1

Г

1920	OE03 OPERATIONS RESEARCH										
						3-0-0	3				
Progra	mme:	M.E. Structural Engineering	Sem:	-	Cate	gory:	OE				
۸im		To identify and develop operational research models from the v	erbal de	scri	ption	of the re	al				
- A IIII.		system.									
OPTIN	1IZATI	ON TECHNIQUES					9				
Optimiz	zation T	echniques, Model Formulation, models, General L.R Formu	ulation,	Sin	nplex	Techni	ques,				
Sensitivity Analysis, Inventory Control Models											
LINEAR PROGRAMMING PROBLEM											
Formula	ation of	a LPP - Graphical solution revised simplex method - duality the	neory -	dual	simp	olex met	nod -				
sensitiv	ity analy	sis - parametric programming					•				
NONL.	INEAK	PROGRAMMING PROBLEM					9				
CPM/P	ar progi ERT	annung problem - Kunn-Tucker conditions min cost now pr	oblem ·	- 111	ax no	ow probl	em -				
GEOM	ETRIC	PROGRAM					9				
Schedu	ling and	sequencing - single server and multiple server models - dete	erminist	ic i	nvent	ory mod	lels -				
Probabi	listic inv	ventory control models - Geometric Programming				-					
DYNA	MIC PR	OGRAM					9				
Compet: Networl	itive Mo s. Elemo	dels, Single and Multi-channel Problems, Sequencing Models, D entary Graph Theory, Game Theory Simulation	ynamic	Pro	grami	ming, Flo	ow in				
				ſ	otal	Periods	45				
Referen	nces:										
1. H.A	A. Taha,	Operations Research, An Introduction, PHI,2008									
2. H.I	M. Wagr	er, Principles of Operations Research, PHI, Delhi, 1982.									
3. J.C	. Pant, I	ntroduction to Optimisation: Operations Research, Jain Brothers,	Delhi, 2	2008							
4. Hit	ler Liber	mann Operations Research: McGraw Hill Pub.2009									
5. Pai	nnerselva	am, Operations Research: Prentice Hall of India2010									
6. Ha	rvey M V	Wagner, Principles of Operations Research: Prentice Hall of India	a2010								
Course	Outcon	nes:									
At end	of this co	burse, the students will be able to									
CO1	Apply t	he dynamic programming to solve problems of discreet and conti	nuous v	aria	bles						
CO2	D2 Apply the concept of linear programming										
CO3	Apply the concept of non-linear problem.										
CO4	Carry of	ut sensitivity analysis.									
CO5	Analysi	s the deterministic probabilities inventory models.									
CO6	Model t	he real world problem and stimulate it.									

Course Outcomes		Pro	ogram Ou	tcomes (H	Program Specific Outcomes (PSO's)					
Gutcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1	2	2			3	2	1	2	2
CO2	1		2			3	2	1	2	1
CO3		1	2		3	2	2	1	2	1
CO4		1				2	2		1	1
CO5	3		1		2		2		1	1
CO6	1			2	1	1	1	1	1	1
1. Slight (I	ow) 2. Mode	mata (Madiu	m) 2. Substa	ntial (High)						

192	OE04 DESIGN OF EXPERIMENTS L-T-P										
						3-0-0	3				
Progra	amme:	M.E. Structural Engineering	Sem:		Cate	gory:	OE				
Aim:		To design the experiments and analyze data collected from expe	eriments								
FUND	AMENT	ALS OF DESIGN OF EXPERIMENTS					9				
Basic p	principles	of design of experiment-randomization -replication -interaction	ıs -simpl	e co	ompar	ative					
experii	nents -ap	plications of experimental design -barriers in DOE -practical me	thodolog	gy			-				
ANALYTICAL TOOLS OF DOE											
Main e	effects plo	t -Interactions plots -Cube plots -Pareto plot of factor effects -No	ormal Pr	oba	bility	Plot of f	actor				
EACT	-Respons	se surface plots and regression models -Model building –Analysi	s of vari	anc	e		0				
FACI	GRIAL	DESIGNS	footoriol	da		4	9				
Single 2kfacto	rial design	periments -Latin square designs and extensions –introduction to	lacional d-level f		signs,	two ieve	eis,				
TAGI	ICHI AP	PROACH			11115		9				
Overvi	ew of Ta	guchi approach -common experiments and methods of analysis	Orthogo	nal	arrav-	properti	es -				
Degree	es of freed	lom-confidence level and interval –case study exercises.	ortinogoi	141	unuy	properti	•••				
PARA	METER	OPTIMIZATION					9				
Regres	sion mod	els -parameter optimization -single and multi-Objectiveoptimiza	tion -Re	spc	nse si	ırface					
method	dology –g	rey relational analysis -complex proportional assessment of alter	rnatives	(ĈC	OPRA	S) -case					
study e	exercises										
					Fotal	Periods	45				
Refere	ences:										
1.Doug	glas C. M	ontgomery, "Designand Analysis of Experiments", 5thedition., V	Wiley. 20	001							
2.Jiju	Antony, "	Design of Experiments for Engineers and Scientists", 2ndEdition	n, Elsevi	er,	Londa	an, 2014	2 000				
3.Lenn	art Erikss	ion, "Design of Experiments: Principles and Applications", Ume	trics Aca	ade	my, S	weedan,	2008				
4.0ehl	ert, Gary	W. "First Course in Design and Analysis of Experiments", Freen	han Publi	ishe	ers, No	ew York	,				
2000 5 Rani	it K Roy	Design of Experiments using the Taguchi Approach John Wiley	v & sons	In	c 20	01					
Cours	e Outcon	Design of Experiments using the ruguem rupprouen, some whey		, 111	c ., 20	01					
At end	of this co	wrse the students will be able to									
CO1	Familia	tize the Fundamentals of design of experiments									
CO^2	Practice the various tools used in DOF										
CO2	Conduct	t experiments based on factorial design									
C03	Impart t	he concents of Taguchi technique									
C04		or product/process optimization									
005	Apply for product/process optimization										

Course Outcomes		Pro	ogram Ou	tcomes (I	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3						2			
CO2						3		3	3	
CO3	2								3	
CO4					3					2
CO5			3						3	
1 01 1. (1	$\rightarrow 0$ M 1	· () [1'	> 2 0 1 /	(1 (II)						

1920	E05	COST MANAGEMENT OF ENGINEERING PROJECTS L-T-P											
						3-0-0	3						
Program	nme:	M.E. Structural Engineering	Sem:	-	Cat	egory:	OE						
Aim		To develop the knowledge and skills required to administer and	l manage	e pr	ojects	s effectiv	ely in						
AIIII.		a specific discipline of engineering											
INTRO	DUCTI	ON					9						
Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost.													
Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision													
of data for Decision-Making.													
PROJE	СТ						9						
Meaning	g, Diffe	rent types, why to manage, cost overruns centres, various	stages	of	proje	ect exec	ution:						
concepti	ion to c	ommissioning. Project execution as conglomeration of technica	l and no	on-	techr	ical acti	vities.						
Detailed	l Engine	ering activities. Pre project execution main clearances and do	cuments	Pr	oject	team: R	ole of						
each me	mber. I	mportance Project site: Data required with significance. Project	contrac	ts. '	Гурез	and cor	ntents.						
Project of	executio	n Project cost control. Bar charts and Network diagram.Projectc	ommiss	ion	ing: n	nechanic	al and						
process													
COST I	BEHAV	IOR AND PROFIT PLANNING					9						
Cost Be	havior a	and Profit Planning Marginal Costing; Distinction between Mar	rginal C	ost	ing aı	nd Absor	rption						
Costing;	; Break-	even Analysis, Cost-Volume-Profit Analysis. Various decisio	n-makii	ng j	proble	ems. Sta	indard						
Costing	and Var	iance Analysis. Pricing strategies: Pareto Analysis.											
COSTI	NG						9						
Target c	costing,	Life Cycle Costing. Costing of service sector. Just-in-time ap	proach,	M	ateria	l Requir	ement						
Planning	g, Enterj	prise Resource Planning, Total Quality Management and Theory	of cons	stra	ints. A	Activity-	Based						
Cost M	anagem	ent, Bench Marking; Balanced Score Card and Value-Chain	Analys	is.	Budg	etary Co	ontrol;						
Flexible	Budge	s; Performance budgets; Zero-based budgets.Measurementof l	Division	al	profit	ability p	ricing						
decision	s includ	ing transfer pricing.					_						
COST N	MANA	GEMENT					9						
Ouantita	tive tec	hniques for cost management. Linear Programming, PERT/C	PM. Tr	ans	portat	ion prol	olems.						
Assignm	ent prob	lems, Simulation, Learning Curve Theory.	,			I I							
U	1			,	Total	Periods	45						
Referen	ces:												
	2. Cos	t Accounting A Managerial Emphasis, Prentice Hall of India, New	wDelhi										
	3. Cha	rles T. Horngren and George Foster, Advanced ManagementAcc	counting										
	4. Rot	ert S Kaplan Anthony A. Alkinson, Management & CostAccount	ting										
Course	Outcon	les:	~										
At end o	of this co	ourse, the students will be able to											
CO1	Impact	Knowledge about cost concepts in decision making.											
CO2	Underst	and the creation of a Database for operation Control.											
CO3	Know tl	ne project execution as conglomeration of technical and non-tech	nical ac	tivi	ties.								
		1 3 0											
CO4	Impact Knowledge about cost behavior and project planning.												
------------	--												
CO5	Know the Measurement of divisional profitability costing.												
CO6	Know the Budget Planning.												

Course Outcomes		Pro	ogram Ou	itcomes (H	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	3	2	1	2		1	1
CO2	1	1	1	1	2	1	1		1	
CO3	3		1	2	1	2	2		1	1
CO4	2	2	2		3	1	2	2	2	1
CO5	1		3	1	2	3	2		1	1
CO6	3	3	2	2			1	1	1	

1920	OE06 Composite Materials									
						3-0-0	3			
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cat	egory:	OE			
Aim:		To understand about the design of composite materials.								
Unit I				-			9			
INTRODUCTION: Definition -Classification and characteristics of Composite materials. Advantage										
andapplication of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement										
(size,										
shape,	distributi	on, volume fraction) on overall composite performance								
Unit II	[9			
Prepara	ation-layu	p, curing, properties and applications of glass fibers, carbon fibe	rs, Kev	lar f	fibers	and Bor	on			
fibers.	Propertie	s and applications of whiskers, particle reinforcements. Mechanic	al Beha	vio	r of c	omposite	s:			
Rule of	f mixtures	, Inverse rule of mixtures. Isostrain and Isostress conditions.								
Unit II	II .		. ~				9			
Manufa	acturing of	f Metal Matrix Composites: Casting –Solid State diffusion techn	ique, C	lad	ding -	-Hot isos	tatic			
pressin	ig. Proper	ties and applications. Manufacturing of Ceramic MatrixComposi	tes: Liq	uid	Meta	il Infiltra	tion –			
Liquid	phase sin	tering. Manufacturing of Carbon –Carbon composites: Knitting,	Braidin	ıg, '	weav	ing. Prop	erties			
	plications						0			
Monuf	V o otranin o c	f Delumer Matrix Compository Dreportion of Moulding composi	ndaand	1		a handl	9			
method	acturing (a Polymer Mainx Composites: Preparation of Moulding compou	React	i pr	iniac	s –nand I	layup			
mouldi	ng Prone	rties and applications	-React	1011	injec	lion				
	V						9			
Strengt	h. Lamin	ar Failure Criteria-strength ratio maximum stress criteria maxin	num str	ain	criter	ia intera	cting			
failure	criteria. ł	vgrothermal failure. Laminate first play failure-insight strength:	Laminat	te s	trengt	h-plv	oung			
discour	nt truncat	ed maximum strain criterion; strength design using caplet plots;s	tress co	nce	ntrati	ons.				
					Total	Periods	45			
Refere	ences:						_			
1.Libin	n G, "Han	d Book of Composite Materials", Van Nostrand Reinhold, New	York, 19	982						
2.Debo	orah D.L.	Chung,"Composite Materials Science and Applications".Springe	er-Verla	g L	ondo	n, 2010				
3.Dania	al Gay, S	uongV.Hoa, Stephen W. Tasi,"Composite Materials Design and	Applica	tior	ns", C	RCPress	,			
2002										
Course	e Outcon	les:								
At end	of this co	urse, the students will be able to								
CO1	Identify	the properties of fiber reinforcements, polymer matrix materials.								
CO2	Develop	competency in one or more common composite manufacturing	techniqu	ıes.						
CO3	select th	e appropriate technique for manufacture of fiber-reinforced comp	posite p	rod	ucts					
CO4	Analyze	the elastic properties and simulate the mechanical performance	of comp	oosi	te lan	ninates; a	ınd			
CU4	understa	nd and predict the failure behavior of fiber-reinforced composite	s							
CO5	Apply k	nowledge of composite mechanical performance and manufactur	ing met	hoc	ls to a	a compos	ites			

	design project
CO6	Critique and synthesize literature and apply the knowledge gained from the course in the design and
006	application of fiber-reinforced composites.

Course Outcomes		Pro	ogram Ou	itcomes (F	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3						3	3		
CO2	2	2	3		2			3		
CO3	3						2			2
CO4		3						2		
CO5	2			2	2		3			
CO6		3	2					2		3

192	OE07	WASTE TO ENERGY	L-T-P	C
			3-0-0	
Progra	amme:	M.E. Structural Engineering Sem: - Cate	gory:	OE
Aim:		To deal with the production of energy from different types of wastes through the	rmal,	
		biological and chemical routes.		
INTED	ODUCTI			0
INIK	obuc II	ON TO ENERGY FROM WASTE Energy from Wester Classification of weste as fuel — Agro based Ecrest resid	lua Indu	9 strial
murout waste	MSW _	Conversion devices – Incinerators, gasifiers, digestors	ue, mau	striai
BIOM	$\Delta SS PVI$	ROI VSIS		9
Diomo		rie Dunchais Tunce class fact. Manufacture of charges 1. Mathada, Vielda en	d ameliaa	4.00
– Man	ufacture o	f pyrolytic oils and gases, yields and applications.	d applica	tion
BIOM	ASS GA	SIFICATION		9
Biomas	s Gasific	ation: Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized	bed	
gasifier	s–Design	,constructionandoperation-Gasifierburnerarrangementforthermalheating-Gasifier	engine	
arrange	ment and	electrical power – Equilibrium and kinetic consideration in gasifier operation.	-	
BIOM	ASS CO	MBUSTION		9
Bioma	ss Combu	stion: Biomass stoves – Improved chullahs, types, some exotic designs, Fixed bec	1 combus	tors,
Types,	inclined	grate combustors, Fluidized bed combustors, Design, construction and operation -	- Operatie	on of
all the	above bio	omass combustors.	•	
BIOG	AS AND	APPLICATION		9
Biogas	: Propert	ies of biogas (Calorific value and composition) - Biogas plant technology and	d status ·	- Bio
energy	system -	- Design and constructional features - Biomass resources and their classificati	on - Bio	mass
conver	sion pro	cesses - Thermo chemical conversion - Direct combustion - biomass	gasificati	on -
pyroly	sisandliqu	efaction-biochemicalconversion-anaerobicdigestion-TypesofbiogasPlants-Applic	ations-	
Alcoho	olproducti	on from biomass - Bio diesel production - Urban waste to energy conversion - Bi	iomass er	nergy
progra	mme in Ir	ndia.		
		Total	Periods	45
Refere	ences:			
1. No	on Conve	ntional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.		
2. Bi	ogas Tecl	hnology - A Practical Hand Book - Khandelwal, K. C. and Mahdi, S. S., Vol. I &	II, Tata	
М	cGraw Hi	ill Publishing Co. Ltd., 1983.		
3. Fo	od, Feed	and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.		
4. Bi	omass Co	onversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley &	z Sons. 19	996.
Course	e Outcon	les:	,	
At end	of this co	ourse, the students will be able to		
CO1	Underst	and of the concept of waste to energy.		
CO2	Link leg	al technical and management principles for production of energy from waste.		
CO3	Learn al	pout the best available technologies for waste to energy.		

CO4	Know the manufacture and method of Biomass pyrolysis.
CO5	Know the equilibrium and kinematic consider in gasified operation.
CO6	Design construction operation of biomass combustion.

Course Outcomes		Pro	ogram Ou	itcomes (H	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1	3	2	1			2	2	1	1
CO2		2	2	1		1	2	1	1	1
CO3	2	1	1		1		1	1	1	1
CO4	1	2	1	1	3	2	2			1
CO5	1		3	4		1	2		1	
CO6	1	2	1		3	2	2	1	2	2

1920E08NANOMATERIALS AND NANOTECHNOLOGYL-T-PC3-0-03
3-0-0 3
Programme:M.E. Structural EngineeringSem:-Category:OE
Aim: To design the experiments and analyze data collected from experiments.
ZERO -DIMENSIONAL NANOSTRUCTURES9
Nanoparticles through homogenous nucleation, nanoparticles through the h
eterogeneous nucleation, kinetically confined synthesis of nanoparticles, epitaxial core -shell nanoparticles.
One Dimensional Nanostructure-Nanowires And Nanorods: Spontaneous growth, template based
synthesis, electro spinning, and lithography.
TWO-DIMENSIONAL NANOSTRUCTURES-THIN FILMS9
Fundamentals of film growth, vacuum science, physical vapor deposition (PVD), Chemical Vapor
Deposition(CVD), Atomic Layer Deposition (ALD), Electrochemical Deposition, Sol - Gel films.
NANOSTRUCTURES FABRICAITON 9
Lithography, nano manipulation and nanolithography, soft lithography, assembly of nanoparticles and
nanowires, other methods of micro fabrication, Scanning Electron Microscope. Nanomechanics: A high speed
review of motion: Displacement, velocity, acceleration and force, nanomechanical oscillation, feeling faint
INTERS.
NANO ELECTRONICS: ELECTRON ENERGY BANDS, ELECTRONS IN SOLIDS 9
conductors, insulation and semi-conductors, termi energy, the density of states for solids, quantum confinement, tunneling, single electron phenomenon, melecular electronics. Nenophetonics: Photonics
properties of panomaterials near-field light optical tweezers photonic crystals
NANO SCALE HEAT TRANSFER
Nanoscale heat conduction convection radiation Nanoscale Fluid Mechanics: Fluids at the nanoscale: major
concepts, flow fluids flow at the nanoscale, applications of nanofludics.
Total Periods 45
References:
1.Ben Rogers, Pennathur and Adams, "Nanotechnology: Understanding Small System", CRC Press, 2008.
2.Bhushan, Bharat (Ed.) "Handbook of Nanotechnology". Springer 2006.
3. Guozhong Cao, "Nanostructures and Nanomaterials", Imperial College Press, 2006.
4.Lundstrom, Mark, Guo, Jing, "Nanoscale transistors, Device physics, modeling and
simulation",Springer,2006.
5. Yury Gogotsi, "Nanomaterials Handbook", Drexel University, Philadelphia, Pennsylvania, USA, 2006.
Course Outcomes:
At end of this course, the students will be able to
Acquire the knowledge of the representatives of Nano particles and Characteristic techniques of
nanomaterials.
CO2 Be familiar with new trends in engineering, namely nanotechnology and nanofabrication and with their
applications in modern industries.
CO3 Get the knowledge in the field of nanotechnology and nanomaterials.

CO4	Practice the Nano electronics.
CO5	Familiarize Nano heat transfer.

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	3						3			
CO2	3							3	2	
CO3	2			2			2			
CO4					3	3			3	2
CO5		3			3	2				3

PG - Structural Engineering

192	AC01	CONSTITUTION OF INDIA		L-T-P	С						
				2-0-0	0						
Progra	amme:	M.E. Structural Engineering Sem: -	Cate	gory:	MC						
Aim		To understand, connect up and explain basics of Indian Constitutional Rig	shts mo	dern							
scientific perspective.											
HIST	ORY OF	MAKING OF THE INDIAN CONSTITUTION			9						
Histor	y, Draftin	g Committee, (Composition & Working)									
PHIL	OSOPHY	OF THE INDIAN CONSTITUTION			9						
Pream	ble Salien	t Features									
CONT	COURS C	DF CONSTITUTIONAL RIGHTS & DUTIES			9						
Funda	mental Ri	ghts- Right to Equality - Right to Freedom - Right against Exploitation - Ri	ight to I	Freedom	ı of						
Religio	on - Cultu	ral and Educational Rights - Right to Constitutional Remedies - Directiv	e Princ	iples of	State						
Policy	- Fundan	nental Duties.									
ORGA	ANS OF	GOVERNANCE			9						
Parliar	nent – Co	mposition - Qualifications and Disqualifications - Powers and Functions -	Executi	ive -							
Preside	ent - Gov	ernor - Council of Ministers- Judiciary, Appointment and Transfer of Jud	ges, Qu	alificati	ons -						
Power	s and Fun										
		INISTRATION		1 1	<u> </u>						
Distric	t's Admi	nistration head: Role and Importance, - Municipalities: Introduction, N	layor a	ind role	of						
Electe	d Represe	entative, CEO of Municipal Corporation Pachayati raj: Introduction, PR	I: Zilal	Pachaya	t						
Electe	d official	s and their roles, CEO ZilaPachayat: Position and role Block leve	el: Org	anizatio	nal						
Hierar	chy	(Differentdepartments),-Villagelevel:RoleofElectedandA	ppointe	dofficia	ls,-						
Import	tanceofgra	assrootdemocracy									
ELEC	TION C	OMMISSION			9						
Electio	on Commi	ssion: Role and Functioning Chief Election Commissioner and Election	Commi	ssioners							
State E	Election C	ommission: Role and FunctioningInstitute and Bodies for the welfare of	SC/ST/	OBC an	d						
wome	n.	-									
			Total 1	Periods	45						
Refere	ences:		Iotui	ci ci ious	10						
1. The	Constitut	ion of India, 1950 (Bare Act), GovernmentPublication,									
2. Dr.	S. N. Bus	i, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition,2015.									
3. M. I	P. Jain, In	dian Constitution Law, 7th Edn., Lexis Nexis,2014.									
4. D.D	. Basu, In	troduction to the Constitution of India, Lexis Nexis,2015.									
Cours	e Outcon	nes:									
At end	of this co	burse, the students will be able to									
CO1	Discuss Gandhi	the growth of the demand for civil rights in India for the bulk of Indians be in Indian politics.	fore the	e arrival	of						

CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.
CO3	Impact the knowledge about philosophy of the Indian constitution.
CO4	Discuss the circumstances surrounding the foundation of the Congress Socialist Party [CSP] under the leadership of Jawaharlal Nehru and the eventual failure of the proposal of direct elections through adult suffrage in the Indian Constitution.
CO5	Discuss the passage of the Hindu Code Bill of 1956.
CO6	Students to know the Role and importance of Districts administration, Municipal Corporation panchayati Raj.

Course Outcomes		Pr	ogram Ou	itcomes (I	POs)		Program Specific Outcomes (PSO's)					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4		
CO1	2	3		2	2	2	2	1	1			
CO2	1	3		3	1		1		2	1		
CO3	1	2		2	2		2		2			
CO4	1	2	1	2	1	2			2	2		
CO5		2		3	2		2		1	1		
CO6	1	1	2	3		2		2	2			

192AC02	DISASTER MANAGEMENT	L-T-P	C
		2-0-0	0
Programme:	M.E. Structural Engineering Sem: - Cate	gory:	MC
	The main aim of this course critical understanding of key concepts in disaster ris	k reducti	on
Aim:	and humanitarian response.		
INTRODUCTI	ION		9
Disaster: Defin	ition, Factors And Significance; Difference Between Hazard And Disaster;	Natural	And
Manmade Disas	sters: Difference, Nature, Types And Magnitude.		_
REPERCUSSI	ONS OF DISASTERS AND HAZARDS		9
Economic Dam	hage, Loss of Human And Animal Life, Destruction Of Ecosystem. Natur	ral Disas	sters:
Earthquakes, Vo	olcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And	l Avalano	ches,
Man-made disa	ster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spill	ls, Outbi	eaks
ofDisease And I	Epidemics, War And Conflicts.		
DISASTER PR	RONE AREAS IN INDIA		9
Study Of Seism	ic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; An	eas Pron	e To
Cyclonic And C	Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And	Epidemic	s
DISASTER PR	REPAREDNESS AND MANAGEMENT		9
Preparedness: M	Ionitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: A	Applicatio	on
Of Remote Sens	sing, Data From Meteorological And Other Agencies, Media Reports: Governmen	tal And	
Community Pre	paredness.		
RISK ASSESS	MENT		9
Disaster Risk: C	Concept And Elements, Disaster Risk Reduction, Global And National Disaster Ri	sk Situat	ion.
Techniques Of	Risk Assessment, Global Co- Operation In Risk Assessment And Warning,		
People'sParticij	pation In Risk Assessment. Strategies for Survival.		
DISASTER	MITIGATION		
Meaning, Conce	ept And Strategies Of Disaster Mitigation, Emerging Trends In Mitigation. Structu	ralMitiga	ation
And Non-Struct	ural Mitigation, Programs Of Disaster Mitigation In India.		
	Total	Periods	45
References:			
1. R. Nishith, Royal book	Singh AK, "Disaster Management in India: Perspectives, issues and strategies "N Company.	lew	
2. Sahni, Pard Of India, N	eepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Ha	11	
3. Goel S. L., Publication	Disaster Administration And Management Text And Case Studies", Deep &Deep Pvt. Ltd., NewDelhi.)	
Course Outcon	nes:		

At end	of this course, the students will be able to
CO1	Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and
COI	humanitarian response.
CO2	Critically evaluate disaster risk reduction and humanitarian response policy and practice from multiple
02	perspectives
CO3	Develop an understanding of standards of humanitarian response and practical relevance in specific
At end of this course, the students will be able to CO1 Learn to demonstrate a critical understanding of key concepts in disaster risk reduction and humanitarian response. CO2 Critically evaluate disaster risk reduction and humanitarian response policy and practice from m perspectives CO3 Develop an understanding of standards of humanitarian response and practical relevance in s types of disasters and conflict situations CO4 Critically understand the strengths and weaknesses of disaster management approaches, planning programming in different countries, particulars their home country or the countries they work in. CO5 Explain the legislation of disaster management system. CO6 Understanding foundations of hazards disasters and associated natural/ social phenomena.	
004	Critically understand the strengths and weaknesses of disaster management approaches, planning and
CO4	programming in different countries, particulars their home country or the countries they work in.
CO5	Explain the legislation of disaster management system.
CO6	Understanding foundations of hazards disasters and associated natural/ social phenomena.

Course		Program Outcomes (POs) Program Specific Outcomes							Program Specific Outcomes (PSO				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4			
CO1	1	1	2	3			1	1	3	2			
CO2	2	2	1	2	1		2		2	1			
CO3	2	1	2	3			1		1	1			
CO4	1	2	1	2	1	1	2		1	1			
CO5	1	2	2	1	1	1	2	1	1	1			
CO6	2	2	3	2	1	1	2			1			

192	AC03	ENGLISH FOR RESEARCH PAPER WRITING			L-T-P	C
					2-0-0	0
Progra	amme:	M.E. Structural Engineering Se	m: -	Cate	egory:	MC
A :		Understand the skills needed when writing a Title Ensure the good	quality	of pa	per at ver	ry
Alm:		first-timesubmission			-	-
СНАР	TER–I					4
Plannii	ng and P	reparation, Word Order, Breaking up long sentences, Structuring I	Paragra	phs a	nd Sente	nces,
Being	Concise a	and Removing Redundancy, Avoiding Ambiguity and Vagueness				-
СНАР	TER-I I					4
Clarify Sectior	ving Who is of a Pa	Did What, Highlighting Your Findings, Hedging and Criticising, Par per, Abstracts, Introduction	aphras	ing an	d Plagia	rism,
СНАР	TER-II					4
Review	v of the L	iterature, Methods, Results, Discussion, Conclusions, The Final Chec	ck			
СНАР	TER-I	/				4
kev ski	ills are ne	eded when writing a Title, key skills are needed when writing an Abs	stract.	kev sk	ills are	
needed	l when wi	iting an Introduction, skills needed when writing a Review of the Lit	erature	, ,		
СНАР	TER-V					4
Skills a	are neede	d when writing the Methods, skills needed when writing the Resul	lts. ski	lls are	needed	when
writing	the Discu	assion, skills are needed when writing the Conclusions	,			
CHAP	TER–VI					4
Useful	phrases, l	now to ensure paper is as good as it could possibly be the first- time s	ubmiss	sion		
				Total	Periods	24
Refere	ences:					
1. Gold	bort R (2	006) Writing for Science, Yale University Press (available on Google	Books)		
2. Day I	R (2006)	How to Write and Publish a Scientific Paper, Cambridge UniversityP	ress			
3. High	man N (1	998), Handbook of Writing for the Mathematical Sciences, SIAM. H	ighmaı	n's bo	ok.	
4. Adria	an Wallw	ork, English for Writing Research Papers, Springer New York Dordr	echt H	eidelb	erg	
Lond	on, 2011.					
Course	e Outcon	nes:				
At end	of this co	purse, the students will be able to				
CO1	Underst	and that how to improve your writing skills and level of readability.				
CO2	Learn a	bout what to write in each section.				
CO3	Underst	and the skills needed when writing a Title Ensure the good quality	of pape	er at v	ery first-	· time
005	submiss	ion.				
CO4	Comple	te research using primary and secondary sources. Share results through	ough d	ocume	ented res	earch
	papers a	ind presentations.		0		
CO5	Summ	arize and respond to oral presentation, academic lectures and written	texts o	t a vai	nety of	

	rhetorical patterns
CO6	Gain confidence in participating in making presentations.

Course Outcomes		Pro	ogram Ou	itcomes (I	POs)		Program	n Specific (Outcomes (PSO's)
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	3	1		2	1	2		1	
CO2	3	3	1			2			2	2
CO3		2		2	2		2		2	1
CO4	2	2	1	3		2	1	1	2	2
CO5	2	3		2	2			2	2	
CO6		2	2	2		2		3	2	2

192 A	AC04	SANSKRIT FOR TECHNICAL KNOWLEDG	E			L-T-P	С
						2-0-0	0
Progra	amme:	M.E. Structural Engineering	Sem:	-	Cate	gory:	MC
Aim:		To get a working knowledge in illustrious Sanskrit, the scientific	ic langua	age	in the	world	
CHAP	TER–I						8
Alphab	ets in Sa	nskrit, Past/Present/Future Tense, Simple Sentences					
CHAP	TER–II						8
Orde	er- Introdu	action of roots - Technical information about Sanskrit Literature					
СНАР	TER–III						8
Techni	cal conce	pts of Engineering-Electrical, Mechanical, Architecture, Mathen	natics.				
	Total Periods						
Refere	nces:						
1. Abh	yaspustał	am" – Dr. Vishwas, Samskrita-Bharti Publication, NewDelhi					
2. "Tea	ich Yours	elf Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtri	iya Sans	krit	Sanst	hanam,	New
Delh	iPublicat	ion					
3. "Ind	ia's Glori	ous Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., Ne	wDelhi				
Course	e Outcon	les:					
At end	of this co	burse, the students will be able to					
CO1	Underst	anding basic Sanskrit language.					
CO2	Ancient	Sanskrit literature about science & technology can be understood	d.				
CO3	Being a	logical language will help to develop logic in students.					
CO4	Learnin	g of Sanskrit to improve brain functioning.					
CO5	Learnin	g of Sanskrit to develop the logic in mathematics, science & othe	er subjec	ts.			
CO6	The engancient	ineering scholars equipped with Sanskrit will be able to expl literature.	ore the	hug	ge kno	owledge	from

Course		Pro	ogram Ou	itcomes (I	POs)		Program Specific Outcomes (PSO's)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4		
CO1	1	2		1		1	2			1		
CO2	1	2		2	1		1		2			
CO3	1	1		1	1		1					
CO4	2	2		2	1				1			
CO5	1	2		2	1	1		2	1			
CO6	2	2		1	2	2		1	2	1		

1924	AC05	VALUE EDUCATION			L-T-P	С							
	2000				2-0-0	0							
Progra	amme:	M.E. Structural Engineering Sem:	-	Cat	egory:	MC							
Aim:		To imbibe good values in students			I								
VALU	ES AND	SELF-DEVELOPMENT				4							
Valu	les and se	f-development -Social values and individual attitudes. Work ethics, In	dian	visio	n of								
huma	anism.	-											
- Mora	l and non	moral valuation. Standards and principlesValue judgements											
IMPO	It is initially good values in students ALUES AND SELF-DEVELOPMENT 4 Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non- moral valuation. Standards and principlesValue judgements IPORTANCE OF CULTIVATION OF VALUES 6 Importance of cultivation of values Sense of duty. Devotion, Self-reliance -Confidence, Concentration. Truthfulness, CleanlinessHonesty, Humanity. Power of faith, National UnityPatriotism. Love for nature iscipline ERSONALITY AND BEHAVIOUR DEVELOPMENT 6 Personality and Behaviour Development - Soul and Scientific - attitude.PositiveThinking.Integrity and discipline. Punctuality, Love and KindnessAvoid fault ThinkingFree from anger, Dignity of labour Universal brotherhood and religious toleranceTrue friendshipHappiness Vs suffering, love for truthware of self-destructive habitsAssociation and Cooperation - Doing best for saving nature HAACTER AND COMPETENCE 6 Character and Competence –Holy books vs Blind faith Self-management and Good health Science of ncarnation Equality ,Non violence ,Humility, Role of Women All religions and same message Mind ur Mind ,Self-controlHonesty, Studying effectively Ure Mark Self -controlHonesty, Studying effectively 22												
Impo	ortance of	cultivation of values Sense of duty. Devotion, Self-reliance -Confide	ence,	Conc	entration	1.							
Trut	hfulness,	CleanlinessHonesty, Humanity. Power of faith, National UnityPatr	iotis	m. Lo	ve for								
natu	re												
,Discip	oline												
PERSO	ONALIT	NALITY AND BEHAVIOUR DEVELOPMENT 6											
Perso	onality a	d Behaviour Development - Soul and Scientific - attitude.Positive7	hinl	king.Iı	ntegrity	and							
disci	pline. Pu	nctuality, Love and KindnessAvoid fault ThinkingFree from ange	r, Di	gnity	of labor	ır							
Univ	versal bro	herhood and religious toleranceTrue friendshipHappiness Vs suffe	ring,	love	for truth								
Aware	of self-de	structive habitsAssociation and Cooperation - Doing best for saving	natu	re									
CHAR	2-0-0 0 rogramme: M.E. Structural Engineering Sem: Category: MC im: To imbibe good values in students 4 ALUES AND SELF-DEVELOPMENT 4 Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. 4 Values and non- moral valuation. Standards and principlesValue judgements 6 Importance of cultivation of values Sense of duty. Devotion, Self-reliance -Confidence, Concentration. 6 Importance of cultivation of values Sense of duty. Devotion, Self-reliance -Confidence, Concentration. 6 Truthfulness, CleanlinessHonesty, Humanity. Power of faith, National UnityPatriotism. Love for nature 6 Siscipline 6 6 CRSONALITY AND BEHAVIOUR DEVELOPMENT 6 Personality and Behaviour Development - Soul and Scientific - attitude.PositiveThinking.Integrity and discipline. Punctuality, Love and KindnessAvoid fault ThinkingFree from anger, Dignity of labour Universal brotherhood and religious toleranceTrue friendshipHappiness Vs suffering, love for truthware of self-destructive habitsAssociation and Cooperation - Doing best for saving nature HARACTER AND COMPETENCE 6 Chakraborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi 22 efferences:												
Char	acter and	Competence -Holy books vs Blind faith Self-management and Good	l hea	lth	Science	of							
reincar	nation	Equality ,Non violence ,Humility, Role of Women All religions and	l sar	ne me	essage	Mind							
your M	lind ,Self	controlHonesty, Studying effectively											
	Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. - Moral and non- moral valuation. Standards and principlesValue judgements IMPORTANCE OF CULTIVATION OF VALUES [6] Importance of cultivation of values Sense of duty. Devotion, Self-reliance -Confidence, Concentration. Truthfulness, CleanlinessHonesty, Humanity. Power of faith, National UnityPatriotism. Love for nature ,Discipline [7] PERSONALITY AND BEHAVIOUR DEVELOPMENT [6] Personality and Behaviour Development - Soul and Scientific - attitude.PositiveThinking.Integrity and discipline. Punctuality, Love and KindnessAvoid fault ThinkingFree from anger, Dignity of labour Universal brotherhood and religious toleranceTrue friendshipHappiness Vs suffering, love for truth Aware of self-destructive habitsAssociation and Cooperation - Doing best for saving nature CHARACTER AND COMPETENCE [6] Character and Competence -Holy books vs Blind faith Self-management and Good health Science of reincarnation Equality ,Non violence, Humility, Role of Women All religions and same message Mind your Mind ,Self-controlHonesty, Studying effectively Total Periods [22] References: 1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi Course Outcomes: At end of this course, the students will be able to CO1 Know the work ethics, Indian vision of humanism. CO3 Learn the importance of cultivation of values.												
Refere	ences:			1									
1.	Chakrot	orty, S.K. "Values and Ethics for organizations Theory and practice", (Jxfo	rd Un	iversity								
Course	Press, N												
	e Outcon	es:											
At end													
	Knowle	ige of self-development											
CO2	To Kno	v the work ethics, Indian vision of humanism.											
CO3	Learn th	e importance of cultivation of values.											
CO4	To know	personality and behavior development.											
CO5	To knov	<i>t</i> the aware of self destructive habits.											
CO6	To know	the self management and good health.											

Course Outcomes		Pro	ogram Ou	tcomes (F	POs)		Progran	1 Specific (Outcomes (PSO's)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	1	1		1			2			1
CO2	1	2	1	3	1		2	1		
CO3	1	1		2			1			1
CO4	1	1		2			1			1
CO5	2	1		3			2			
CO6	1	1		2			1			

192AC06	PEDAGOGY STUDIES			L-T-	·P	С
	· · · · · · · · · · · · · · · · · · ·			2-0-	0	0
Programme:	M.E. Structural Engineering Sem:	-	Ca	tegory:		MC
INTRODUCT	ON AND METHODOLOGY:					4
Aims and ratio	nale, Policy background, Conceptual framework and Terminology -	Tł	leori	es of le	eari	ning,
Curriculum, Te	acher education - Conceptual framework, Research questionsOvervie	w	of m	ethodolo	ogy	and
Searching.						
THEMATIC (DVERVIEW					2
Pedagogical pr Curriculum, Te	actices are being used by teachers in formal and informal classrooms in d acher education.	eve	lopi	ng coun	trie	s.
PEDAGOGIC	AL PRACTICES					4
Evidence on the assessment of curriculum and of the body of the Teachers' attitu	ne effectiveness of pedagogical practices - Methodology for the in- included studies How can teacher education (curriculum and prac- guidance materials best support effective pedagogy? - Theory of change evidence for effective pedagogical -practicesPedagogic theory and pec- des and beliefs and Pedagogicstrategies.	i di ticu 2 lago	epth m) Stre ogica	stage: and the ngth and al appro	qu sc 1 na ach	ality hool ature les
PROFESSION	AL DEVELOPMENT					4
Professional de	elopment: alignment with classroom practices and follow up Support - F	'eeı	sup	port -		
Support from t	he head teacher and the communityCurriculum and assessment -	В	arrie	ers to		
learning:limited	resources and large class sizes					
RESEARCH	APS AND FUTURE DIRECTIONS					2
Research design research impact.	- Contexts -Pedagogy -Teacher education -Curriculum and assessment	nt -	Dis	sseminat	ion	and
			Tota	al Perio	ds	16
References:						
1. Acke 31 (2):2 2. Agra Curricu	rs J, Hardman F (2001) Classroom interaction in Kenyan primary school 45-261. Wal M (2004) Curricular reform in schools: The importance of evaluation lum Studies, 36 (3):361-379.	ols, on,	Con Jour	npare, nal of		
3. Aky educati	eampong K (2003) Teacher training in Ghana - does it count? Mult	i-si	te te	eacher		
4. Aky of basic Educati	eampong K, Lussier K, Pryor J, Westbrook J (2013) Improving teaching maths and reading in Africa: Does teacher preparation count? International Development, 33 (3):272–282.	; an tion	d lea al Jo	arning ournal		
5. Alex educati	ander RJ (2001) Culture and pedagogy: International comparisons on. Oxford and Boston:Blackwell. (2003) Read India: A mass scale rapid 'learning to read' campaign	; ir	n pr	rimary		

www.p	pratham.org/images/resource%20working%20paper%202.pdf
Cours	e Outcomes:
At end	of this course, the students will be able to
CO1	What pedagogical practices are being used by teachers in formal and informal classrooms in developing countries?
CO2	What is the evidence on the effectiveness of these pedagogical practices, in what conditions, and with what population of learners?
CO3	How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy?
CO4	Understand the quality assessment of pedagogical practices and studies.
CO5	To know the effective and practices of pedagogical theory.
CO6	Students to know the professional development.

Course Outcomes		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	3	2		2	1		2		1
CO2	1	2		2	1	1	1	1		2
CO3	2	2	1	1	1	1	1	1		
CO4	2		1	2				1	2	
CO5		2	1		1	2	2			2
CO6	2	2	2	1	1		2		1	1

192	2AC07 Stress Management by Yoga										
					2-0-0	0					
Progra	amme:	M.E. Structural Engineering Sem:	Sem: - Catego								
Aim:		To overcome stress and to maintain good health.									
UNIT	I					8					
Definit	Definitions of Eight parts of Yoga. (Ashtanga)										
UNIT II											
Yam an	nd Niyam										
•Do`s a	and Don'	s in life.									
i.Ahins	sa, satya,	astheya, bramhacharya and aparigraha									
11.Shau	ii.Shaucha, santosh, tapa, swadhyay, ishwarpranidhan										
Asan a	nd Pranag	am									
• Vario	us yog po	ses and their benefits for mind & body									
●Regui	arization	or oreatining techniques and its effects- Types of Pranayani.		Tote	Dominal	24					
Roforo	nces			1012		, 24					
1 Jana	rdanSwa	mi Yogahhyasi Mandal "Yogic Asanas for Group Tarining-Part-I	" N	Jaor	$\frac{1}{10000000000000000000000000000000000$						
2 "Rai	avoga oi	conquering the Internal Nature" Swami Vivekananda AdvaitaAs	,ı hra	ma I	Publicat	ion					
Depar	tment).	Colkata	111 4	iiia (1 uoneu	1011					
Course	e Outcon	es:									
At end	of this co	urse, the students will be able to									
CO1	Develop	healthy mind in a healthy body thus improving social health									
CO2	Classify	Yoga Ashtanga									
CO3	Learn D	o`s and Don't's in life									
CO4	Differer	tiate between Yam and Niyam									
CO5	Regular	ze of breathing techniques									
CO6	Implem	ent various yog poses and their benefits for mind and body.									

Course Outcomes	Program Outcomes (POs)						Program Specific Outcomes (PSO's)				
0 40001100	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	
CO1						3				3	
CO2						3				3	
CO3						2				2	
CO4						2				1	
CO5						2				3	
CO6						1				3	

1024	92A C08 PERSONALITY DEVELOPMENT THROUGH LIFE L-T-P									
192 A	1008	ENLIGHTENMENT SKILLS								
					2-0-0	0				
Progra	mme:	M.E. Structural Engineering Sem:	-	Cat	egory:	MC				
Aim:		To learn to achieve the highest goal happily.								
CHAP	TER–I					8				
Neeti	isatakam	Holistic development of personality Verses- 19,20,21,22 (wisdom)								
Verse	es- 29,31	,32 (pride & heroism) Verses- 26,28,63,65 (virtue)								
Verse	es- 52,53	,59 (dont's)								
Verses-	/1,/3,/	5,78 (do's)								
СНАР	TER-II					8				
Appr	oach to c	lay to day work and duties.								
Shrin	nad Bhag	gwadGeeta: Chapter 2-Verses 41, 47,48,								
Chap	ter 3-Ver	13, 21, 27, 35, Chapter 6-Verses 5, 13, 17, 23, 35, 17, 24, 27, 35, 17, 24, 27, 35, 17, 24, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28								
CILAR	r 18-vers	368 43, 40, 48.				0				
CHAP						ð				
State	ments of	Dasic Knowledge.								
Chan	tor 12 V	$V_{arses} 13 \ 14 \ 15 \ 16 \ 17 \ 18$								
Perso	$n \in 12 - v$	Role model Shrimad BhagwadGeeta: Chapter2-Verses 17 Chapter 3-V	Jersi		37 42					
Chapter	r 4-Verse	s 18, 38, 39 Chapter 18 – Verses 37, 38, 63	0150		57,42,					
enapte			7	Fotal	Periods	24				
Refere	nces:									
1. Sri	mad Bha	gavad Gita" by Swami SwarupanandaAdvaita Ashram (Publication Der	artn	nent).	Kolkata					
2. Bh	artrihari'	s Three Satakam (Niti-sringar-vairagya) by P.Gopinath, Rashtriya Sansl	crit S	Sanst	hanam, N	lew				
De	lhi.									
Course	Outcon	les:								
At end	of this co	purse, the students will be able to								
CO1	Learn to	achieve the highest goal happily								
CO2	Become a person with stable mind, pleasing personality and determination									
CO3	Awaken	wisdom in students								
CO4	Develor	their personality by studying Shrimad-Bhagwad-Geeta								
CO5	Develor	versatile personality of students by studying Neetishatakam.								
CO6	Achieve	the highest goal in life by studying Shrimad-Bhagwad-Geeta								
000										

Mapping with Programme Outcomes:

Course		Pro	ogram Ou	itcomes (I	Program Specific Outcomes (PSO's)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	2	2	1	1	2	1		1		2
CO2	2		2		2	2	1		2	1
CO3	2	1		2			1		1	1
CO4		2	1		2		2		1	
CO5	1		2			2		1	1	
CO6	2	2		1	1		1		1	1