
191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

P.S.R. ENGINEERING COLLEGE
SIVAKASI-626 140

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Accredited by NBA and NAAC (A+ Grade)

COURSE MATERIALS

COURSE NAME:Programming for problem solving

COURSE CODE:191CSF1

FACULTY NAME: SAKTHILAKSHMI PRIYA.C,.AP/CSE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Aim: To provide an awareness to Computing and Programming.

Course Outcomes: The Students will be able to

CO1: Understand the basic terminologies of computer and various problem solving techniques.

CO2: Recall the fundamentals needed for constructing a C program.

CO3: Outline the various types of arrays and functions for string handling.

CO4: Summarize the essence of functions and pointers in a C program.

CO5: Illustrate the requirements of structures and unions.

CO6: Make use of different functions for manipulating files.

INTRODUCTION 9

Generation and Classification of Computers- Basic Organization of a Computer - Number System - Binary -

Decimal - Conversion - Problems. Software - Types, Development Steps. Algorithm - Pseudo code - Flow Chart.

Problem formulation - Problem Solving.

C PROGRAMMING BASICS 9

Introduction to Unix Operating System - Introduction to ‘ C’ programming - fundamentals - structure of a ‘C’

program - compilation and linking processes - Constants, Variables - Data Types - Expressions using operators

in ‘C’ - Managing Input and Output operations - Decision Making and Branching - Looping statements - solving

simple scientific and statistical problems.

ARRAYS AND STRINGS 9

Arrays - Initialization - Declaration - One dimensional and Two dimensional arrays. String- String operations -

String Arrays. Simple programs –Bubble Sort – Linear Search -Matrix Operations.

FUNCTIONS AND POINTERS 9

Function - Definition of function - Declaration of function - Pass by value - Pass by reference - Recursion -

Pointers - Definition - Initialization - Pointers arithmetic - Pointers and arrays- Example Problems.

STRUCTURES AND FILES 9

Introduction - need for structure data type - structure definition - Structure declaration - Structure within a

structure - Union - Programs using structures and Unions - File Manipulation - Storage classes - Pre-processor

directives.

Total Hours 45

Text Books:

1. Anita Goel and Ajay Mittal, “Computer Fundamentals and Programming in C”, Dorling Kindersley

(India) Pvt. Ltd., Pearson Education in South Asia, 2017.

2. Balagurusamy E, “Programming in ANSI C”, Tata McGraw-Hill Education, 2016

3. ReemaThareja, “Computer Fundamentals and Programming in C”, 2e, Oxford University Press, 2016.

References:

1. Byron S Gottfried, “Programming with C”, Schaum’s Outlines, 3rdEdition, McGraw-Hill, 2017.

2. Dromey R.G., “How to Solve it by Computer”, Pearson Education, 4th Reprint, 2007.

3. KernighanB.W and Ritchie,D.M, “The C Programming language”, 2nd Edition, Pearson Education, 2006.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING

L T P C

3 0 0 3

Programme: B.E./EEE/MECH/CIVIL/BIO-TECH/AIDS Sem: 1 Category: ESC

https://india.oup.com/content/authors/reema.thareja/

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

191CSF1: PROGRAMMING FOR PROBLEM SOLVING

UniT1:

INTRODUCTION

Generation and Classification of Computers- Basic Organization of a Computer – Number System - Binary -

Decimal - Conversion - Problems. Software - Types, Development Steps. Algorithm - Pseudo code - Flow Chart.

Problem formulation - Problem Solving.

Characteristics of Computers

The various characteristics of computers are as follows

1. Speed: Speed is the most important characteristics of computer .Computer having more

 speed to perform jobs instantaneously.

2. Accuracy: The computers are perfect, accurate and precise. Accuracy signifies the

reliability of the hardware components of computers.

3. Automatic: A computer works automatically, once programs are stored and data are

given to it, constant supervision is not required.

4. Endurance: A computer works continuously and will not get tired and will not suffer

from lack of concentration.

5. Versatility: A computer can be put to work in various fields.

6. Reduction of cost: Though initial investment may be high, computer substantially reduces

the cost of transaction.

Evolution of Computers

The Early development:

 1.ABACUS:

 ABACUS uses movable beads stung on wires above and below a cross bar and its operationare based on

the idea of the place value notation. The beads of the counter represent digits.The value of the digit in each

position is determined by adding the values of the beadspressed against the cross piece.

 2.Pascal calculating machine:

 It was the first real desktop calculating device that could add and subtract. It consists of a setof toothed

wheels or gears with each wheel or gear having digits 0 to 9 engraved on it.Arithmetic operation could be

performed by tunings these wheels.

 3.Punched card Machine:

 The presence and absence of the holes in the card represent the digits.Charles Babbage’s Engine:

The machine took input from the punched card. The Analytical engine had a memory whichwill perform

arithmetic operations.

Computer Generations

 Generation in computer terminology is a change in technology a computer is/was beingused. Initially,

the generation term was used to distinguish between varying hardware technologies.But nowadays, generation

includes both hardware and software, which together make up an entire computer system.There are totally five

computer generations known till date

Following are the main five generations of computers

Si.nO Generation & Description

1 First Generation

The period of first generation : 1946-1959. Vaccum tube based.

2 2 Second Generation

The period of second generation : 1959-1965. Transistor based.

3 Third Generation

The period of third generation : 1965-1971. Integrated Circuit based.

4 Fourth Generation

The period of fourth generation : 1971-1980. VLSI microprocessor based.

5 Fifth Generation

The period of fifth generation : 1980-onwards.ULSI microprocessor based

First Generation

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 i. The period of first generation was 1946-1959.

 ii. First generation of computer started with using vacuum tubes as the basic components for

 memory and circuitry for CPU (Central Processing Unit). These tubes like electric bulbs produced a lot

 of heat and were prone to frequent fusing of the installations, therefore, were very expensive and

 could be afforded only by very large organisations.

 iii. In this generation mainly batch processing operating system were used. In this generation

 Punched cards, Paper tape, Magnetic tape Input & Output device were used.

 iv. There were Machine code and electric wired board languages used.

 The main features of First Generation are:

 Vacuum tube technology

 Unreliable

 Supported Machine language only

 Very costly

 Generate lot of heat

 Slow Input/Output device

 Huge size

 Need of A.C.

 Non portable

 Consumed lot of electricity

 Some computer of this generation were:

 ENIAC

 EDVAC

 UNIVAC

 IBM-701

 IBM-650

Second Generation

 i. The period of second generation was 1959-1965.

 ii. This generation using the transistor were cheaper, consumed less power, more compact in size,

 more reliable and faster than the first generation machines made of vaccum tubes. In this

 generation, magnetic cores were

 iii. used as primary memory and magnetic tape and magnetic disks as secondary storage devices.

 iv. In this generation assembly language and high level programming language like FORTRAN,

 COBOL were used.

 v. There were Batch processing and Multiprogramming Operating system used.

 Fig: Second Generation

 The main features of Second Generation are:

o Use of transistors

o Reliable

o Smaller size

o less heat

o less electricity

o Faster

o Still very costly

o Still very costly

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

o A.C. needed

o Support machine and assembly languages

 Some computer of this generation were:

 IBM 1620

 IBM 7094

 CDC 1604

 CDC 3600

 UNIVAC 1108

Third Generation

 i. The period of third generation was 1965-1971.

 ii. The third generation of computer is marked by the use of Integrated Circuits (IC's) in place of

 transistors.

 iii. Single I.C has many transistors, resistors and capacitors along with the associated circuitry. The

 I.C was invented by Jack Kilby . This development made computers smaller in size, reliable and

 efficient.
 iv. In this generation Remote processing, Time-sharing, Real-time, Multi-programming Operating

 System were used.High level language (FORTRAN-II TO IV, COBOL, PASCAL PL/1,BASIC,

 ALGOL-68 etc.) were used during this generation.

 Fig: Third Generation

 The main features of Third Generation are:

 IC used

 More reliable

 More reliable

 Generate less heat

 Faster

 Lesser maintenance

 Still costly

 A.C needed

 lesser electricity

 high level language

o computer of this generation were:

 IBM-360 series

 Honeywell-6000 series

 PDP(Personal Data Processor

 TDC-316

 IBM-370/168

Fourth Generation

 i. The period of Fourth Generation was 1971-1980.

 ii. The fourth generation of computers is marked by the use of Very Large Scale Integrated

 (VLSI)circuits. VLSI circuits having about 5000 transistors and other circuit elements and their

 Associated circuits on a single chip made it possible to have microcomputers of fourth generation.

 Fourth Generation computers became more powerful, compact, reliable, and affordable. As a

 result, it gave rise to personal computer (PC) revolution.

 iii. In this generation Time sharing, Real time, Networks, Distributed Operating System were used.

 iv. All the Higher level languages like C and C++, DBASE etc. were used in this generation.

 Fig: Fourth Generation

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 The main features of Fourth Generation are:

 VLSI technology used

 Very cheap

 Portable and reliable

 Use of PC's

 Very small size

 Pipeline processing

 No A.C. needed

 Concept of internet was introduced

 Great developments in the fields of networks

 Computers became easily available

 Some computer of this generation were:

 DEC 10

 STAR 1000

 CRAY-1(Super Computer)

Fifth Generation

 i. The period of Fifth Generation is 1980-till date.

 ii. In the fifth generation, the VLSI technology became ULSI (Ultra Large Scale Integration)

 technology, resulting in the production of microprocessor chips having ten million electronic

 components.

 iii. This generation is based on parallel processing hardware and AI (Artificial Intelligence) software.

 iv. AI is an emerging branch in computer science, which interprets means and method of making

 computers think like human beings.

 v. All the Higher level languages like C and C++, Java, .Net etc. are used inthis generation.

 AI includes:

 Robotics

 Neural networks

 Game Playing

 Fig: Fifth Generation

 The main features of Fifth Generation are:

 ULSI technology

 artificial intelligence

 Natural language processing

 Advancement in Parallel Processing

 friendly interfaces

 Availability of very powerful and compact

 Some computer ofthis generation are:

 Desktop

 Laptop

 NoteBook

 UltraBook

 ChromeBook

1.5 Basic Computer Organization:

Introduction to digital computers

 The architecture of the computers has not changed but the technology used to accomplish

thoseoperations may vary from one computer to another computer. The basic computer organization remains the

same for all computer systems. In 1950’s, it took a room full of vacuum tubes and equipment to perform the tasks

that are now replaced with a single chip, not bigger than a child’s thumb nail. Advances in semiconductor

technology have reduced the Size of the chip.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 FIG:block diagram of computer/architecture diagram

 The block diagram of the digital computer system has the following three units.

 1. Input unit

 2. Central processing unit

 3. Output unit

1. Input unit

 Computers need data and instructions in order to solve any problem. We need to put the dataand

instructions into the computers. The input unit consists of one or more input devices.There are number of

devices that perform the function of input devices. The keyboard of thecomputer is one of the most commonly

used and standardized input device .Regardless of thetype of input device used in a computer system, all input

devices perform the followingfunctions:

 1. Accept data and instruction from the outside world.

 2. Convert it to a form that the computer can understand.

 3. Supply the converted data to the computer system for further processing.

The input unit is used to send information or instructions or commands to the computer. The inputreceived from

the input unit is immediately stored in main memory and the processed. Input may beprocessed. Input may be

pressing a key in a keyboard or moving of mouse or movement of a joystick.

Following are few of the important input devices which are used in Computer Systems

 Keyboard

 Mouse

 Joy Stick

 Light pen

 Track Ball

 Scanner

 Graphic Tablet

 Microphone

 Magnetic Ink Card Reader (MICR)

 Optical Character Reader (OCR)

 Bar Code Reader

 Optical Mark Reader

Keyboard

 Most common and very popular input device is keyboard. The keyboard helps in inputting thedata to

the computer. The layout of the keyboard is like that of traditional typewriter, although thereare some additional

keys provided for performing some additional functions.Keyboards are of two sizes 84 keys or 101/102 keys,

but now 104 keys or 108 keys keyboard isalso available for Windows and Internet.

 Fig: Keyboard

Mouse

 Mouse is most popular Pointing device. It is a very famous cursor-control device. It is a small

palm size box with a round ball at its base which senses the movement of mouse and sendscorresponding

signals to CPU on pressing the buttons. Generally it has two buttons called left and right button and scroll bar is

present at the mid. Mouse can be used to control the position of cursor on screen, but it cannot be used to enter

text into the computer.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 Fig: Mouse

Joystick

 Joystick is also a pointing device which is used to move cursor position on a monitor screen. It is a stick

having a spherical ball at its both lower and upper ends. The lower spherical ball moves in a socket. The Joystick

can be moved in all four directions. The function of joystick is similar to that of a mouse. It is mainly used in

Computer Aided Designing (CAD) and playing computer games.

 Fig: Joystick

Track Ball

 Track ball is an input device that is mostly used in notebook or laptop computer, instead of amouse.

This is a ball which is half inserted and by moving fingers on ball, pointer can be moved.Since the whole device

is not moved, a track ball requires less space than a mouse. A track ball comes in various shapes like a ball, a

button and a square.

 Fig: Track Ball

Scanner

 Scanner is an input device which works more like a photocopy machine. It is used whensome

information is available on a paper and it is to be transferred to the hard disc of thecomputer for further

manipulation.Scanner captures images from the source which are then converted into the digital form that

can be stored on the disc. These images can be edited before they are printed.

 Fig:scanner

2. Central processing unit

 It is the heart of the computer system. All operations are carried out in this unit only. In most

modern computers, a single IC does the following job

 i) It performs all calculations

 ii) It makes all decisions

 iii) It controls all units of the computer

 The CPU is sub-divided into the following sub-system:

 Control unit

 Arithmetic and logical unit (ALU)

 Memory unit

 Secondary storage devices.

(i) Control unit

 The control unit instructs the computer how to carry out program instructions. It directs theflow of

data between memory and arithmetic logical unit. It controls and coordinates the entirecomputer system.

The control unit controls all other parts of the computer.

 The input unit does not know when toreceive data and where to put the data in the storage unit after

receiving it. The control unit gives thenecessary instructions to the input unit,the control unit instructs the

input unit where to store the dataafter receiving it from user.

 In the same way, it controls the flow of data and instructions from thestorage unit to ALU. It also controls

the flow of the results from the ALU to the storage unit. The controlunit also controls what should be sent to the

output unit.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

(ii) Arithmetic and logical unit

 Arithmetic and logical unit performs all the arithmetic and logical operations, arithmeticoperations

like addition, subtraction, multiplication and logical operations such as comparisons.

 All calculations are performed in the arithmetic and logical unit (ALU) of the computer. ALU alsodoes

comparisons and takes decision. Whenever any calculation has to be done, the control unittransfers the

required data from the storage unit to the ALU.

(iii) Memory unit

 Memory unit is the part of computer which holds data for processing and other information. Italso called

as main memory. It is a temporary storage (volatile). The values stored in the processor withthe help of the

many register like accumulator, base register. This registers store the value at the time ofcalculation.

(iv) Secondary storage devices

 The secondary storage is used like an archive. It may store several programs, documents, database,etc.

The program that you want to run on the computer is first transferred to the primary memorybefore it can run.

 The secondary memory is slower than the primary memory. Some of the commonlyused secondary

memory devices are hard disk, compact disk (CD), digital video disk (DVD). It is thepermanent storage;

the data stored in this storage will not be erased when the power is lost. It is a nonvolatilememory.

3. Output unit

 These devices used to get the response or result from the processor. Output unit is the communication

between the user and the computer. The output unit of a computer provides theinformation and results of a

computation to the outside world. Commonly used output devices are printer, plotter, and monitor.

 Following are few of the important output devices which are used in Computer Systems

 Monitors

 Graphic Plotter

 Printer

Monitors

 Monitor commonly called as Visual Display Unit (VDU) is the main output device of acomputer. It

forms images from tiny dots, called pixels, that are arranged in a rectangular form. The sharpness of the image

depends upon the no. of the pixels.

 There are two kinds of viewing screen used for monitors.

 Cathode-Ray Tube (CRT)

 Flat- Panel Display

Cathode-Ray Tube (CRT) Monitor

 In the CRT display is made up of small picture elements called pixels for short. The smaller thepixels, the

better the image clarity, or resolution. It takes more than one illuminated pixel to formwhole character, such as

the letter e in the word help.

 A finite number of character can be displayed on a screen at once. The screen can bedivided into a

series of character boxes - fixed location on the screen where a standard charactercan be placed.The most screens

are capable of displaying 80 characters of data horizontally and 25 lines

 vertically. There are some disadvantage of CRT

 Large in Size

 High Power consumption

¶ Printers

 Printer is the most important output device, which is used to print information on paper.The printers

that print the characters by striking against the ribbon and onto the paper arecalled impact printers.

Characteristics of Impact Printers are following

o Very low consumable costs

o Impact printers are very noisy

o Useful for bulk printing due to low cost

o There is physical contact with the paper to produce an image

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

2 Types of computers/ Classification of computer

 The computers come in many sizes and capabilities. It can be classified into the following based on

hardware, utility, size and capacity.

 Based on hardware design, computers are classified as

 1. Analog computer

 2. Digital computer

 3. Hybrid computer

Analog Computer

 Analog is Greek word which means similar. So in analog computes, any two quantitiesare measured

by electrical voltage or current. The analog computer operates by measuringinstead of counting. The analog

computer works on the supply of continuous electrical signals.The display is also continuous and its output is

in the form of graphs. Today analog computersare obsolete.

Digital computer

 As the name implies, the digital computer handles quantities represented as digits. Indigital computer,

both numerical and non-numeric information’s are represented as string ofdigits.In digital computer, the input

data is discrete in nature. It is represented by binarynotation in the form of 0’s and 1’s. Digital computer are much

faster than analog computers andfar more accurate. Digital computer is largely used for business and scientific

applications.

Hybrid computer

 In hybrid computer, an attempt is made to combine the qualities of both analog anddigital computer. In

a hybrid computer, the measuring functions are performed by the analogway while control and logic functions

are digital in nature. Weather-monitoring system anddevices used in intensive care units of the hospitals are

examples of hybrid computer.

2.2 Based on utility

 Based on utility, the computers can be classified into

 1. General purpose computers

 2. Special purpose computers

General purposecomputers:
 These are designed and constructed to cater to almost all the needs of the society. They can perform

various operations. They are able to perform according to the programs created to meet different needs .These

can be used for a variety of tasks form financial accounting to mathematical calculations form designing

textile prints to controlling machinery. They are also flexible and can be used to work on business and scientific

problems.

Special purpose computers

 Special purpose computers can be designed to perform specific functions. In such devices, the

instructions are permanently pre programmed. The instructions needed to perform the particular task are

incorporated into the internal memory of the computer. Some of the special purpose computer are aircraft

control system, electronic voting machines etc.

Based on size and capacity

 Based on size and capacity, computers are classified into the following:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 1. Micro computer

 2. Mini computer

 3. Mainframe computer

 4. Super computer

Micro computers

 In view of its small size and the use of Microprocessor, this computer is called Micro computer.A

microprocessor is a processor whose components namely Input, Output and CPU are on a single integrated-

circuit chip. It is a low-cost and the word length of a microcomputer lies in the range of 8 to 32 bits.

 Fig. Micro computer

 They are normally single-microprocessor, single-user systems designed for performing basic operations

like general purpose calculations, industrial control, instrumentation, educational, training, small

business applications, home applications, commercial equipment control, watches, fuel injection of a car,

office automation, playing games etc.

Mini computer

 Minicomputer is larger than the micro computers and is more powerful in terms of processing

power.Minicomputer is mainly multiprocessor systems where many users simultaneously work on the

systems. Minicomputer possesses greater storage capacity and larger memories as compared to

microcomputer.Their word length is 32 bits.

 Fig.mini computer

Mainframe computers

 Mainframe computer are larger, faster and more expensive than other general purpose computers.

These are used to handle huge volumes of data. Their word length may be 48 to 64 bit memory capacity.

These computers even possess and work with more than one processor at the same time.

 Fig:Mainframe computer

Super computers

 Super computers are the most powerful of all computers. They have a high processing speed.Their

processing speed lies in the range of 400 to 10,000 MIPS. Word length 64 to 96 bit. It is specially designed

to maximize the number of FLOPS. Their FLOPS rating is usually more than 1 gigaflop per second.

 Fig:Super computer

2.4 Based on mode of use

 However with the rapidly developing technology, such classifications are no more relevant.After a few

months of introduction of a new computer in the marker, the new models of computers arerapidly introduced

with less cost and higher performance than the earliest.

Palmtop pc’s

 The palmtop computers accept handwritten inputs using an electronic pen, which can be used to

write on a palmtop’s screen. These have small disk storage and can be connected to a wireless network. One

has to train the system on the user’s handwriting before it can be used. A palmtop computer has also facilities to

be used as a mobile phone, fax and E-mail machine.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 Fig:World first palmtop pc’s

Laptop pc’s

 Laptop pc’s are portable computers with less weight and small enough to be kept on a lap. They use a

keyboard, Flat screen liquid crystal display, and a Pentium or power pc processor. Color displays are also

available. It is a battery powered personal computer generally smaller than a briefcase that can easily be

transported and conveniently used in temporary space. Laptops come with hard disk, CD ROM and floppy

disk drives.

3. Number systems

Introduction

 A number is required for counting or to express the amount of some quantity. It consists of group of

symbols called digits, which are arranged in a definite manner.. This gives rise to what we call a number

system.

 The most widely adopted system is

o the decimal number system which has ten digits (0,1,2,3 …9),

o the octal system has eight digits (0,1,2,3…, 7),

o the hexadecimal system has sixteen digits (0,1,2,3…,9,A,B,C,D,E,F),

o the binary number system has only two (0,1), symbols.

The number of digits in a system is called ‘radix’ or ‘base’. So that decimal system may be called as

radix-10 system, the binary system as radix-2 system.

3.1 Conversion of number system

 Different number system conversions are followed.

 1. Decimal to binary

 2. Binary to decimal

 3. Decimal to octal

 4. Decimal to Hexadecimal

 5. Octal to decimal

 6. Octal to binary

 7. Binary to octal

 8. Hexadecimal to binary

 9. Binary to hexadecimal

 10. Hexadecimal to decimal

 11. Octal to hexadecimal

 12. Hexadecimal to Octal

1. Conversions of Decimal to Binary-

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 The method that is used for converting of decimals into binary is known as the remainder method. We

 use the following steps in getting the binary number-

 (a) Divide the decimal number by 2.

 (b) Write the remainder (which is either 0 or 1) at the right most position.

 (c) Repeat the process of dividing by 2 until the quotient is 0 and keep writing the remainder after each

 step of division.

 (d) Write the remainders in reverse order.

Conversions of Decimal Fractions to Binary Fractions-

 For converting decimal fractions into binary fractions, we use multiplication. Instead of looking for a

remainder we look for an integer. The following steps are used in getting the binary fractions-

 (a) Multiply the decimal fraction by 2.

 (b) If a non-zero integer is generated, record the non-zero integer otherwise record 0.

 (c) Remove the non-zero integer and repeat the above steps till the fraction value becomes 0.

 (d) Write down the number according to the occurrence.

Example- Find the binary equivalent of (0.75)10.

 0.75 × 2 = 1.50 1

 0.50 × 2 = 1.00 1

Thus (0.75)10= (0.11)2.

Moreover, we can write (45.75)10= (101101.11)2.

Example- Find the binary equivalent of (0.9)10.

 0.9 × 2 = 1.8 1

 0.8 × 2 = 1.6 1

 0.6 × 2 = 1.2 1

 0.2 × 2 = 0.4 0

 0.4 × 2 = 0.8 0

 0.8 × 2 = 1.6 1

 0.6 × 2 = 1.2 1

 0.2 × 2 = 0.4 0

 0.4 × 2 = 0.8 0

 0.8 × 2 = 1.6 1

 0.6 × 2 = 1.2 1

 0.2 × 2 = 0.4 0

 0.4 × 2 = 0.8 0

 0.8 × 2 = 1.6 1

 0.6 × 2 = 1.2 1

 0.2 × 2 = 0.4 0

 0.4 × 2 = 0.8 0

 0.8 × 2 = 1.6 1

Thus (0.9)10 = (0.111001100110011001)2.

2. Conversions of Binary to Decimal –

 In converting binary to decimal, we use the following steps-

 (a) Write the weight of each bit.

 (b) Get the weighted value by multiplying the weighted position with the respective bit.

 (c) Add all the weighted value to get the decimal number.

Example- Convert (101101)2 into decimal number system.

Thus (101101)2= 1 × 25+ 0 × 24 + 1 × 23 + 1 × 23 + 0 × 21 + 1 × 20

= 32 + 0 + 8 + 4 + 0 + 1

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

= 45

Conversions of Binary Fractions to Decimal Fractions –

 The conversions of binary fractions to the decimal fractions is similar to conversion of binary numbers

to decimal numbers. Here, instead of a decimal point we have a binary point. The exponential expressions (or

weight of the bits) of each fractional placeholder is 2-1, 2-2………

Example- Convert (101101.11)2 into decimal number system

=1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2-1 + 1 × 2-2

Thus (101101.11)2= 32 + 0 + 8 + 4 + 0 + 1 + 0.5 + 0.25 = 45.75

3. Conversion of Decimal to Octal-

 In converting decimal to octal, we follow the same process of converting decimal to binary. Instead of dividing

the number by 2, we divide the number by 8.

Example- Convert (45)10 into octal number system.

Conversions of Decimal Fractions to Octal Fractions –

 We follow the same steps of conversions of decimal fractions to binary fractions. Here we multiply the

fraction by 8 instead of 2.

Example- Find the octal equivalent of (0.75)10.

 0.75 × 8 = 6.00 6

 Thus (0.75)10= (0.6)8.

 And (45.75)10= (55.6)8.

4. Conversion of Decimal to Hexadecimal –

 We divide by 16 instead of 2 or 8. If the remainder is in between 10 to 16, then the number is

represented by A to F respectively.

Conversions of Decimal Fractions to Hexadecimal Fractions –

 Here we multiply the fraction by 16 instead of 2 or 8. If the non-zero integer is in between 10 to 16, then

the number is represented by A to F respectively.

Example- Find the hexadecimal equivalent of (0.75)10.

 0.75 × 16 = 12.00 C (12 = C) Thus (0.75)10=(0.C)16.

 And (45.75)10= (2D.C)16.

5. Conversions of Octal to Decimal-

 We follow the same steps of conversion of binary to decimal. The only difference is that here weight of

nth bit is 8n-1 instead of 2n-1.

Example- Convert (55)8 into decimal number system.

 = 5× 81 + 5 × 80

 = Thus (55)8 = 40 + 5.

 = 45

Conversions of Octal Fractions to Decimal Fractions-

 The weight of the bit of the fraction placeholder is 8-1, 8-2………. We follow the same steps of

conversion of binary fractions to decimal fractions.

Example- Convert (55.6)8 into decimal number system.

 =5 × 8 1 + 5 × 8 0 + 6 × 8 -1

Thus (55.6)8= 40 + 5 + 0.75 = 45.75

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

6. Conversions of Octal to Binary-

 We use the following steps in converting octal to binary-

 (a) Convert each octal digit into 3-bit binary equivalent.

 (b) Combine the 3-bit section by removing the spaces to get the binary number.

Example- Convert (55)8 into binary.

Conversions of Octal Fractions to Binary Fractions-

 We follow the same steps of conversion of octal to binary.

Example- Convert (55.6)8 into binary.

7.Conversions of Binary to Octal-

 We use the following steps in converting binary to octal-

 (a) Break the number into 3-bit sections starting from LSB to MSB.

 (b) If we do not have sufficient bits in grouping of 3-bits, we add zeros to the left of MSB so that all the

 groups have proper 3-bit number.

 (c) Write the 3-bit binary number to its octal equivalent.

Example- Convert (101101)2 into octal.

Conversions of Binary Fractions to Octal Fractions-

 We use the following steps in converting binary fractions to octal fractions-

 (d) Break the fraction into 3-bit sections starting from MSB to LSB.

 (e) In order to get a complete grouping of 3 bits, we add trailing zeros in LSB.

 (f) Write the 3-bit binary number to its octal equivalent.

Example- Convert (101101.11)2 into octal.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

8. Conversions of Hexadecimal to Binary-We use the following steps-

 (a) Convert each hexadecimal digit to its 4-bit binary equivalent.

 (b) Combine all the binary numbers

9. Conversions of Binary to Hexadecimal- We convert binary to hexadecimal in the similar manner

as we have converted binary to octal. The only difference is that here, we form the group of 4 –

bits.

Example- Convert (101101)2 into hexadecimal.

Conversions of Binary Fractions to Hexadecimal Fractions –

 We convert binary fractions to hexadecimal fractions in the similar manner as we have converted binary

fractions to octal fractions. The only difference is that here we form the group of 4 – bits

10. Conversions of Hexadecimal to Decimal-

 We do the conversion of hexadecimal to decimal as we have done the conversion of binary to decimal.

Here weight of nth bit is 16n-1 instead of 2n-1

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Conversions of Hexadecimal Fractions to Decimal Fractions-

 We do the conversion of hexadecimal fractions to decimal fractions in the similar manner as we have

done the conversion of binary fractions to decimal fractions. Here weight of bit is 16-1, 16-2…….

Example- Convert (2D.C)16 into decimal.

 =2 × 16 1 + 13 × 160 + 13 × 16-1

 =32 + 13 + 0.75 = 45.75

11.Conversions of Octal to Hexadecimal-

 The conversion involves the following steps-

 (a) Convert each octal digit to 3 –bit binary form.

 (b) Combine all the 3-bit binary numbers.

 (c) Group them in 4-bit binary form by starting from MSB to LSB.

 (d) Convert these 4-bit blocks into their hexadecimal symbols.

Example- Convert (55)8 into hexadecimal.

Conversions of Octal Fractions to Hexadecimal Fractions

 - The method of conversion is based on the same procedure that we have discussed in conversions of

octal to hexadecimal.

Example- Convert (55.6)8 into hexadecimal.

12.Conversions of Hexadecimal to Octal-

 We convert each hexadecimal digit in binary. Combine all the binary numbers. Again group them into 3-

bit form. Convert the 3-bit block in octal.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Example- Convert (2D)16 into octal.

Conversions of Hexadecimal Fractions to Octal Fractions –

 We follow the same steps of hexadecimal to octal conversion.

Example- Convert (2D.C)16 into octal.

Software

 is a generic term for organized collections of computer data and instructions, often broken into two

major categories two major categories:

1. system software

2. application software

system Software

 Known as Operating System

 is responsible for controlling, integrating, and managing the individual hardware components of a

computer system

 Windows is an example of OS.

 example of System Software:

 1) Microsoft Windows

 2) Linux

 3) Unix

 4) Mac OSX

 5) DOS



Applicaton Software

 is used to accomplish specific tasks other than just running the computer system.

 It may consist of:

◦ a single program, such as an image viewer;

◦ a small collection of programs (often called a software package) that work closely together to

accomplish a task, such as a spreadsheet or text processing system;

◦ a larger collection (often called a software suite) of related but independent programs and

packages that have a common user interface or shared data format, such as Microsoft Office,

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

SOFTWARE DEVELOPMENT PROCESS

 The software development process consists of four major steps. Each of these steps is detailed

below.

 Step 1:Reqiurement Analysis

 Step 2:Planning

 Step 3: Designing

 Step 4: Implementing

 Step 5: Testing

 Step 6: Deployment and Maintenance

Requirement Analysis

 The business analyst interacts with stakeholders to develop the business requirements document.

 They also write use cases and share this information with the project team.

 The aim of the requirements analysis is for

• quality assurance,

• technical feasibility, and

• to identify potential risks
 to address in order for the software to succeed.

Planning

 customer or stakeholder has requested a project,

 Alignment: How does this project connect to your company’s larger mission and goals?

 Resource availability and allocation:

 Do you have the people and tools you need to take this on?

 Project scheduling: How does this project fit within your company’s goals and other tasks?

 Cost estimation:

 How much is it going to cost?

 Check feasiblity(legal, budget,time.,cost)

 Scope of current release and project plan document

Designing:

 During the design phase, lead developers and technical architects create the initial high-level design plan

for the software and system.

 This includes the delivery of requirements used to create the Design Document Specification (DDS).,

 security processes, as well as hardware and system requirements.



Implementing

 Implementation is the part of the process where software engineers actually program the code for the

project.

 Developing and coding

 In this phase, the database admin creates and imports the necessary data into the database. Programming

languages are defined by requirements. Developers create the interface as per the coding guidelines and

conduct unit testing.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 This is an important phase for developers. They need to be open-minded and flexible if any changes are

introduced by the business analyst.

Testing

 Software testing can be stated as the process of validating and verifying that a software

program/application/product:

 meets the requirements that guided its design and development;

 works as expected; and

 can be implemented with the same characteristics.

Deployment and Maintenance

 In a post-production, live software environment, the system is in maintenance mode.

 No matter the number of users, the sophistication of the software and rigorous QA testing, issues will

occur.

 That’s the nature of software with managing data, integration, and security, and real world usage.

 Access to knowledgeable, reliable support resources is essential, as is routine maintenance and staying

up to date on upgrades.

Algorithm

 It is defined as a sequence of instructions designed in such a way that if the instructions are executed in

the specified sequence, the desired results will be obtained. The algorithm should precise and unambiguous in

practice and the results should obtain after a finite number of steps. An algorithm is defined if any problem

whose solution can be expressed in a list of executable instruction.

Characteristics of algorithms

 In order to qualify algorithms is a sequence of instructions, they must possess the following

characteristics:

 i) In the algorithms, each and every instruction should be precise.

 ii) Each and every instruction should be unambiguous

 iii) Ensure that the algorithm will ultimately terminate.

 iv) The algorithm should be written in sequence.

 v) It looks like normal English

 vi) The desired result should be obtained only after the algorithm terminates

Qualities of a good algorithm

 There are so many methods or logics available to solve the problem individually. All of those methods

logics may not be good, for given problem; there may be so many algorithms not of all equality. The following

are the primary factors that are often used to judge the quality of the algorithm..

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Representation of algorithms

 The algorithms can be represented in several ways. Generally the programmers follows one of the

following ways to represent an algorithms:

 i) Normal English

 ii) Flowchart

 iii) Pseudo code

 iv) Decision table

 v) Program

A sample algorithm

Algorithm

 Step 1: start the program

 Step 2: read number of students, name of the student, marks.

 Step 3: calculate the total marks obtained by each student.

 Step 4: check student mark is greater than 70 or not. If greater than 70 then “first class”.

 Step 5: check student mark is greater than 60 and less than 70or not. If so then, “second class”.

 Step 6: check student mark is greater than 50 and less than 60 or not. If so then, “third class”.

 Step 7: print the result of the student with their names and marks.

 Step 8: stop the program.

Flowchart

 A flowchart is a type of diagram that represents an algorithm, workflow or process, showing the steps

as boxes of various kinds, and their order by connecting them with arrows. This diagrammatic representation

illustrates a solution to a given problem. Flowcharts are used in analyzing, designing, documenting or managing

a process or program in

various fields.

Basic Flowchart Symbols

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 A flowchart is the visualization of a system or process consisting of five basic objects:

2. ALGORITHM & FLOWCHART TO FIND THE GIVEN NUMBER IS EVEN OR ODD.

Algorithm:

 Step 1: Include Header files.

 Step 2: Read the value of a number.

 Step 3: Check the given number by using if (n%2==0)

 Step 4: if its remainder is zero, Print it is even number.

 Step 5: If its remainder is one, Print it is odd number.

 Step 6: Exit

Flowchart:

3. ALGORITHM AND FLOWCHART TO PRINT THE NUMBERS FROM 1 to 10.

Algorithm:

 Step 1:Include Header files.

 Step 2:Read the value of n.

 Step 3:Initialize the value of counter by 1 using counter variable.

 Step 4: Print the values upto the value of n by checking with if statement if(n<10).

 Step 5:Exit.

Flowchart:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Advantages of Flowchart:

 Flowcharts are a better way of communicating the logic of the system.

 With the help of flowcharts programs can be easily analyzed.

 It provides better documentation.

 Easy to trace errors in the software.

 Easy to understand.

 It helps to provide correct logic.

Disadvantages of Flowchart

 It is difficult to draw flowcharts for large and complex programs.

 There is no standard to determine the amount of detail.

 Some developer thinks that it is waste of time.

 If changes are done in software, then the flowchart must be redrawn

Types of flow chart

 Sequence Control structure

 Selection control structure

 Iterative control structure

Sequence Control structure

In sequence control structure, the steps are executed in linear order, one after other

Selection control structure

Selection control structure

 In selection control structure, the steps to be executed next is based on a decision taken.

 If the condition is true , one path is followed

 If the condition is false , another path is followed.

 Ex. Flowchart to positive or negative number



191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Iterative control structure

 To run program multiple times.

PSEUDOCODE

 Is an informal way of programming description that does not require any strict programming language syntax or underlying technology considerations.

 It is used for creating an outline or a rough draft of a program.

 Pseudo code summarizes a program’s flow, but excludes underlying details.

 Pseudocodeis not an actual programming language.

 So it cannot be compiled into an executable program.

 It uses short terms or simple English language syntaxes to write code for programs before it is actually converted into a specific programming language.

 This is done to identify top level flow errors, and understand the programming data flows that the final program is going to use.

Advantage of Pseudo code

 Acts as a bridge between the program and the algorithm or flowchart.

 Also works as a rough documentation.

 developer can be understood easily.

 The main goal of a pseudo code is to explain what exactly each line of a program should do.

Sequence Logic:

 It is used to perform instructions in a sequence that is one after another. pseudo code instruction are

written in an order in which they are to be performed.

BEGIN

NUMBER s1, s2, sum

OUTPUT("Input number1:")

INPUT s1

OUTPUT("Input number2:")

INPUT s2

sum=s1+s2

OUTPUT sum

END

Selection logic:

BEGIN

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 NUMBER num

 OUTPUT "Enter a Number"

OKU num

IF num>0 THEN

OUTPUT "Entered number is positive"

ELSE IF num<0 THEN

OUTPUT "Entered number is negative"

ELSE

OUTPUT "Entered number is zero"

ENDIF

 END

Problem formulation & Problem Solving
 Effective problem formulation is fundamental success of all analysis, particularly in command and

control assessment because the problems are often ill defined and complex, involving many dimensions and rich

contents. Problem formulation involves decomposition of the analytic problems into appropriate

dimensions such as structures, functions and mission areas.

 Problem formulation is an interactive process that evolves over the course of study. It is essential even

for small studies as where time is short, It will save time later help ensure quality.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 The problem formulation phase should identify the context of the study and aspects of the problem

related issues. There is no universal acceptance approach to problem formulation.

 However, practices exist that can be applied. First find out what the question is then find out what the

real question is.

Problem Solving:
 When we start reading these and wants to learn how to solve a problem by using computers, it is first of

all important to understand what the problem is. We need to read all the problem statements a number of times

to ensure that is understands what is asked before attempting to solve t problem.

Method of problem solving:

 1. Recognize and understand the problems

 2. Accumulate facts

 3. Select appropriate theory

 4. Make necessary assumptions

 5. Solve the problems

 6. Verify the results

Performing step 5 solves the problem may involve a computer. The 5 steps in using a computer as a problem

solving tool

 1. Develop an algorithm and flowchart

 2. Write a program in computer language

 3. Enter the program in to computer

 4. Test and debug the program

 5. Run the program, input data, and get the results from computer.

Introduction to C

C – Language History

 C language is a structure oriented programming language, was developed at Bell Laboratories in1972

by Dennis Ritchie

 C language features were derived from earlier language called “B” (Basic CombinedProgramming

Language – BCPL)

 C language was invented for implementing UNIX operating system

 In 1978, Dennis Ritchie and Brian Kernighan published the first edition “The C

ProgrammingLanguage” and commonly known as K&R C

 In 1983, the American National Standards Institute (ANSI) established a committee to provide

amodern, comprehensive definition of C. The resulting definition, the ANSI standard, or “ANSI C”,was

completed late 1988.

Features of ’C’:
 C is a general purpose language

 C is a structural Language

 C is middle level language ie., it supports both the low and high level language features

 C is flexible and more powerful language

 C programs are fast and efficient

 C is most suitable for writing system software as well as application softwares

C PROGRAMMING BASICS UNIT-II

9

Introduction to Unix Operating System - Introduction to ‘ C’ programming - fundamentals - structure of a ‘C’

program - compilation and linking processes - Constants, Variables - Data Types - Expressions using operators

in ‘C’ - Managing Input and Output operations - Decision Making and Branching - Looping statements - solving

simple scientific and statistical problems.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 Machine independent and portable

 C has the ability to extend itself, we can continuously add our own functions to the existing library

 functions

 C is the robust language

 C is widely available, commercial C compilers are available on most PC’s

 Commands may be inserted anywhere in a program

 C has rich set of operators.

 C language allows reference to memory location with the help of pointers, which holds the address of

the memory locations

STRUCTURE OF C PROGRAM

i. Documentation Section:
 It consists of set of command lines used to specify the name of the program, the author of the program

and other details etc..

Comments:
 Comments are very helpful in identifying the program features and underlying logi of the program. The

lines with ‘/*’ and ending with ‘*/’ are known as comment lines. These are not executable, the compiler is

ignored anything in between /* and */

ii. Preprocessor Section:
 It is used to link system library files, for defining the macros and for defining the conditional inclusion.

 Ex : include <stdio.h>

iii. DefintionSection:
 The definition section defines all symbolic constants.

 Ex: # define pi 3.14

iv. Global Declaration Section:
 The variable that are used in more than one function throughout the program are called global variable

and are declared outside of all the function. Ie.mmain() function.

v. Main Function:
 Every C program must have one main function, which specify the starting of C program

Declaration Part:
 This part is used to declare all the variables that are used in the executable part of the program and these

 are called local variables

Executable Part:
 It contains at least one valid C statements

 The execution of a program begins with opening brace ‘{‘ and ends with ‘}’

Example C program to compare all the sections:

/* C basic structure program Documentation section

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Author: fresh2refresh.com

Date : 01/01/2012

*/

#include <stdio.h>/* Link section */

int total = 0; /* Global declaration and definition section */

int sum (int, int); /* Function declaration section */

int main () /* Main function */

{

printf ("This is a C basic program \n");

total = sum (1, 1);

printf ("Sum of two numbers : %d \n", total);

return 0;

}

int sum (int a, int b) /* User defined function */

{ /* definition section */

return a + b;

}

Rules for writing C program:
 All the statements should be in lower case letters.

 Upper case letters are only used for symbolic constants.

 Blank spaces may be inserted between two words. It is not used when declaring variables, keywords,

 constants and functions.

 The program statements can write anywhere between the two braces following the declaration part

 The user can also write one or more statements in one line separating them with semicolon (;)

Executing C Program
 Execution is the process of running the program, to execute a ‘C’ program, we need to follow the steps

 given below.

 i. Create the program

 ii. Compiling the program

 iii. Linking the program with system library

 iv. Executing the program

i. Creating the program:

 Creating the program means entering and editing the program in statndard C editors and save the

program with an extension .c

ii. Compiling the program

 This is the process of converting the high level language program into machine understandable form.

For this purpose compiler is used. Usually this can be done in C language by pressing ALT+F9 or compile from

compile menu

 Here there are possibility to show errors ie., syntax errors, means the statements written in program

are not in proper syntax

iii. Linking the program with system library

 C language program is the collection of predicted functions.

 These functions are already written in some standard C header files,

 Therefore, before executing a C program, we need to link system library

 This can be done automatically at the time of execution

iv. Executing the program:

 This is the process of running and testing the program with the sample data

 At this time there is a possibility show two type of errors given below

 o Logical Error:

 These are the errors, in which conditional and control statements cannot end their match after some

 sequential execution

 o Data error:

 These are the errors, in which the input data given, if not in a proper syntax as specified in input

statements.

7.4 Uses of C language:

 C language is used for developing system applications that forms major portion of operating systems

such as Windows, UNIX and Linux. Below are some examples of C being used.

 Database systems

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 Graphics packages

 Word processors

 Spread sheets

 Operating system development

 Compilers and Assemblers

 Network drivers

 Interpreters

Which level the C language is belonging to?

CHARACTER SET
 The character set is the fundamental raw material of any language and they are used to represent

information. The set of characters used in a language is known as its character set. These characters can be

represented in the computers.

 C programs are basically of two types, namely

 1. Source Character set

 2. Executable Character set

1. Source character set
 They are used to construct the statements in the source programs

 Alphabets - A to Z,a to z.

 Decimal Digits - 0 to 9

 White Spaces - Blank space, horizontal tab, vertical tab, new line

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 Special characters - - +,*,, ; ,’, /,?,[,{,@,#,%,&,(,<,=,>,},],_,-.

Trigraph Characters:

??= -> # ??(-> [??) ->] ??< -> { ??> -> } ??! -> |

2. Executable character set
\a – Beep

\b – Back space

 \t – Horizantal tab

\\ - Back slash

 \0 – Null

\n – next line

\v –vertical tab

 \f – form feed

 \r – carriage return

\’ – Single Quote

 \”- Double quote

TOKENS
 The tokens are usually referred as individual text and punctuation in a passage of text. C tokens has

following types.

Identifiers and Keywords
 In C Language every world is classified into either a keyword or an identifier.

Identifiers:
 Identifiers are names given to various program elements, such as a variable, functions and arrays etc..

 Identifiers are user defined names

 It consists of sequence of letters and digits.

Example of valid Identifiers:

 Length, Area, volume, SuM,_Average
Invalid identifiers:

 Length of line, Stum: , Year’s, 2a.,

Rules for writing Identifiers:
 1. It contains letters and digits.

 2. ‘_’ can also be used.

 3. First character must be a letter or _

 4. Contain only 31 characters.

 5. No space and special symbols are allowed.

 6. It cannot be a keyword.

KEYWORD
 These are reserved words that have standard and predefined meaning in C language.

 It cannot be changed.

 They can’t be used as a variable name.

 For utilizing the keyword in a program, no header files are included.

 The C support 32 keywords

auto, break, case, char ,const, continue, default, do, double, else , enum, extern, float, for, goto , if, int,

register, return, short, signed, sizeof, static, struct, switch, typedef, union, unsigned, void, volatile, while

CONSTANTS
 The item whose values cannot be changed during the execution of program called constants.

 Three types of constants:

 o Literal Constants

 A literal constant is a value that you put directly in your code for example

 o Symbolic Constants

 A symbolic constant is a constant that has a name.

 Example: #define PI 3.14

 o Qualifier Constant:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 The qualifier const can be applied to the declaration of any variable to specify that its value will not

be changed

 Example: const float pi=3.14;

 Several types of literal constants available.

Numeric constants:

 Integer Constants:
 The constants are represented with whole numbers

 They require a minimum of 2 bytes and a maximum of 4 byte of memory

Rules for Constructing Integer Constants
 An integer constant must have at least one digit.

 It must not have a decimal point.

 It can be either positive or negative.

 If no sign precedes an integer constant it is assumed to be positive.

 No commas or blanks are allowed within an integer constant.

 The allowable range for integer constants is -32768to 32767

 Valid Examples: 426 +782 -8000 -7605

 Invalid example: 2.3, .235, $76, 3,600

Real Constants:
 Real Constants are often known as floating point constants

 Real Constants can be represented in exponential form or floating point form.

Rules for constructing Real Constants:
 A real constant must have at least one digit.

 It must have a decimal point.

 It could be either positive or negative.

 Default sign is positive.

 No commas or blanks are allowed within a real constant

 Ex.: +325.34 426.0 -32.76 -48.5792

MANTISSA e EXPONENT..

 The exponential form of representation of real constants is usually used if the value of the constant is

either too small or too large.

Rules for constructing Exponential form:
 The mantissa part and the exponential part should be separated by a letter e.

 The mantissa part may have a positive or negative sign.

 Default sign of mantissa part is positive.

 The exponent must have at least one digit, which must be a positive or negative integer. Default sign

is positive.

Range of real constants expressed in exponential form is -3.4e38 to 3.4e38.

Ex.: +3.2e-5 4.1e8 -0.2e+3 -3.2e-5

Character Constant:

Single Character Constants:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 A character constant is a single alphabet, a single digit or a single special symbol enclosed within

single inverted commas (‘’). The maximum length of a character constant can be 1 character

 Ex.: 'A' 'I' '5' '=

String Constant:
 String Constants are sequence of characters within double quote marks (“”)

 The string may be combination of all kinds of symbols

 Ex.: “Hello”, “India”, “444”, “a”, “”

Example program using const keyword in C:

#include <stdio.h>

void main()

{

constint height = 100; /*int constant*/

const float number = 3.14; /*Real constant*/

const char letter = 'A'; /*char constant*/

const char letter_sequence[10] = "ABC"; /*string constant*/

const char backslash_char = '\?'; /*special char cnst*/

printf("value of height : %d \n", height);

printf("value of number : %f \n", number);

printf("value of letter : %c \n", letter);

printf("value of letter_sequence : %s \n", letter_sequence);

printf("value of backslash_char : %c \n", backslash_char);

}

C – Variable

 C variable is a named location in a memory where a program can manipulate the data. This

 location is used to hold the value of the variable.

 The value of the C variable may get change in the program.

 C variable might be belonging to any of the data type like int, float, char etc.

Rules for naming C variable:

 1. Variable name must begin with letter or underscore.

 2. Variables are case sensitive

 3. They can be constructed with digits, letters.

 4. No special symbols are allowed other than underscore.

 5. sum, height, _value are some examples for variable name

Declaring & initializing C variable:

 Memory space is not allocated for a variable while declaration. It happens only on variable definition.

 Variable initialization means assigning a value to the variable.

There are two types of variables in C program They are,

 1. Local variable

 2. Global variable

local variable in C:

 The scope of local variables will be within the function only.

 These variables are declared within the function and can’t be accessed outside the function.

 In the below example, m and n ivariables are having scope within the main function only. These are

not visible to test function.

 Like wise, a and b variables are having scope within the test function only. These are not visible to

main function.

 #include<stdio.h>

 void test();

 intmain()

 {

 int m = 22, n = 44;

 // m, n are local variables of main function /*m and n variables are having scope

 within this main function only.These are not visible to test funtion.*/

 /* If you try to access a and b in this function,

 you will get 'a' undeclared and 'b' undeclarederror */

 printf("\nvalues : m = %d and n = %d", m, n);

 test();

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 }

global variable in C:

 o The scope of global variables will be throughout the program. These variables can be

 accessed from anywhere in the program.

 o This variable is defined outside the main function. So that, this variable is visible to main

 function and all other sub functions.

 #include<stdio.h>

 void test();

 int m = 22, n = 44;

 int a = 50, b = 80;

 intmain()

 {

 printf("All variables are accessed from main function");

 printf("\nvalues : m= %d : n= %d : a= %d : b= %d",m,n,a,b);

 test();

 }

 void test()

 {

 printf("\n\nAll variables are accessed from" \ " test function");

 printf("\nvalues : m= %d : n= %d : a= %d : b= %d",m,n,a,b);

 }

 Data Types
 C data types are defined as the data storage format that a variable can store a data to perform a

 specific operation.

 Data types are used to define a variable before to use in a program.

 Size of variable, constant and array are determined by data types.

 C – data types:

There are four data types in C language. They are,

Basic data types in C:

Integer data type:

 Integer data type allows a variable to store numeric values.

 “int” keyword is used to refer integer data type.

 The storage size of int data type is 2 or 4 or 8 byte.

 It varies depend upon the processor in the CPU that we use. If we are using 16 bit processor, 2

 byte (16 bit) of memory will be allocated for int data type.

 Like wise, 4 byte (32 bit) of memory for 32 bit processor and 8 byte (64 bit) of memory for 64 bit

 processor is allocated for int datatype.

 int (2 byte) can store values from -32,768 to +32,767

 int (4 byte) can store values from -2,147,483,648 to +2,147,483,647.

 If you want to use the integer value that crosses the above limit, you can go for “long int” and

 “long longint” for which the limits are very high.

Character data type:

 Character data type allows a variable to store only one character.

 Storage size of character data type is 1. We can store only one character using character data type.

 “char” keyword is used to refer character data type.

 For example, ‘A’ can be stored using char datatype. You can’t store more than one character

 using char data type.

 Please refer C – Strings topic to know how to store more than one characters in a variable.

Floating point data type:

 Floating point data type consists of 2 types. They are,

 1. float

 2. double

1. float:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 Float data type allows a variable to store decimal values.

 Storage size of float data type is 4. This also varies depend upon the processor in the CPU as

 “int” data type.

 We can use up-to 6 digits after decimal using float data type.

 For example, 10.456789 can be stored in a variable using float data type.

2. double:

 Double data type is also same as float data type which allows up-to 10 digits after decimal.

 The range for double datatype is from 1E–37 to 1E+37.

sizeof() function in C:

 sizeof() function is used to find the memory space allocated for each C data types.

 #include <stdio.h>

 #include <limits.h>

 intmain()

 {

 int a;

 char b;

 float c;

 double d;

 printf("Storage size for int data type:%d \n",sizeof(a));

 printf("Storage size for char data type:%d \n",sizeof(b));

 printf("Storage size for float data type:%d \n",sizeof(c));

 printf("Storage size for double data type:%d\n",sizeof(d));

 return 0;

 }

Enumeration data type in C:

 Enumeration data type consists of named integer constants as a list.

 It start with 0 (zero) by default and value is incremented by 1 for the sequential identifiers in the

 list.

Enum syntax in C:

 enum identifier [optional{ enumerator-list }];

 Enum example in C:

 enum month { Jan, Feb, Mar };

 or

 enum month { Jan = 1, Feb, Mar };

 enum month { Jan = 20, Feb, Mar };

Derived data type in C:

 Array, pointer, structure and union are called derived data type in C language.

Void data type in C:

 Void is an empty data type that has no value.

 This can be used in functions and pointers.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

OPERATORS AND EXPRESSIONS
 An Operator is a symbol that specifies an operation to be performed on the operands

 The data items that operators acts upon are called Operands

 An Operation indicates an operation to be performed on data that may yield a new value

 An operator can operate on integer, character and floating point numbers

Types of operator:
• Arithmetic Operators

• Relational Operators

• Logical Operators

• Assignment Operators

• Increment and decrement Operators

• Conditional Operators

• Bitwise Operators

• Special Operators

Arithmetic Operators:
These are used to perform mathematical calculations like addition, subtraction, multiplication, division

and modulus

Example program for C arithmetic operators:

intmain()

{

int a=40,b=20, add,sub,mul,div,mod;

add = a+b;

sub = a-b;

mul = a*b;

div = a/b;

mod = a%b;

printf("Addition of a, b is : %d\n", add);

printf("Subtraction of a, b is : %d\n", sub);

printf("Multiplication of a, b is : %d\n", mul);

printf("Division of a, b is : %d\n", div);

printf("Modulus of a, b is : %d\n", mod);

}

Output:

Addition of a, b is : 60

Subtraction of a, b is : 20

Multiplication of a, b is : 800

Division of a, b is : 2

Modulus of a, b is : 0

Assignment Operators

Assignment operators in C:

o In C programs, values for the variables are assigned using assignment operators.

o For example, if the value “10″ is to be assigned for the variable “sum”, it can be assigned

as “sum = 10;”

o Other assignment operators in C language are given below.

Example program for C assignment operators:

include <stdio.h>

intmain()

{

int Total=0,i;

for(i=0;i<10;i++)

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

{

Total+=i; // This is same as Total = Toatal+i

}

printf("Total = %d", Total);

}

Output:

Total = 45

Relational Operators

Relational operators in C:

o Relational operators are used to find the relation between two variables. i.e. to compare

the values of two variables in a C program.

Example program for relational operators in C:

#include <stdio.h>

intmain()

{

int m=40,n=20;

if (m == n)

{

printf("m and n are equal");

}

else

{

printf("m and n are not equal");

}

}

Output:

m and n are not equal

Logical Operators

Logical operators in C:

o These operators are used to perform logical operations on the given expressions.

o There are 3 logical operators in C language. They are, logical AND (&&), logical OR (||)

and logical NOT (!).

Example program for logical operators in C:

#include <stdio.h>

intmain()

{

int m=40,n=20;

int o=20,p=30;

if (m>n &&m !=0)

{

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

printf("&& Operator : Both conditions are true\n");

}

if (o>p || p!=20)

{

printf("|| Operator : Only one condition is true\n");

}

if (!(m>n && m !=0))

{

printf("! Operator : Both conditions are true\n");

}

else

{

printf("! Operator : Both conditions are true. " \

"But, status is inverted as false\n");

}

}

Output:

&&Operator : Both conditions are true

|| Operator : Only one condition is true

! Operator : Both conditions are true. But, status is inverted as false

Bit wise Operators

Bit wise operators in C:

o These operators are used to perform bit operations. Decimal values are converted into

binary values which are the sequence of bits and bit wise operators work on these bits.

o Bit wise operators in C language are & (bitwise AND), | (bitwise OR), ~ (bitwise OR), ^

(XOR), << (left shift) and >> (right shift).

Example program for bit wise operators in C:

#include <stdio.h>

intmain()

{

int m=40,n=80,AND_opr,OR_opr,XOR_opr,NOT_opr ;

AND_opr = (m&n);

OR_opr = (m|n);

NOT_opr = (~m);

XOR_opr = (m^n);

printf("AND_opr value = %d\n",AND_opr);

printf("OR_opr value = %d\n",OR_opr);

printf("NOT_opr value = %d\n",NOT_opr);

printf("XOR_opr value = %d\n",XOR_opr);

printf("left_shift value = %d\n", m << 1);

printf("right_shift value = %d\n", m >> 1);

}

Output:

AND_opr value = 0

OR_opr value = 120

NOT_opr value = -41

XOR_opr value = 120

left_shift value = 80

right_shift value = 20

Conditional Operators

Conditional or ternary operators in C:

o Conditional operators return one value if condition is true and returns another value is condition is

false.

o This operator is also called as ternary operator.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Syntax : (Condition? true_value: false_value);

Example : (A > 100 ? 0 : 1);

.

o In above example, if A is greater than 100, 0 is returned else 1 is returned. This is equal to if else

conditional statements.

Example program for conditional/ternary operators in C:

#include <stdio.h>

intmain()

{

int x=1, y ;

y = (x ==1 ? 2 : 0) ;

printf("x value is %d\n", x);

printf("y value is %d", y);

}

Output:

x value is 1

y value is 2

Increment/decrement Operators

Increment operators are used to increase the value of the variable by one and decrement operators

are used to decrease the value of the variable by one in C programs.

Syntax:

Increment operator :

++var_name;(or) var_name++;

Decrement operator :

– - var_name; (or) var_name – -;

Example:

Increment operator :

++i;i++;

Decrement operator: – - i ;i – - ;

Example program for increment operators in C:

//Example for increment operators

#include <stdio.h>

intmain()

{

inti=1;

while(i<10)

{

printf("%d ",i);

i++;

}

}

Output:

1 2 3 4 5 6 7 8 9

Example program for decrement operators in C:

//Example for decrement operators

#include <stdio.h>

intmain()

{

inti=20;

while(i>10)

{

printf("%d ",i);

i--;

}

}

Output:

20 19 18 17 16 15 14 13 12 11

Difference between pre/post increment & decrement operators in C:

o Below table will explain the difference between pre/post increment and decrement operators in C.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Example program for pre – increment operators in C:

//Example for increment operators

#include <stdio.h>

intmain()

{

inti=0;

while(++i< 5)

{

printf("%d ",i);

}

return 0;

}

Output:

1 2 3 4

Step 1 : In above program, value of “i” is incremented from 0 to 1 using pre-increment

operator.

o Step 2 : This incremented value “1″ is compared with 5 in while expression.

o Step 3 : Then, this incremented value “1″ is assigned to the variable “i”.

o Above 3 steps are continued until while expression becomes false and output is displayed as “1 2 3 4″.

Example program for post – increment operators in C:

#include <stdio.h>

intmain()

{

inti=0;

while(i++ < 5)

{

printf("%d ",i);

}

return 0;

}

Output:

1 2 3 4 5

Step 1 : In this program, value of i ”0″ is compared with 5 in while expression.

Step 2 : Then, value of “i” is incremented from 0 to 1 using post-increment operator.

Step 3 : Then, this incremented value “1″ is assigned to the variable “i”.

o Above 3 steps are continued until while expression becomes false and output is displayed as “1 2 3 4 5″.

Example program for pre - decrement operators in C:

#include <stdio.h>

intmain()

{

inti=10;

while(--i> 5)

{

printf("%d ",i);

}

return 0;

}

Output:

9 8 7 6

Step 1 : In above program, value of “i” is decremented from 10 to 9 using predecrement operator.

o Step 2 : This decremented value “9″ is compared with 5 in while expression.

o Step 3 : Then, this decremented value “9″ is assigned to the variable “i”.

o Above 3 steps are continued until while expression becomes false and output is displayed as “9 8 7 6″.

Special Operators in C:

o Below are some of special operators that C language offers.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

#include <stdio.h>

intmain()

{

int *ptr, q;

q = 50;

/* address of q is assigned to ptr */

ptr = &q;

/* display q's value using ptr variable */

printf("%d", *ptr);

return 0;

}

Output:

50

MANAGING INPUT AND OUTPUT OPERATIONS
 Reading data from input device, processing it, and displaying the result on the screen are the three

task of any program

 We have two methods for providing data to the program

1. Assigning the data to the variable in a program

2. By using the I/O functions

Two types of Input / Output functions:

The printf() function:
 The output data or result of an operation can be displayed from the computer to a standarad output

device ie., Monitor

 The function is used to output any combination of data

Syntax:

printf("format string", list of variables) ;

The format string can contain:

a) Characters that are simply printed as they are

b) b) Conversion specifications that begin with a % sign

c) Escape sequences that begin with a \ sign

Example:
main()

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

{

intavg = 346 ;

float per = 69.2 ;

printf("Average = %d\nPercentage = %f", avg, per) ;

}

Output:
Average = 346

Percentage = 69.200000

Escape Sequences :

\a – Beep \b – Back space \t – Horizantal tab

\\ - Back slash \n – next line \v –vertical tab

\f – form feed \r – carriage return \’ – Single Quote

\”- Double quote

The Scanf() Function:
 The scanf() function is usd to read information the standarad input device

o It is used for runtime assignment of variables

o This function is used to enter any combination of input

Syntax:

scanf("format string", list of addresses of variables) ;

Example:

scanf("%d %f %c", &c, &a, &ch) ;

 & denotes the address of the variable. The values received from keyboard must be dropped into

variables corresponding to these addresses

The sprintf() function:
 This function writes the output to an array of characters

Example:
inti = 10 ;

char ch = 'A' ;

float a = 3.14 ;sprintf (str, "%d %c %f", i, ch, a) ;

UNFORMATTED I/O FUNCTIONS
 These statements are used to I/O a single / group of characters from the I/O Device

 Here the user can’t specify the type of data that is going to be Input / Ouptput

UNFORMATTED OUTPUT FUNCIONS:

1) The getch () function:

 getch() accepts only single character from keyboard.

 The character entered through getch() is not displayed in the screen (monitor).

Syntax:
variable_name = getch();

2) The getche() function:

 getche() also accepts only single character, but unlike getch(), getche() displays the entered character

in the screen.

Syntax:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

variable_name = getche();

3) The getchar() function:

 getchar() accepts one character type data from the keyboard.

 It requires Enter key to be typed following the character that you typed

Example:
void main()

{

char ch ;

printf("\nPress any key to continue") ;

getch() ; /* will not echo the character */

printf("\nType any character") ;

ch = getche() ; /* will echo the character typed */

printf("\nType any character") ;

getchar() ; /* will echo character, must be followed by enter key */

}

Output:
Press any key to continue

Type any character B

Type any character W

W

4) The gets() function:

 It accepts any line of string including spaces from the standard Input device (keyboard).

 It stops reading character from keyboard only when the enter key is pressed.

Syntax:

gets(variable_name);

Example:
char ch[20];

gets(ch);

Unformatted Output Functions:

1) The putch() Function:

` putch displays any alphanumeric characters to the standard output device.

 It displays only one character at a time.

Syntax:
putch(variable_name);

Example:
char z[20]=”welcome”;

putch(z);

2) The putchar() function:

 putchar displays one character at a time to the Monitor.

Syntax:
putchar(variable_name);

Example:
char z[20]=”welcome”;

putchar(z);

3) The puts() Function

 puts displays a single / paragraph of text to the standard output device.

Syntax:
Puts(variable_name);

Example:
#include<stdio.h>

#include<conio.h>

void main()

{

char a[20];

gets(a);

puts(a);

getch();

}

Output:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Abcdefgh

Abcdefgh

CONTROL STATEMENTS
 Control Statement are program statements that are cause a jump of control from one part of program

to another part of program

 These statements are classified into two types:

o Branching Statements

o Looping Statements

Branching Statements:
 In decision making statements, group of statements are executed when condition is true. If condition

is false, then else part statements are executed.

 There are 3 types of decision making control statements in C language. They are,

o if statements

o if else statements

o nested if statements

o else if statements

o Switch statements

If Statement:

 An if statement consists of a boolean expression followed by one or more statements.

Syntax:
if(condition)

{

Statements;

}

 If the condition is true, then the block of code inside the if statement will be executed.

 If the condition is false, then the first set of code after the end of the if statement(after the closing

curly brace) will be executed.

Flow Diagram:

Example:
#include <stdio.h>

void main ()

{

int a = 10;

if(a< 20)

{

printf("a is less than 20\n");

}

printf("value of a is : %d\n", a);

}

Output:

a is less than 20;

value of a is : 10

if..else statements:
 In if else control statement, group of statements are executed when condition is true.

 If condition is false, then else part statements are executed.

Syntax:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

if(condition)

{

True Statements

}

else

{

False statements

}

Flow Diagram:

Example:
#include <stdio.h>

void main ()

{

int a = 100;

if(a< 20)

{

printf("a is less than 20\n");

}

else

{

printf("a is not less than 20\n");

}

printf("value of a is : %d\n", a);

}

Output:
a is not less than 20;

value of a is : 100

else if ladder / else if statements:
 An if statement can be followed by an optional else if...else statement, which is very useful to test

various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind:

o An if can have zero or one else's and it must come after any else if's.

o An if can have zero to many else if's and they must come before the else.

o Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax:

if(Condition1)

{

Statements 1;

}

else if(Condition 2)

{

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Statements 2;

}

else if(Condition 3)

{

Statements 4;

}

else

{

Else statements;

}

FlowDiagram

Example:#in

clude

<stdio.h>void

main()

{

int a =

100;if(

a==10)

{

printf("Valueofais10\n");

}

elseif(a ==20)

{

printf("Valueofais20\n");

}

elseif(a ==30)

{

printf("Valueofais30\n");

}

else

{

printf("Noneofthevaluesismatching\n");

}

printf("Exactvalueofais: %d\n",a);

}

Noneof thevaluesismatching

Exact valueofais:100

Nested ifStatements:

 An if .. else statement is placed inside another if..else statements, this is

known asnested if..elsestatements

 Theseareusedwhenseriesof decisionsareinvolved

Syntax:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

FlowDiagram:

Example:#in

clude

<stdio.h>void

main()

{

int a = 100;

int b = 200;

if(a == 100)

{

if(b == 200)

{

printf("Value of a is 100 and b is 200\n");

}

}

printf("Exact value of a is : %d\n", a);

printf("Exact value of b is : %d\n", b);

}

Output:
Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Switch Statements:
 Switch statements is a multiway branching statements based on the value of an expression

if(Condition 1)
{

/* Executes when the condition 1 is true
*/if(Condition2)
{

/*Executeswhenthecondition2istrue*/
}

}
else
{
/*Executeswhenthecondition1isfale*/
}

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 The control is transferred to one of the many possible points

 If no match is there, then the default block is executed

 Every case statements should be terminated with a break statements

Syntax: switch (expression) { case label1:

statements; break;

case label2:

statements; break;

default:

statements;

}

Example:

#include <stdio.h>

void main ()

{

char grade = 'B';

switch(grade)

{

case 'A' :

printf("Excellent!\n");

break;

case 'B' :

case 'C' :

printf("Well done\n");

break;

case 'D' :

printf("You passed\n");

break;

case 'F' :

printf("Better try again\n");

break;

default :

printf("Invalid grade\n");

}

printf("Your grade is %c\n", grade);

}

Output:
Well done

Your grade is B

LOOPING STATEMENTS
 Loop control statements in C are used to perform looping operations until the given condition is true. Control

comes out of the loop statements once condition becomes false.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

 There are 3 types

o for loop

o while loop

o do while loop

for loop:
 A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a

specific number of times.

Syntax:

for (init; condition; increment)

{

statement(s);

}

1. The initstep is executed first, and only once. This step allows you to declare and initialize any loop control

variables.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is false, the body of the

loop does not execute and flow of control jumps to the next statement just after the for loop.

3. After the body of the for loop executes, the flow of control jumps back up to the increment statement. This

statement allows you to update any loop control variables.

4. The condition is now evaluated again. If it is true, the loop executes and the process repeats itself (body of

loop, then increment step, and then again condition). After the condition becomes false, the for loop terminates.

Flow Diagram:

Example:
#include <stdio.h>

void main ()

{

int a;

for(a = 10; a < 20; a = a + 1)

{

printf("%d", a);

}

}

Output:
10 11 12 13 14 15 16 17 18 19

While Loop:
 A while loop statement repeatedly executes a target statement as long as a given condition is true.

 Here the condition is checked first, so it is also called as entry control statements

Syntax:

while(condition)

{

statement(s);

}

Flow Diagram:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Example:
#include <stdio.h>

void main ()

{

int a = 10;

while(a< 20)

{

printf(" %d", a);

a++;

}

}

Output:
10 11 12 13 14 15 16 17 18 19

Do…while Loop:
 Unlike for and while loops, which test the loop condition at the top of the loop, thedo...while loop in C

programming language checks its condition at the bottom of the loop.

 A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at least one

time.

 This is also called exit control statement

Syntax:

do

{

statement(s);

}while(condition);

Flow Control

 Example:
#include <stdio.h>

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

void main ()

{

int a = 10;

do

{

printf("%d", a);

a = a + 1;

}while(a < 20);

}

Output:
10 11 12 13 14 15 16 17 18 19

Break Statement:
The break statement has the following two usages:

 When the break statement is encountered inside a loop, the loop is immediately terminated and program

control resumes at the next statement following the loop.

 It can be used to terminate a case in the switch statement

Syntax:
break;

Flow Diagram:

Example:
#include <stdio.h>

void main ()

{

int a = 10;

while(a< 20)

{

printf("%d", a);

a++;

if(a> 15)

{

break;

}

}

}

Output:
10 11 12 13 14 15

Continue Statement:
 The continue statement works somewhat like the break statement.

 Instead of forcing termination of loop, however, continue forces the next iteration of the loop to take place,

skipping any code in between.

Syntax:

continue;

Flow Diagram:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Example:
#include <stdio.h>

void main ()

{

int a = 10;

while(a< 20)

{

printf("%d", a);

a++;

if(a> 15)

{

continue;

}

}

}

Output:
10 11 12 13 14 16 17 18 19

Goto Statement:
A goto statement in C programming language provides an unconditional jump from the goto to a labeled

statement in the same function.

Syntax:

goto label;

….

….

label: statement;

Flow Diagram:

Example:
#include <stdio.h>

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

void main()

{

int a = 10;

LOOP: do

{

if(a == 15)

{

a = a + 1;

goto LOOP;

}

printf(" %d", a);

a++;

}while(a < 20);

}

Output:
10 11 12 13 14 16 17 18 19

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

UNIT -III

ARRAYS AND STRINGS 9

Arrays - Initialization - Declaration - One dimensional and Two dimensional arrays. String- String operations -

String Arrays. Simple programs –Bubble Sort – Linear Search -Matrix Operations.

1 Introduction

 The C Programming language generally uses the variables which are nothing but a name given to a storage

area that our programs can manipulate. Each variable in C has a specific type, which determines the size and

layout of the variable's memory; the range of values that can be stored within that memory and the limitations are

it can’t store more than one value at a time. The limitation of variables could be avoided by using the arrays.

 Arrays.

An array is a collection of data that holds fixed number of values of same type. For example: if you want

to store marks of 100 students, you can create an array for it. intmark[100]

Array Declaration.

To declare an array in C, a programmer specifies the type of the elements and the number ofelements required

by an array as follows,

Syntax

<type><array Name> [array Size];

This is called a single-dimensional array. The arraySizemust be an integer constant greater thanzero and type

can be any valid C data type. For example, to declare a 10-element array called balance oftype double, use this

statement:double balance[10];

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of theelement within

square brackets after the name of the arrayFor example:double salary = balance[9];

#include <stdio.h>

int main ()

{

intn[10]; /* n is an array of 10 integers */

inti,j;

/* initialize elements of array n to 0 */

for (i = 0; i< 10; i++)

{

n[i] = i + 100; /* set element at location i to i + 100 */

}

/* output each array element's value */

for (j = 0; j < 10; j++)

{

printf("Element[%d] = %d\n", j, n[j]);

}

return 0;

}

result:

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Arrays are of two types:

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

One-dimensional arrays

intmark[5] = {19, 10, 8, 17, 9};

Arrays have 0 as the first index not 1. In this example, mark[0]

If the size of an array is n, to access the last element, (n-1) index is used. In this example,mark[4]

Multidimensional arrays

In C programming, you can create an array of

arrays known as multidimensional array. Forexample,float x[3][4];

Here, x is a two-dimensional (2d) array. Thearray can hold 12 elements. You can think the arrayas table with 3

row and each row has 4 column.

Similarly, you can declare a three-dimensional (3d) array. For example,float y[2][4][3];

Here,The array y can hold 24 elements.

Two-Dimensional Arrays

The simplest form of the multidimensional array is the two-dimensional array. A twodimensionalarray is, in

essence, a list of one-dimensional arrays. To declare a two-dimensional integerarray of size x, y you would

write something as follows:

type arrayName [x][y];

EXAMPLE

inta[3][4] = {

{0, 1, 2, 3} ,/* initializers for row indexed by 0 */

{4, 5, 6, 7} ,/* initializers for row indexed by 1 */

{8, 9, 10, 11} /* initializers for row indexed by 2 */

};

#include <stdio.h>

int main ()

{

/* an array with 5 rows and 2 columns*/

inta[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

inti, j;

/* output each array element's value */

for (i = 0; i< 5; i++)

{

for (j = 0; j < 2; j++)

{

printf("a[%d][%d] = %d\n", i,j, a[i][j]);

}}

result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

Passing array to function

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

While passing arrays as arguments to the function, only the name of the array ispassed. C program to

pass an array containing age of person to a function. This functionshould find average age and display

the average age in main function.

SYNTAX:
void myFunction(int *param)

{...

}

OR

void myFunction(intparam[10])

{...

}

OR

void myFunction(intparam[])

{...

}

#include <stdio.h>

float average(float age[]);

intmain()

{

float avg, age[] = { 23.4, 55, 22.6, 3, 40.5, 18 };

avg = average(age); /* Only name of array is passed as argument. */

printf("Average age=%.2f", avg);

return 0;

}

float average(float age[])

{

inti;

float avg, sum = 0.0;

for (i = 0; i< 6; ++i) {

sum += age[i];

}

avg = (sum / 6);

return avg;

}

Sorting Array

This C Program sorts the numbers in ascending order using bubble sort. Bubble sort is a simplesorting

algorithm that works by repeatedly stepping through the list to be sorted, comparingeach pair of adjacent

items and swapping them if they are in the wrong order. Here we need tosort a number in ascending order.

void main()

{

int array[maxsize];

inti, j, num, temp;

printf("enter the value of num \n");

scanf("%d", &num);

printf("enter the elements one by one \n");

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

for (i = 0; i<num; i++)

{

scanf("%d", &array[i]);

}

printf("input array is \n");

for (i = 0; i<num; i++)

{

printf("%d\n", array[i]);

}

/* bubble sorting begins */

for (i = 0; i<num; i++)

{

for (j = 0; j < (num - i - 1); j++)

{

if (array[j] >array[j + 1])

{

temp = array[j];

array[j] = array[j + 1];

array[j + 1] = temp;

}

}

}

printf("sorted array is...\n");

for (i = 0; i<num; i++)

{

printf("%d\n", array[i]);

}

}

Searching
Linear search in C programming: The following code implements linear search

(Searchingalgorithm) which is used to find whether a given number is present in an array and if it ispresent

then at what location it occurs. It is also known as sequential search

#include <stdio.h>

intmain()

{

intarray[100], search, c, n;

printf("Enter the number of elements in array\n");

scanf("%d",&n);

printf("Enter %d integer(s)\n", n);

for (c = 0; c < n; c++)

scanf("%d", &array[c]);

printf("Enter the number to search\n");

scanf("%d", &search);

for (c = 0; c < n; c++)

{

if (array[c] == search) /* if required element found */

{

printf("%d is present at location %d.\n", search, c+1);

break;

}

}

if (c == n)

printf("%d is not present in array.\n", search);

return 0;

}

Enter the number of elements in array 5

Enter 5 numbers

12 23 35 71 50

Enter the number to search 71

71 is present at the location 4

UNITIV

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

FUNCTIONS AND POINTERS 9

Function - Definition of function - Declaration of function - Pass by value - Pass by reference - Recursion -

Pointers - Definition - Initialization - Pointers arithmetic - Pointers and arrays- Example Problems.

Functions in C.

Introduction

Function is a group of statements that together perform a task. Every C program has at least onefunction,

which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among

differentfunctions is up to you, but logically the division usually is so each function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. Afunction

definition provides the actual body of the function.

Defining a Function.

A function definition in C programming language consists of a function header and a functionbody.

General form of a function definition in C programming language is as follows:

return_typefunction_name(parameter list)

{

body of the function

}

Return Type: A function may return a value. The return_type is the data type of the value thefunction returns.

Some functions perform the desired operations without returning a value. In this case, the return type is the

keyword void.

Function Name: This is the actual name of the function. The function name and the parameter list together

constitute the function signature.

Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value tothe parameter.

This value is referred to as actual parameter or argument. Theparameter list refers to the type, order, and

number of the parameters of a function.Parameters are optional; that is, a function may contain no parameters.

Function Body: The function body contains a collection of statements that define what thefunction does.

/* function returning the max between two numbers */

intmax(int num1, int num2)

{

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function.The actual body of

the function can be defined separately.A function declaration has the following parts:

return_typefunction_name(parameter list);

intmax(int num1, int num2);

Calling a Function

While creating a C function, you give a definition of what the function has to do. To use afunction, you

will have to call that function to perform the defined task.

When a program calls a function, program control is transferred to the called function. A called

functionperforms defined task, and when its return statement is executed or when its function-ending

closingbrace is reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters along with function name, and

iffunction returns a value, then you can store returned value. For example:
#include <stdio.h>
/* function declaration */
intmax(int num1, int num2);
int main ()
{
/* local variable definition */
int a = 100;
int b = 200;
int ret;
/* calling a function to get max value */
ret = max(a, b);
printf("Max value is : %d\n", ret);
return 0;
}
/* function returning the max between two numbers */

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

intmax(int num1, int num2)
{
/* local variable declaration */
int result;
if (num1 > num2)
result = num1;
else
result = num2;
return result;
}

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of thearguments. These
variables are called the formal parameters of the function.The formal parameters behave like other local variables inside
the function and are created upon entryinto the function and destroyed upon exit.While calling a function, there are
two ways that arguments can be passed to a function:
Function call by value

The call by value method of passing arguments to a function copies the actual value of anargument into the
formal parameter of the function

/* function definition to swap the values */
void swap(int x, int y)
{
int temp;
temp = x; /* save the value of x */
x = y; /* put y into x */
y = temp; /* put x into y */
return;

}

#include <stdio.h>
/* function declaration */
void swap(int x, int y);
int main ()
{
/* local variable definition */
int a = 100;
int b = 200;
printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
/* calling a function to swap the values */
swap(a, b);
printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);
return 0;

}

Function call by reference

The call by reference method of passing arguments to a function copies the address of anargument into the
formal parameter. Inside the function, the address is used to access the actualargument used in the call. This means that
changes made to the parameter affect the passed argument.To pass the value by reference, argument pointers are
passed to the functions just like any other value.So accordingly you need to declare the function parameters as pointer
types as in the following functionswap(), which exchanges the values of the two integer variables pointed to by its
arguments.
/* function definition to swap the values */
void swap(int *x, int *y)
{
int temp;
temp = *x; /* save the value at address x */
*x = *y; /* put y into x */
y = temp; / put x into y */
return;

}

#include <stdio.h>
/* function declaration */
void swap(int *x, int *y);
int main ()
{
/* local variable definition */
int a = 100;

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

int b = 200;
printf("Before swap, value of a : %d\n", a);
printf("Before swap, value of b : %d\n", b);
/* calling a function to swap the values.
* &a indicates pointer to a ie. address of variable a and
* &b indicates pointer to b ie. address of variable b.
*/
swap(&a, &b);
printf("After swap, value of a : %d\n", a);
printf("After swap, value of b : %d\n", b);
return 0;

}
Recursive function

Recursion is the process of repeating items in a self-similar way. Same applies in programminglanguages as well where if
a programming allows you to call a function inside the same function that iscalled recursive call of the function as
follows.
void recursion()
{

recursion(); /* function calls itself */
}
intmain()
{
recursion();
}

The C programming language supports recursion, i.e., a function to call itself. But while using recursion,programmers
need to be careful to define an exit condition from the function, otherwise it will go ininfinite loop.Recursive function
are very useful to solve many mathematical problems like to calculate factorial of anumber, generating Fibonacci series,
etc.
Number Factorial

Following is an example, which calculates factorial for a given number using a recursive function:
void recursion()
{

recursion(); /* function calls itself */
}
intmain()
{
recursion();
}
#include <stdio.h>
intfactorial(unsigned inti)
{
if(i<= 1)
{
return 1;
}
return i * factorial(i - 1);
}
intmain()
{
inti = 15;
printf("Factorial of %d is %d\n", i, factorial(i));
return 0;
}
When the above code is compiled and executed, it produces the following result:Factorial of 15 is 2004310016

Fibonacci Series

Following is another example, which generates Fibonacci series for a given number using arecursive function:
When the above code is compiled and executed, it produces the following result:
0 1 1 2 3 5 8 13 21 34
#include <stdio.h>
intfibonaci(inti)
{
if(i == 0)
{
return 0;
}
if(i == 1)
{
return 1;
}
return fibonaci(i-1) + fibonaci(i-2);

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

}
intmain()
{
inti;
for (i = 0; i< 10; i++)
{
printf("%d\t%n", fibonaci(i));
}
return 0;
}

result:
0 1 1 2 3 5 8 13 21 34

Pointers
A pointer is a variable whose value is the address of another variable, i.e., directaddress of

the memory location. Like any variable or constant, you must declare apointer before using it to

store any variable address.

The general form of a pointervariable declaration is –

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-nameis the name of the

pointer variable. The asterisk * used to declare a pointer is the sameasterisk used for Multiplication.

However, in this statement the asterisk is being used todesignate a variable as a pointer. Take a

look at some of the valid pointer declarations −

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character,or otherwise, is the

same, a long hexadecimal number that represents a memory address.

The only difference between pointers of different data types is the data type of thevariable or

constant that the pointer points to.

Pointer to function

C programming allows passing a pointer to a function. To do so, simply declarethe function

parameter as a pointer type.Following is a simple example where we pass an unsigned long pointer

to afunction and change the value inside the function which reflects back in the callingfunction –
Sizeof()

Pointer Expressions and Pointer ArithmeticCharacter and

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Character and String constant

String to number conversion function

The following functions are present in stdlib.h

String Manipulation Function

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

POINTER

A pointer is a variable that store memory address or that contains address ofanother variable where addresses

are the location number always contains wholenumber. So, pointer contain always the whole number. It is

called pointer becauseit points to a particular location in memory by storing address of that location.

Syntax-

Data type *pointer name;

Here * before pointer indicate the compiler that variable declared as a pointer.

e.g.

Int *p1; //pointer to integer type

float *p2; //pointer to float type

char *p3; //pointer to character type

When pointer declared, it contains garbage value i.e. it may point any value in thememory.

Two operators are used in the pointer i.e.

address operator(&) and

indirectionoperator or

dereference operator (*).

Indirection operator gives the values stored at a particular address.Address operator cannot be used in any

constant or any expression.

Example:

void main()

{

inti=105;

int *p;

p=&i;

t

printf(“value of i=%d”,*p);

printf(“value of i=%d”,*/&i);

printf(“address of i=%d”,&i);

printf(“address of i=%d”,p);

printf(“address of p=%u”,&p);

}

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Pointer Expression-Pointer assignment

inti=10;

int *p=&i;//value assigning to the pointerHere declaration tells the compiler that P will be used to store the

address ofinteger value or in other word P is a pointer to an integer and *p reads the value atthe address

contain in p.

P++;

printf(“value of p=%d”);

We can assign value of 1 pointer variable to other when their base type and datatype is same or both the pointer

points to the same variable as in the array.

Int *p1,*p2;

P1=&a[1];

P2=&a[3];

We can assign constant 0 to a pointer of any type for that symbolic constant‘NULL’ is used such as

*p=NULL;

It means pointer doesn’t point to any valid memory location.

Pointer Arithmetic

Pointer arithmetic is different from ordinary arithmetic and it is perform relative tothe data type(base type of a

pointer).

Example:-

If integer pointer contain address of 2000 on incrementing we get address of 2002instead of 2001, because, size

of the integer is of 2 bytes.

Note:-When we move a pointer, somewhere else in memory by incrementing ordecrement or adding or

subtracting integer, it is not necessary that, pointer stillpointer to a variable of same data, because, memory

allocation to the variable aredone by the compiler.But in case of array it is possible, since there data are stored

in a consecutivemanner.

Ex:-

void main()

{

static inta[]={20,30,105,82,97,72,66,102};

int *p,*p1;

P=&a[1];

P1=&a[6];

printf(“%d”,*p1-*p);

printf(“%d”,p1-p);

}

Arithmetic operation never perform on pointer are:

Operation performed in pointer are:-

/* Addition of a number through pointer */

Example

inti=100;

int *p;

p=&i;

p=p+2;

p=p+3;

p=p+9;

ii /* Subtraction of a number from a pointer’*/

Ex:-

inti=22;

*p1=&a;

p1=p1-10;

p1=p1-2;

iii- Subtraction of one pointer to another is possible when pointer variable point toan element of same type such

as an array.

Ex:-

in tar[]={2,3,4,5,6,7};

int *ptr1,*ptr1;

ptr1=&a[3]; //2000+4

ptr2=&a[6]; //2000+6

Precedence of dereference (*) Operator and increment operator anddecrement operator

The precedence level of difference operator increment or decrement operatoris same and their associatively

from right to left.

Example :-

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

int x=25;

int *p=&x;

Let us calculate int y=*p++;

Equivalent to *(p++)

Since the operator associate from right to left, increment operator will applied tothe pointer p.

i) int y=*p++; equivalent to *(p++)

p =p++ or p=p+1

ii) *++p;→*(++p)→p=p+1

y=*p

iii) int y=++*p

equivalent to ++(*p)

p=p+1 then *p

iv) y=(*p)++→equivalent to*p++

y=*p then

P=p+1 ;

Since it is postfix increment the value of p.

Pointer Comparison

Pointer variable can be compared when both variable, object of same data typeand it is useful when both pointers

variable points to element of same array.Moreover pointer variable are compared with zero which is usually

expressed asnull, so several operators are used for comparison like the relational operator.

==,!=,<=,<,>,>=, can be used with pointer. Equal and not equal operators used tocompare two pointer should

finding whether they contain same address or not andthey will equal only if are null or contains address of same

variable.

Ex:-

void main()

{

static intarr[]={20,25,15,27,105,96}

int *x,*y;

x=&a[5];

y=&(a+5);

if(x==y)

printf(“same”);

else

printf(“not”);

}

Pointer to pointer

Addition of pointer variable stored in some other variable is called pointer to

pointer variable.

Or

Pointer within another pointer is called pointer to pointer.

Syntax:-

Data type **p;

int x=22;

int *p=&x;

int **p1=&p;

printf(“value of x=%d”,x);

printf(“value of x=%d”,*p);

printf(“value of x=%d”,*&x);

printf(“value of x=%d”,**p1);

printf(“value of p=%u”,&p);

printf(“address of p=%u”,p1);

printf(“address of x=%u”,p);

printf(“address of p1=%u”,&p1);

printf(“value of p=%u”,p);

printf(“value of p=%u”,&x);

Pointer vs array

Example :-

void main()

{

static char arr[]=”Rama”;

char*p=”Rama”;

printf(“%s%s”, arr, p);

In the above example, at the first time printf(), print the same value array andpointer.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Here array arr, as pointer to character and p act as a pointer to array ofcharacter .When we are trying to

increase the value of arr it would give the errorbecause its known to compiler about an array and its base

address which is alwaysprinted to base address is known as constant pointer and the base address of array

which is not allowed by the compiler.

printf(“size of (p)”,size of (ar));

size of (p) 2/4 bytes

size of(ar) 5 byes

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

STRUCTURES AND FILES 9

Introduction - need for structure data type - structure definition - Structure declaration - Structure within a

structure - Union - Programs using structures and Unions - File Manipulation - Storage classes - Pre-processor

directives.

Sructure

It is the collection of dissimilar data types or heterogenous data types groupedtogether. It means the data types

may or may not be of same type.

Structure declaration

Structtagname

{

Data type member1;

Data type member2;

Data type member3;

………

………

Data type member n;

};

OR

struct

{

Data type member1;

Data type member2;

Data type member3;

………

………

Data type member n;

};

OR

structtagname

{

struct element 1;

struct element 2;

struct element 3;

………

………

Structelement n;

};

Structure variable declaration;

struct student

{

int age;

char name[20];

char branch[20];

}; struct student s;

Initialization of structure variable-

Like primary variables structure variables can also be initialized when they aredeclared. Structure templates can

be defined locally or globally. If it is local it canbe used within that function. If it is global it can be used by all

other functions ofthe program.

We cant initialize structure members while defining the structure

struct student

{

int age=20;

char name[20]=”sona”;

}s1;

The above is invalid.

A structure can be initialized as

struct student

{

intage,roll;

char name[20];

} struct student s1={16,101,”sona”};

struct student s2={17,102,”rupa”};

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

If initialiser is less than no.of structure variable, automatically rest values are takenas zero.

Accessing structure elements-

Dot operator is used to access the structure elements. Its associativety is from leftto right.

structure variable ;

s1.name[];

s1.roll;

s1.age;

Elements of structure are stored in contiguous memory locations. Value ofstructure variable can be assigned to

another structure variable of same type usingassignment operator.

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

Introll, age;

char branch;

} s1,s2;

printf(“\n enter roll, age, branch=”);

scanf(“%d %d %c”, &s1.roll, &s1.age, &s1.branch);

s2.roll=s1.roll;

printf(“ students details=\n”);

printf(“%d %d %c”, s1.roll, s1.age, s1.branch);

printf(“%d”, s2.roll);

}

Unary, relational, arithmetic, bitwise operators are not allowed within structurevariables.

Size of structure-

Size of structure can be found out using sizeof() operator with structure variablename or tag name with

keyword.

sizeof(struct student); or

sizeof(s1);

sizeof(s2);

Size of structure is different in different machines. So size of whole structure maynot be equal to sum of size of

its members.

Array of structures

When database of any element is used in huge amount, we prefer Array ofstructures.

Example: suppose we want to maintain data base of 200 students, Array of

structures is used.

#include<stdio.h>

#include<string.h>

struct student

{

char name[30];

char branch[25];

int roll;

};

void main()

{

struct student s[200];

inti;

s[i].roll=i+1;

printf("\nEnter information of students:");

for(i=0;i<200;i++)

{

printf("\nEnter the roll no:%d\n",s[i].roll);

printf("\nEnter the name:");

scanf("%s",s[i].name);

printf("\nEnter the branch:");

scanf("%s",s[i].branch);

printf("\n");

}

printf("\nDisplaying information of students:\n\n");

for(i=0;i<200;i++)

{

printf("\n\nInformation for roll no%d:\n",i+1);

printf("\nName:");

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

puts(s[i].name);

printf("\nBranch:");

puts(s[i].branch);

}

}

In Array of structures each element of array is of structure type as in aboveexample.

Arraywithin structures

struct student

{

char name[30];

introll,age,marks[5];

}; struct student s[200];

We can also initialize using same syntax as in array.

Nested structure

When a structure is within another structure, it is called Nested structure. Astructure variable can be a member

of another structure and it is represented as

struct student

{

element 1;

element 2;

………

………

struct student1

{

member 1;

member 2;

}variable 1;

……….

……….

element n;

}variable 2;

It is possible to define structure outside & declare its variable inside otherstructure.

struct date

{

intdate,month;

};

struct student

{

char nm[20];

int roll;

struct date d;

}; struct student s1;

struct student s2,s3;

Nested structure may also be initialized at the time of declaration like in aboveexample.

struct student s={“name”,200, {date, month}};

{“ram”,201, {12,11}};

Nesting of structure within itself is not valid. Nesting of structure can beextended to any level.

struct time

{

inthr,min;

};

struct day

{

intdate,month;

struct time t1;

};

struct student

{

char nm[20];

struct day d;

}stud1, stud2, stud3;

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Passing structure elements to function

We can pass each element of the structure through function but passing individualelement is difficult

when number of structure element increases. To overcome this,we use to pass the whole structure through

function instead of passing individualelement.

#include<stdio.h>

#include<string.h>

void main()

{

struct student

{

char name[30];

char branch[25];

int roll;

}struct student s;

printf(“\n enter name=”);

gets(s.name);

printf("\nEnter roll:");

scanf("%d",&s.roll);

printf("\nEnter branch:");

gets(s.branch);

display(name,roll,branch);

}

display(char name, int roll, char branch)

{

printf(“\n name=%s,\n roll=%d, \n branch=%s”, s.name, s.roll. s.branch);

}

Passing entire structure to function

#include<stdio.h>

#include<string.h>

struct student

{

char name[30];

intage,roll;

};

display(struct student); //passing entire structure

void main()

{

struct student s1={”sona”,16,101 };

struct student s2={”rupa”,17,102 };

display(s1);

display(s2);

}

display(struct student s)

{

printf(“\n name=%s, \n age=%d ,\n roll=%d”, s.name, s.age, s.roll);

}

Output: name=sonaroll=16

UNION

Union is derived data type contains collection of different data type or dissimilarelements.

 All definition declaration of union variable and accessing member issimilar to structure, but instead of

keyword struct the keyword union is used, themain difference between union and structure is

Each member of structure occupy the memory location, but in the unionsmembers share memory. Union

is used for saving memory and concept is usefulwhen it is not necessary to use all members of union at a time.

Where union offers a memory treated as variable of one type on one occasionwhere (struct), it read number of

different variables stored at different place ofmemory.

Syntax of union:

union student

{

datatype member1;

datatype member2;

};

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

Like structure variable, union variable can be declared with definition or separatelysuch as

union union name

{

Datatype member1;

}var1;

Example:- union student s;

Union members can also be accessed by the dot operator with union variable and ifwe have pointer to union

then member can be accessed by using (arrow) operatoras with structure.

Example:-struct student

struct student

{

inti;

char ch[10];

};struct student s;

Here datatype/member structure occupy 12 byte of location is memory, where as inthe union side it occupy only

10 byte.

Nested of Union

When one union is inside the another union it is called nested of union.

Example:-

union a

{

inti;

int age;

};

union b

{

char name[10];

union a aa;

}; union b bb;

There can also be union inside structure or structure in union.

Example:-

void main()

{

struct a

{

inti;

char ch[20];

};

struct b

{

inti;

char d[10];

};

union z

{

struct a a1;

struct b b1;

}; union z z1;

z1.b1.j=20;

z1.a1.i=10;

z1.a1.ch[10]= “ i“;

z1.b1.d[0]=”j “;

printf(“ “);

Dynamic memory Allocation

The process of allocating memory at the time of execution or at the runtime, iscalled dynamic memory

location.Two types of problem may occur in static memory allocation.If number of values to be stored is less

than the size of memory, there would bewastage of memory.

If we would want to store more values by increase in size during the execution onassigned size then it fails.

Allocation and release of memory space can be done with the help of some libraryfunction called dynamic

memory allocation function. These library function arecalled as dynamic memory allocation function. These

library function prototypeare found in the header file, “alloc.h” where it has defined.

Function take memory from memory area is called heap and release when notrequired.

Pointer has important role in the dynamic memory allocation to allocate memory.

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

malloc():

This function use to allocate memory during run time, its declaration is

void*malloc(size);

malloc ()

returns the pointer to the 1st byte and allocate memory, and its return type is void,which can be type cast such

as:

int *p=(datatype*)malloc(size)

If memory location is successful, it returns the address of the memory chunk thatwas allocated and it

returns null on unsuccessful and from the above declaration apointer of type(datatype) and size in byte.

And datatype pointer used to typecast the pointer returned by malloc and this

typecasting is necessary since, malloc() by default returns a pointer to void.

Example int*p=(int*)malloc(10);

So, from the above pointer p, allocated IO contigious memory space address of 1st

byte and is stored in the variable.

We can also use, the size of operator to specify the the size, such as

p=(int)malloc(5*size of int) Here, 5 is the no. of data.

Moreover , it returns null, if no sufficient memory available , we should alwayscheck the malloc return such as,

if(p==null)

printf(“not sufficient memory”);

Example:

/*calculate the average of mark*/

void main()

{

intn ,avg,i,*p,sum=0;

printf("enter the no. of marks ”);

scanf(“%d”,&n);

p=(int *)malloc(n*size(int));

if(p==null)

printf(“not sufficient”);

exit();

}

for(i=0;i<n;i++)

scanf(“%d”,(p+i));

for(i=0;i<n;i++)

Printf(“%d”,*(p+i));

sum=sum+*p;

avg=sum/n;

printf(“avg=%d”,avg);

calloc()

Similar to malloc only difference is that calloc function use to allocate multiple block of memory . two

arguments are there

1st argument specify number of blocks

2nd argument specify size of each block.

Example:-

int *p= (int*) calloc(5, 2);

int*p=(int *)calloc(5, size of (int));

Another difference between malloc and calloc is by default memory allocated bymalloc contains garbage value,

where as memory allocated by calloc is initialisedby zero(but this initialisation) is not reliable.

realloc()

The function realloc use to change the size of the memory block and it alter thesize of the memory block

without loosing the old data, it is called reallocation ofmemory.

C - FILE I/O

This chapter cover how C programmers can create, open, close text or binary files for their data storage. A file represents

a sequence of bytes, regardless of it being a text file or a binary file.

C programming language provides access on high level functions as well as low level OSlevelOSlevel calls to handle file

on your storage devices. This chapter will take you through the important calls for file management.

Opening Files
You can use the fopen function to create a new file or to open an existing file. This call

will initialize an object of the type FILE, which contains all the information necessary to

control the stream. The prototype of this function call is as follows –

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

FILE *fopen(const char * filename, const char * mode);

Here, filename is a string literal, which you will use to name your file, and access mode can have

one of the following values –

Closing a File
To close a file, use the fclose function. The prototype of this function is −

int fclose(FILE *fp);

 The fclose−− function returns zero on success, or EOF if there is an error in closing the file. This
function actually flushes any data still pending in the buffer to the file, closes the file, and releases any
memory used for the file.
 The EOF is a constant defined in the header file stdio.h. There are various functions provided by C
standard library to read and write a file, character by character, or in the form of a fixed length string.

Writing a File

Following is the simplest function to write individual characters to a stream –

int fputc(int c, FILE *fp);

The function fputc writes the character value of the argument c to the output stream referenced by fp. It returns

the written character written on success otherwise EOF if there is an error. You can use the following functions

to write a null-terminated string to a stream –

int fputs(const char *s, FILE *fp);

The function fputs writes the string s to the output stream referenced by fp. It returns a nonnegative value on

success, otherwise EOF is returned in case of any error.

 You can use int printfFILE∗fp,constchar∗format,...FILE∗fp,constchar∗format,... function as well to write a

string into a file. Try the following example.

#include <stdio.h>

main() {

FILE *fp;

fp = fopen("/tmp/test.txt", "w+");

fprintf(fp, "This is testing for fprintf...\n");

fputs("This is testing for fputs...\n", fp);

fclose(fp);

}

Reading a File

Given below is the simplest function to read a single character from a file –

 int fgetc(FILE * fp);

The fgetc function reads a character from the input file referenced by fp. The return value is the character read,

or in case of any error, it returns EOF. The following function allows to read a string from a stream −

 char *fgets(char *buf, int n, FILE *fp);

191CSF1 PROGRAMMING FOR PROBLEM SOLVING PSREC

The functions fgets reads up to n-1 characters from the input stream referenced by fp. It copies the read string

into the buffer buf, appending a null character to terminate the string. If this function encounters a newline

character '\n' or the end of the file EOF before they have read the maximum number of characters, then it returns

only the characters read up to that point including the new line character. You can also use int

fscanfFILE∗fp,constchar∗format,...FILE∗fp,constchar∗format,... function to read strings from a file,

but it stops reading after encountering the first space character.

#include <stdio.h>

main() {

FILE *fp;

char buff[255];

fp = fopen("/tmp/test.txt", "r");

fscanf(fp, "%s", buff);

printf("1 : %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("2: %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("3: %s\n", buff);

fclose(fp);

}

Binary I/O Functions

There are two functions, that can be used for binary input and output −

size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *a_file);

.Both of these functions should be used to read or write blocks of memories - usually arrays or

structures.

Random Access to File

There is no need to read each record sequentially, if we want to access a particular record.C supports these

functions for random access file processing.

1. fseek()

2. ftell()

3. rewind()

fseek():

This function is used for seeking the pointer position in the file at the specified byte.

 Syntax: fseek(file pointer, displacement, pointer position);

Where file pointer ---- It is the pointer which points to the file.

displacement ---- It is positive or negative.This is the number of bytes which are skipped backward (if

negative) or forward(if positive) from the current position.This is attached with L because this is a long integer.

ftell()

This function returns the value of the current pointer position in the file.The value is count from the beginning

of the file.

