

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

191OE1B
 JAVA SCRIPTS

L T P C

3 0 0 3

Programme: B.E Computer Science & Engineering Sem: 6 Category: OE

Prerequisites: 191CS43-Object Oriented Programming

Aim To offer an overview of all JavaScript basics, including HTML for building web pages.

Course Outcomes: The Students will be able to

CO1: Discuss the concepts of Advanced Java Script.

CO2: Design the processes, and use mechanics for game development.

CO3: Create interactive Games.

CO4: Use DOM & JQuery tools and methods to develop game.

CO5: Design & implement animated webpage on the canvas using java scripts.

CO6: Create interactive games.

S.No Topic Name
No. of

Periods

Cumulative

periods

Reference

Books

Teaching

Aids

UNIT I – FUNDAMENTALS

1. FUNDAMENTALS -JavaScript. 1 1 T1 BB

2.
Data types and Variables

1 2
T1 BB

3.
Variables, Strings, Booleans

1 3
T1 BB

4.
Arrays, Objects

2 5
T1 OHP

5.
Basics of HTML

1 6
T1 ABL

6.
Tags and Elements

2 8
T1 OHP

7.
 HTML Hierarchy

1 9
T1 OHP

UNIT II – FUNCTIONS AND LOOPS

8.
Anatomy of a Function

1 10
T1 BB

9.
Function Creation

2 12
T1 OHP

10.
Calling Function

1 13
T1 ABL

11.
Passing Arguments into Functions

2 15
T1 OHP

12.
Conditionals, Loops

2 17
T1 OHP

13.

Programming Challenges for

Functions and Loops

1 18

T1
OHP

UNIT III – ADVANCED JAVASCRIPT

14.
DOM and JQuery

1 19
T1 OHP

15.
Interactive Programming, Mouse

Events
2 21

T1 OHP

16.
Buried Treasure - Creating the Web

Page with HTML
1 23

T1 ABL

17.
Picking a Random Treasure

Location- Click Handler
1 24

T1 BB

18.
Object Oriented Programming

1 25
T1 BB

19.
Adding Methods to Objects

2 27
T1 PPT

20.
Creating Objects Using

Constructors
1 28

T1 OHP

21.
Customizing Objects with

Prototypes
1 29

T1 OHP

UNIT IV – CANVAS

22. Creating a Basic Canvas, 1 30 T1 BB

23.
Drawing on the Canvas

1 31

T1 BB

24.
 Changing the Drawing Color

1 32
T1 PPT

25.
Drawing Lines or Paths, Filling
Paths
Drawing Arcs and Circles,

2 34
T1 ABL

26.
Drawing Lots of Circles with

Function
1 35

T1 BB

27.
Animating the Size of a Square

1 36
T1 OHP

28.
Bouncing a Ball, Keyboard Events

1 37
T1 OHP

29.
Moving a Ball with the Keyboard

1 38
T1 OHP

UNIT V – GAME DEVELOPMENT

30.
Making a Snake Game

2 40
T1 BB

31.
The Structure of the Game-

1 41
T1 ABL

32.
Game Setup

2 43
T1 PPT

33.
Drawing the Border

2 45
T1 BB

34.
Displaying the Score

1 46
T1 OHP

35.
Ending the Game

1 47
T1 OHP

Text Books:

1. Nick Morgan, “Java Script for Kids”, no starch press, San Francisco, 2015.

References:
1. Marijn Haverbeke, “Eloquent Java Script”, no starch press, San Francisco, 2014.

2. David Sawyer McFarland, “Java Script & JQuery”, 3/e, USA, 2014.

Course

Outcomes

Programme Outcomes (POs)
Programme Specific

Outcomes (PSOs)

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

CO1 3 3 3 3 3

CO2 3 2 2 2 3

CO3 2 2 2

CO4 2 3 3 2 2

CO5 2 2 2 3 2

CO6 2 3 3 2
1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

STAFF IN-CHARGE HOD/CSE

UNIT 1

FUNDAMENTALS -JAVASCRIPT

JAVA SCRIPTS

Dr.S.AMUTHA M.E.,Ph.D,

Associate Professor

Department Of Computer Science And Engineering

PSR ENGINEERING COLLEGE, SIVAKASI

OUTLINE

1.What is Javascript?

2.History of Javascript

3.Features of JavaScript

4.Applications of Javascript

What is Javascript?

 JavaScript is a light-weight object-oriented

programming language which is used by

several websites for scripting the webpages

 Full-fledged programming language that

enables dynamic interactivity on websites

when applied to an HTML document.

What is Javascript?

 JavaScript is used to create client-side

dynamic pages.

 JavaScript is an object-based scripting

language which is lightweight and cross-

platform.

 JavaScript is not a compiled language, but it

is a translated language. The JavaScript

Translator (embedded in the browser) is

responsible for translating the JavaScript

code for the web browser.

History of JavaScript

 1993, Mosaic, the first popular web browser, came

into existence.

 In the year 1994, Netscape was founded by Marc

Andreessen

 in 1995, the company recruited Brendan Eich

intending to implement and embed Scheme

programming language to the browser.

 The company merged with Sun Microsystems for

adding Java into its Navigator so that it could

compete with Microsoft over the web technologies

and platforms.

 Now, two languages were there: Java and the

scripting language

 Netscape decided to give a similar name to the

scripting language as Java's.

 It led to 'Javascript'.

 Finally, in May 1995, Marc Andreessen coined

the first code of Javascript named 'Mocha'.

 Later, the marketing team replaced the name

with 'LiveScript'.

 But, due to trademark reasons in December

1995, the language was finally renamed to

'JavaScript'.

History of JavaScript

Features of JavaScript

1. All popular web browsers support JavaScript as they provide

built-in execution environments.

2. JavaScript follows the syntax and structure of the C

programming language. Thus, it is a structured

programming language.

3. JavaScript is a weakly typed language, where certain types

are implicitly cast (depending on the operation).

4. JavaScript is an object-oriented programming language that

uses prototypes rather than using classes for inheritance.

Features of JavaScript

5. It is a light-weighted and interpreted

language.

6. It is a case-sensitive language.

7. JavaScript is supportable in several operating

systems including, Windows, macOS, etc.

8. It provides good control to the users over the

web browsers.

Applications of JavaScript

 JavaScript is used to create interactive

websites.

 Client-side validation,

 Dynamic drop-down menus,

 Displaying date and time,

 Displaying pop-up windows and dialog boxes

(like an alert dialog box, confirm dialog box

and prompt dialog box),

 Displaying clocks etc.

JavaScript Example

<script>

document.write("Hello world

Application");

</script>

The script tag specifies that we are using JavaScript.

The text/javascript is the content type that provides

information to the browser about the data.

<script type="text/javascript">

document.write("JavaScript is a simple language");

</script>

JavaScript Example

 The document.write() function is used to

display dynamic content through JavaScript.

JavaScript code

 Between the body tag of html

 Between the head tag of html

 In .js file (external javaScript)

Between the body tag of html

<script type="text/javascript">

alert("Hello Javatpoint");

</script>

Code between the head tag

<html>

<head>

<script type="text/javascript">

function msg(){

alert(“GOOD AFTERNOON TO ALL");

}

</script>

</head>

<body>

<p>Welcome to JavaScript</p>

<form>

<input type="button" value="click" onclick="msg()"/>

</form>

</body>

</html>

External JavaScript file

 create external JavaScript file and embed it in

many html page.

 It provides code re usability because single

JavaScript file can be used in several html pages.

 An external JavaScript file must be saved by .js

extension. It is recommended to embed all

JavaScript files into a single file. It increases the

speed of the webpage.

message.js

function msg(){

alert("Hello Javatpoint");

}

index.html

<html>

<head>

<script type="text/javascript" src="message.js">

</script>

</head>

<body>

<p>Welcome to JavaScript</p>

<form>

<input type="button" value="click" onclick="msg()"

/>

</form>

</body>

</html>

Advantages of External JavaScript

 It helps in the reusability of code in more than one

HTML file.

 It allows easy code readability.

 It is time-efficient as web browsers cache the

external js files, which further reduces the page

loading time.

 It enables both web designers and coders to work

with html and js files parallelly and separately, i.e.,

without facing any code conflictions.

 The length of the code reduces as only we need to

specify the location of the js file.

Disadvantages of External JavaScript

 The stealer may download the coder's code using

the url of the js file.

 If two js files are dependent on one another, then

a failure in one file may affect the execution of the

other dependent file.

 The web browser needs to make an additional

http request to get the js code.

 A tiny to a large change in the js code may cause

unexpected results in all its dependent files.

INTRODUCTION TO JAVASCRIPT

JavaScript is a lightweight, interpreted

programming language.

It is designed for creating network-centric

applications.

It is complimentary to and integrated with Java.

JavaScript is very easy to implement because it is

integrated with HTML. It is open and cross-

platform.

1/10/2023

1

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

WHY TO LEARN JAVASCRIPT ?

1/10/2023

2

 JavaScript is the most popular programming language

 Front-end as well as back-end softwares using different

Javascript based frameworks like jQuery, Node.JS etc.

 Javascript is everywhere, it comes installed on every

modern web browser

 Do not need any special environment setup

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

WHY TO LEARN JAVASCRIPT ?

For example Chrome, Mozilla Firefox , Safari and every

browser you know as of today, supports JavaScript.

JavaScript usage has now extended to mobile app

development, desktop app development, and game

development.

1/10/2023

3

JAVASCRIPT FEATURES

1/10/2023

4

 JavaScript is a case-sensitive language.

JAVASCRIPT PROGRAMMING

<html>

<body>

<script language = "javascript" type "text/javascript">

<!-- document.write("Hello World!") //--> </script>

</body>

</html>

1/10/2023

5

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT FRAMEWORKS

Meteor

Mithril

Node.js

Polymer

Aurelia

Backbone.js

1/10/2023

6

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

Angular

React

jQuery

Vue.js

Ext.js

Ember.js

APPLICATIONS OF JAVASCRIPT

Client side validation

Manipulating HTML Pages

User Notifications

Back-end Data Loading

Presentations

Server Applications

1/10/2023

7

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

WHAT IS JAVASCRIPT ?

JavaScript is a dynamic computer

programming language

JavaScript was first known as LiveScript, but

Netscape changed its name to JavaScript

1/10/2023

8

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

ADVANTAGES OF JAVASCRIPT

Less server interaction

Immediate feedback to the visitors

Increased interactivity

Richer interfaces

1/10/2023

9

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

LIMITATIONS OF JAVASCRIPT

1/10/2023

10

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

 Client-side JavaScript does not allow the

reading or writing of files. This has been kept for

security reason.

 JavaScript cannot be used for networking

applications because there is no such support

available.

 JavaScript doesn't have any multi-threading or

multiprocessor capabilities.

JAVASCRIPT DEVELOPMENT TOOLS

Microsoft FrontPage

Macromedia Dreamweaver MX

Macromedia HomeSite 5

1/10/2023

11

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

FIRST JAVASCRIPT CODE

<script language = "javascript ’’ type = "text/javascript">

JavaScript code

</script>

Example :

<script language = "javascript“ type = "text/javascript">

<!–

var1 = 10

var2 = 20

//-->

</script>

1/10/2023

12

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT DEVELOPMENT TOOLS

<script language = "javascript" type =
"text/javascript">

<!--

// This is a comment. It is similar to comments in C++

/*

•This is a multi-line comment in JavaScript

•It is very similar to comments in C Programming */

//-->

</script>

1/10/2023

13

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT DATA TYPES

Numbers, eg. 123, 120.50 etc.

Strings of text e.g. "This text string" etc.

Boolean e.g. true or false.

JavaScript also defines two trivial data types, null

and undefined, each of which defines only a single

value.

JavaScript supports a composite data type known as

object.

1/10/2023

14

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT VARIABLES

1/10/2023

15

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

<script type = "text/javascript">
<!–
var money;
var name;
//-->

</script>

JAVASCRIPT VARIABLES

1/10/2023

16

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

<script type = "text/javascript">
<!–
var money, name;
//-->

</script>

JAVASCRIPT VARIABLE SCOPE

1/10/2023

17

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

Global Variables − A global variable has

global scope which means it can be defined

anywhere in your JavaScript code.

Local Variables − A local variable will be

visible only within a function where it is

defined. Function parameters are always local

to that function.

JAVASCRIPT VARIABLES

1/10/2023

18

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

<html>
<body onload = scopeofvariable();>

<script type = "text/javascript">
<!-- var myVar = "global"; // Declare a global variable
function scopeofvariable() {
var myVar = "local"; // Declare a local variable

document.write(myVar);
}
//-->
</script>
</body> </html>

JAVASCRIPT –NAMING VARIABLES

Should not use any of the reserved keywords

Should not start with a numeral (0-9)

Must begin with a letter or an underscore character

JavaScript variable names are case-sensitive

1/10/2023

19

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT - RESERVED WORDS

1/10/2023

20

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

abstract else instanceof switch

boolean enum int synchronized

break export interface this

byte extends long throw

case false native throws

catch final new transient

char finally null true

class float package try

const for private typeof

continue function protected var

debugger goto public void

default if return volatile

delete implements short while

do import static with

double in super

JAVASCRIPT - OPERATORS
21

 Arithmetic Operators

 Comparison Operators

 Logical (or Relational) Operators

 Assignment Operators

 Conditional (or ternary) Operators

1/10/2023

22

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

Arithmetic Operators

Comparison Operators

Logical (or Relational) Operators

Assignment Operators

Conditional (or ternary) Operators

JAVASCRIPT - OPERATORS

BASIC HTML

HTML (HyperText Markup Language) is the

language used to make web pages.

HyperText refers to text that is con-

nected by hyperlinks, the links on a web page.

A markup language is used to annotate

documents.

1/10/2023

1

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

1/10/2023

2

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

HTML documents in a text editor, a simple program designed for

writing plaintext

files without the formatting

word processors like Microsoft Word. Word-processed documents

contain formatted text (with different fonts, type colors, font sizes,

etc.),

Word processors are designed to make it easy to change the

formatting of the text. Word processors usually allow you to insert

images and graphics as well.

TEXT EDITORS

HTML in the cross-platform (compatible with

Windows, Mac OS, and Linux) Sublime Text editor.

To install Sublime Text, visit http://www.sublimetext.com/.

Installation instructions differ for each operating system.

Sublime Text will color-code your programs with syntax

highlighting.

This is designed to make programs easier for programmers to

read by assigning different colors to different types of code.

1/10/2023

3

Sublime Text has lots of color schemes to choose from.

IDLE color scheme, which you

can match on your screen by going to preferences

->color Scheme and selecting IDLE.

1/10/2023

4

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

OUR FIRST HTML DOCUMENT

1/10/2023

5

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

<h1>Hello world!</h1>

<p>My first web page.</p>

HEADING ELEMENTS

<h1>First-level heading</h1>

<h2>Second-level heading</h2>

<h3>Third-level heading</h3>

<h4>Fourth-level heading</h4>

<h5>Fifth-level heading</h5>

<h6>Sixth-level heading</h6>

1/10/2023

6

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

THE P ELEMENT

The p element is used to define separate

paragraphs of text

1/10/2023

7

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

WHITESPACE IN HTML AND BLOCK-LEVEL ELEMENTS

 Whitespace means any character that results in blank space on the
page

 for example, the space character, the tab character, and the newline
character (the character that is inserted when you press enter or return).

 Any blank lines you insert between two pieces of text in an HTML
document will get collapsed into a single space.

 The p and h1 elements are called block-level elements because
they display their content in a separate block, starting on a new line,
and with any following content on a new line.
HTML, all whitespace is collapsed
into a single space.

1/10/2023

8

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

INLINE ELEMENTS

1/10/2023

9

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

<h1>Hello world!</h1>

<p>My first web page.</p>

<p>Let's add another

paragraph.</p>

The em element makes its content italic. The strong element

makes its content bold. The em and strong elements are both

inline elements, which means that they don’t put their content onto

a new line, as block-level elements do.

A FULL HTML DOCUMENT

A full HTML document requires some extra elements.

<!DOCTYPE html>
<html>
<head>

<title>My first proper HTML page</title>
</head>

<body>
<h1>Hello world!</h1>
<p>My first web page.</p>
<p>Let's add another
paragraph.</p>

</body>
</html>

1/10/2023

10

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

HTML HIERARCHY

1/10/2023

11

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

HTML elements

have a clear

hierarchy, or order,

and can be thought

of as a kind of

upside-down tree.

HTML HIERARCHY

1/10/2023

12

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

ADDING LINKS TO YOUR HTML

<!DOCTYPE html>

<html>

<head>

<title>My first proper HTML page</title>

</head>

<body>

<h1>Hello world!</h1>

<p>My first web page.</p>

<p>Click here to read some excellent

comics.</p>

</body>

</html>

1/10/2023

13

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

LINK ATTRIBUTES

1/10/2023

14

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

•HTML link-To tell the browser where to go when

you click the a element

•Added something called an attribute to the

anchor element.

•Click

here

•Attributes in HTML elements are similar to key-

value pairs in JavaScript objects. Every attribute

has a name and a value.

1/10/2023

15

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

TITLE ATTRIBUTES

1/10/2023

16

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

<a href="http://www.google.com"

title=“google: Land of studying

everything!"> Click here

1/10/2023

17

JAVASCRIPT VARIABLES

1/10/2023

18

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT –NAMING VARIABLES

1/10/2023

19

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT - RESERVED WORDS

1/10/2023

20

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT - OPERATORS
21

Friday, March 04, 2022
Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

Friday, March 04,

2022

22

Dr.S.AMUTHA, ASSOCIATE PROFESSOR, DEPT.OF CSE,

PSR ENGINEERING COLLEGE, SIVAKASI

JAVASCRIPT - OPERATORS

UNIT II

FUNCTIONS AND LOOPS

Functions

A function is a way to bundle code so that it can be

reused.

Functions allow us to run the same piece of code from

multiple places in a program without having to copy and

paste the code repeatedly.

Also, by hiding long bits of code in a function and giving it

an easy-to-understand name.

Splitting up your code into smaller, more manageable

pieces allows you to see the bigger picture and think about

how your programs are structured at a higher level.

The Basic Anatomy of a Function

 The code between the curly brackets is called the

function body, just as the code between the curly

brackets in a loop is called the loop body.

Creating a Simple Function

var ourFirstFunction = function () {

console.log("Hello world!");

};

This code creates a new function and saves it in the

variable ourFirstFunction.

Calling a Function

ourFirstFunction();

Hello world!

undefined

 Calling a function with an undefined return value.

 A return value is the value that a function outputs, which
can then be used elsewhere in your code.

 A function always returns undefined unless there is
something in the function body that tells it to return a
different value.

Passing Arguments into Functions

Function arguments allow us to pass values into a function

in order to change the function’s behavior when it’s called.

Arguments always go between the function parentheses,

both when you create the function and when you call it.

var sayHelloTo = function (name) {

console.log("Hello " + name + "!");

};

sayHelloTo("Nick");

Hello Nick!

Printing Cat Faces!
var drawCats = function (howManyTimes) {

for (var i = 0; i < howManyTimes; i++) {

console.log(i + " =^.^=");

}

};

Output:

 drawCats(5);

 0 =^.^=

 1 =^.^=

 2 =^.^=

 3 =^.^=

 4 =^.^=

Passing Multiple Arguments to a Function

var printMultipleTimes = function (howManyTimes,
whatToDraw) {

for (var i = 0; i < howManyTimes; i++) {

console.log(i + " " + whatToDraw);

}

};

Passing Multiple Arguments to a Function

Returning Values from Functions

5 + Math.floor(1.2345);

6

var double = function (number) {

u return number * 2;

};

double(3);

Using Function Calls as Values

double(5) + double(6);

double(double(3));

Using Functions to Simplify Code

A Function to Pick a Random Word

randomWords[Math.floor(Math.random() *
randomWords.length)];

var pickRandomWord = function (words) {

return words[Math.floor(Math.random() * words.length)];

};

var randomWords = ["Planet", "Worm", "Flower",
"Computer"];

pickRandomWord(randomWords);

"Flower“

pickRandomWord(["Charlie", "Raj", "Nicole", "Kate",
"Sandy"]);

"Raj"

A Random Insult Generator
 var randomBodyParts = ["Face", "Nose", "Hair"];

 var randomAdjectives = ["Smelly", "Boring", "Stupid"];

 var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

 // Pick a random body part from the randomBodyParts array:

 var randomBodyPart = randomBodyParts[Math.floor(Math.random() * 3)];

 // Pick a random adjective from the randomAdjectives array:

 var randomAdjective = randomAdjectives[Math.floor(Math.random() * 3)];

 // Pick a random word from the randomWords array:

 var randomWord = randomWords[Math.floor(Math.random() * 5)];

 // Join all the random strings into a sentence:

 var randomString = "Your " + randomBodyPart + " is like a " + randomAdjective
+ " " + randomWord + "!!!";

 randomString;

 "Your Nose is like a Stupid Marmot!!!"

var randomBodyParts = ["Face", "Nose", "Hair"];

var randomAdjectives = ["Smelly", "Boring", "Stupid"];

var randomWords = ["Fly", "Marmot", "Stick", "Monkey",

"Rat"];

// Join all the random strings into a sentence:

var randomString = "Your " +

pickRandomWord(randomBodyParts) +

" is like a " + pickRandomWord(randomAdjectives) +

" " + pickRandomWord(randomWords) + "!!!";

randomString;

"Your Nose is like a Smelly Marmot!!!"

generateRandomInsult = function () {

var randomBodyParts = ["Face", "Nose", "Hair"];

var randomAdjectives = ["Smelly", "Boring", "Stupid"];

var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Join all the random strings into a sentence:

var randomString = "Your " + pickRandomWord(randomBodyParts) +

" is like a " + pickRandomWord(randomAdjectives) +

" " + pickRandomWord(randomWords) + "!!!";

u return randomString;

};

generateRandomInsult();

"Your Face is like a Smelly Stick!!!"

generateRandomInsult();

"Your Hair is like a Boring Stick!!!"

generateRandomInsult();

"Your Face is like a Stupid Fly!!!"

Leaving a Function Early with return

var fifthLetter = function (name) {

if (name.length < 5) {

return;

}

return "The fifth letter of your name is " + name[4] + ".";

};

fifthLetter("Nicholas");

"The fifth letter of your name is o.“

 fifthLetter("Nick");

 undefined

Using return Multiple Times Instead

of if...else Statements

var medalForScore = function (score) {

if (score < 3) {

return "Bronze";

}

if (score < 7) {

return "Silver";

}

return "Gold";

};

Shorthand for Creating Functions

var double = function (number) {

return number * 2;

};

function double(number) {

return number * 2;

}

 the longhand version is known as a function expression.

 The shorthand version is known as a function declaration.

Programming Challenges

 #1: Doing Arithmetic with Functions

Create two functions, add and multiply. Each should take

two arguments. The add function should sum its arguments

and return the result, and multiply should multiply its

Arguments. Using only these two functions, solve this

simple mathematical problem:

36325 * 9824 + 777

#2: Are These Arrays the Same?

Write a function called areArraysSame that takes two

arrays of numbers as arguments. It should return true if

the two arrays are the same (that is, they have the same

numbers in the same order) and false if they’re different.

Try running the following code to make sure your

functions are working correctly:

 areArraysSame([1, 2, 3], [4, 5, 6]);

 false

 areArraysSame([1, 2, 3], [1, 2, 3]);

 true

 areArraysSame([1, 2, 3], [1, 2, 3, 4]);

 false

Hint 1: you’ll need to use a for loop to go through each of

the values in the first array to see whether they’re the

same in the second array. You can return false in the for

loop if you find a value that’s not equal.

Hint 2: you can leave the function early and skip the for

loop altogether if the arrays are different lengths.

#3: Hangman, Using Functions

 Go back to your Hangman game from Chapter 7. We’re

going to rewrite it using functions. I’ve rewritten the final

Hangman code here, but with certain parts of the code

replaced by function calls. All you need to do is write the

functions!

 Conditionals and loops are two of the most
important concepts in JavaScript.

 A conditional says, “If some - thing is true,
do this. Otherwise, do that.”

 A loop says, “As long as something is true,
keep doing this.”

 Conditionals and loops are powerful concepts
that are key to any sophisticated program.

 They are called control structures because
they allow you to control which parts of your
code are executed when and how often
they’re executed, based on certain conditions
you define

<!DOCTYPE html>
<html>
<head>
<title>My first proper HTML page</title>
</head>
<body>
<h1>Hello world!</h1>
<p>My first web page.</p>
<script>
var message = "Hello world!";
console.log(message);
</script>
</body>
</html>

 If statements

 if...else statements.

var name = "Nicholas";
v console.log("Hello " + name);
w if (name.length > 7) {
x console.log("Wow, you have a REALLY long
name!");

var name = "Nicholas";

console.log("Hello " + name);

if (name.length > 7) {

console.log("Wow, you have a REALLY long
name!");

} else {

console.log("Your name isn't very long.");

}

var lemonChicken = false;

var beefWithBlackBean = true;

var sweetAndSourPork = true;

if (lemonChicken) {

console.log("Great! I'm having lemon chicken!");

} else if (beefWithBlackBean) {

console.log("I'm having the beef.");

} else if (sweetAndSourPork) {

console.log("OK, I'll have the pork.");

} else {

console.log("Well, I guess I'll have rice then.");

}

var lemonChicken = false;

var beefWithBlackBean = false;

var sweetAndSourPork = false;

if (lemonChicken) {

console.log("Great! I'm having lemon chicken!");

} else if (beefWithBlackBean) {

console.log("I'm having the beef.");

} else if (sweetAndSourPork) {

console.log("OK, I'll have the pork.");

}

 while Loops

A while loop repeatedly executes its
body until a particular condition stops being
true.

 for Loops

for loops make it easier to write
loops that create a variable, loop until a
condition is true, and update the variable at
the end of each turn around the loop.

var sheepCounted = 0;

u while (sheepCounted < 10) {

v console.log("I have counted " +
sheepCounted + " sheep!");

sheepCounted++;

}

console.log("Zzzzzzzzzzz");

 if the condition set never becomes false, your
loop will loop forever (or at least until you
quit your browser).

 The program would keep doing this forever!
This is called an infinite loop.

for (var sheepCounted = 0; sheepCounted <
10; sheepCounted++) {

console.log("I have counted " + sheepCounted
+ " sheep!");

}

console.log("Zzzzzzzzzzz");

Use of for loops is to do something with every

element in an array or every character in a
string.

var name = "Nick";

for (var i = 0; i < name.length; i++) {

console.log("My name contains the letter " +
name[i] + ".");

}

for (var x = 2; x < 10000; x = x * 2) {

console.log(x);

}

 Write a loop to print the powers of 3 under
10,000 (it should print 3, 9, 27, etc.).

 Rewrite this loop with a while loop. (Hint:
Provide the setup before the loop.)

 Programming Challenges

 var animals = ["Cat", "Fish", "Lemur",
"Komodo Dragon"];

 Output:

 ["Awesome Cat", "Awesome Fish", "Awesome
Lemur", "Awesome Komodo Dragon"]

 animals[0] = "Awesome " + animals[0];

var alphabet = "abcdefghijklmnopqrstuvwxyz";

 var input = "javascript is awesome";

 var output = "";

ALGORITHM
 Replace certain letters with numbers
 4 for A, 3 for E, 1 for I, and 0 for O
 to use a for loop to go through all the
 letters of the input string.
 If the letter is "a", add a "4" to the output

string.
 If it’s "e", add a "3".
 If it’s "i", add a "1",
 if it’s "o", add a "0"

 Otherwise, just add the original letter

 to the new string.

 As before, you can use += to add each new

letter to the output string.

 After the loop, log the output string to the
console

 If it works correctly, you should see it log
"j4v4scr1pt 1s 4w3s0m3".

 How To Use Dialogs To Make The Game
Interactive And Take Input From Someone
Playing The Game.

 Hangman is a word-guessing game.

 One player picks a secret word, and the other
player tries to guess it.

UNIT III

ADVANCED JAVASCRIPT

jQuery
• jQuery is a lightweight, "write less, do more", JavaScript

library.

• The purpose of jQuery is to make it much easier to use
JavaScript on your website.

• jQuery takes a lot of common tasks that require many lines of
JavaScript code to accomplish, and wraps them into methods
that you can call with a single line of code.

• jQuery also simplifies a lot of the complicated things from
JavaScript, like AJAX calls and DOM manipulation.

• The jQuery library contains the following features:
HTML/DOM manipulation

CSS manipulation

HTML event methods

Effects and animations

AJAX

• Utilities

jQuery Syntax

• The jQuery syntax is tailor-made for selecting HTML
elements and performing some action on the element(s).

• Basic syntax is: $(selector).action()
• A $ sign to define/access jQuery
• A (selector) to "query (or find)" HTML elements
• A jQuery action() to be performed on the element(s)
• Examples:
• $(this).hide() - hides the current element.
• $("p").hide() - hides all <p> elements.
• $(".test").hide() - hides all elements with class="test".
• $("#test").hide() - hides the element with id="test".

jQuery Selectors

• jQuery selectors allow you to select and
manipulate HTML element(s).

• jQuery selectors are used to "find" (or select)
HTML elements based on their name, id, classes,
types, attributes, values of attributes and much
more. It's based on the existing CSS Selectors,
and in addition, it has some own custom
selectors.

• All selectors in jQuery start with the dollar sign
and parentheses: $().

The element Selector

• The jQuery element selector selects elements
based on the element name.

• You can select all <p> elements on a page like
this:

• $("p")

When a user clicks on a button, all <p>
elements will be hidden:

• $(document).ready(function(){
$("button").click(function(){

$("p").hide();
});

});

The #id Selector

• The jQuery #id selector uses the id attribute of
an HTML tag to find the specific element.

• An id should be unique within a page, so you
should use the #id selector when you want to
find a single, unique element.

• To find an element with a specific id, write a
hash character, followed by the id of the HTML
element:

• $("#test")

When a user clicks on a button, the
element with id="test" will be hidden:

• $(document).ready(function(){
$("button").click(function(){

$("#test").hide();
});

});

jQuery

How to execute jQuery Code ?

• Download the jQuery library from the official
website.

• Use online the jQuery CDN links.

Unit-3 The DOM and jQuery Chapter 9

1. Selecting DOM Elements
2. Using id to Identify Elements
3. Selecting an Element Using getElementById
4. Replacing the Heading Text Using the
5. Using jQuery to Work with the DOM Tree
6. DOM
7. Loading jQuery on Your HTML Page
8. Replacing the Heading Text Using jQuery
9. Creating New Elements with jQuery
10.Animating Elements with jQuery
11.Chaining jQuery Animations

JavaScript

• Print text to the browser console or display an
alert or prompt dialog

• JavaScript to manipulate (control or modify)
and interact with the HTML you write in web
pages

Tools Required…

• To write much more powerful JavaScript:

The DOM and jQuery.

The DOM and jQuery

• The DOM, or document object model, is what
allows JavaScript to access the content of a web
page.

• Web browsers use the DOM to keep track of
the elements on a page (such as paragraphs,
headings, and other HTML elements), and
JavaScript can manipulate DOM elements in
various ways.

• Use JavaScript to replace the main heading of
the HTML document with input from a prompt
dialog.

jQuery

jQuery- which makes it much easier to work
with the DOM.

jQuery gives us a set of functions that we can
use to choose which elements to work with
and to make changes to those elements.

Selecting DOM Elements

Using id to Identify Elements

Selecting an Element Using getElementById

<h1 id="main-heading">Hello world!</h1>

var headingElement =
document.getElementById("main-heading");

Selecting an Element Using getElementById

Use the innerHTML property to retrieve and
replace the text inside the selected element:

headingElement.innerHTML;

• This code returns the HTML contents of
headingElement

• The element selected using getElementById

Replacing the Heading Text Using the DOM

<!DOCTYPE html>

<html> <head>

<title>Playing with the DOM</title>

</head>

<body>

<h1 id="main-heading">Hello world!</h1>

<script>

var headingElement = document.getElementById("main-heading");

console.log(headingElement.innerHTML);

var newHeadingText = prompt("Please provide a new heading:");

headingElement.innerHTML = newHeadingText;

</script></body></html>

Using jQuery to Work with the
DOM Tree

The built-in DOM methods are great, but they’re not
very easy to use.

Because of this, many developers use a set of tools
called jQuery to access and manipulate the DOM tree.

jQuery is a JavaScript library—a collection of related
tools (mostly functions) that gives us, in this case, a
simpler way to work with DOM elements.

 Once we load a library onto our page, we can use its

functions and methods in addition to those built into
JavaScript and those provided by the browser.

Loading jQuery on Your HTML Page

<script src="https://code.jquery.com/jquery-
2.1.0.js">

</script>

Replacing the Heading Text Using jQuery

<!DOCTYPE html>
<html>
<head>
<title>Playing with the DOM</title>
</head>
<body>
<h1 id="main-heading">Hello world!</h1>

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>
<script>
var newHeadingText = prompt("Please provide a new heading:");
$("#main-heading").text(newHeadingText);
</script>
</body>
</html>

Creating New Elements with jQuery

$("body").append("<p>This is a new
paragraph</p>");

Append to add multiple elements in a for loop

for (var i = 0; i < 3; i++) {

var hobby = prompt("Tell me one of your
hobbies!");

$("body").append("<p>" + hobby + "</p>");

}

Animating Elements with jQuery

$("h1").fadeOut(3000);

Chaining jQuery Animations

$("h1").text("This will fade out").fadeOut(3000);

• Calling multiple methods in a row like this is
known as chaining.

$("h1").fadeOut(3000).fadeIn(2000);

$("h1").slideUp(1000).slideDown(1000);

Animation Methods

• jQuery provides two additional animation
methods similar to fadeOut and fadeIn, called
slideUp and slideDown.

• The slideUp method makes elements disappear
by sliding them up, and slideDown makes them
reappear by sliding them down.

1. We use fadeIn to make invisible elements visible. But what happens if you
call fadeIn on an element that’s already visible or an element that comes
after the element you’re animating?

2. For example, say you add a new p element to your dom.html document
after the heading. Try using slideUp and slideDown to hide and show the
h1 element, and see what happens to the p element. What if you use
fadeOut and fadeIn?

3. What happens if you call fadeOut and fadeIn on the same element
without chaining the calls?

For example:

$("h1").fadeOut(1000);
$("h1").fadeIn(1000);

Try adding the preceding code inside a for loop set to
run five times. What happens?

What do you think the show and hide jQuery methods do?
Try them out to see if you’re right. How could you use hide to
fade in an element that’s already visible?

Programming Challenges

1. #1: Listing Your Friends with jQuery

(And Making Them Smell!)

1. #2: Making a Heading Flash

2. #3: Delaying Animations

3. #4: Using fadeTo

#1: Listing Your Friends with jQuery
(And Making Them Smell!)

1. Create an array containing the names of a few friends.
2. Using a for loop, create a p element for each of your

friends and add it to the end of the body element
using the jQuery append method.

3. Use jQuery to change the h1 element so it says My
friends instead of Hello world!.

4. Use the hide method followed by the fadeIn method
to fade in each name as it’s provided.

5. Now, modify the p elements you created to add the
text smells! after each friend.

6. Hint: If you select the p elements using $("p"), the
append method will apply to all the p elements.

#2: Making a Heading Flash

How could you use fadeOut and fadeIn to
cause the heading to flash five times, once a
second? How could you do this using a for
loop? Try modifying your loop so it fades out
and fades in over 1 second the first time, over
2 seconds the second time, over 3 seconds the
third time, and so on.

#3: Delaying Animations

The delay method can be used to delay
animations. Using delay, fadeOut, and fadeIn,
make an element on your page fade out and
then fade back in again after 5 seconds

#4: Using fadeTo

 Try using the fadeTo method. Its first argument
is a number of milliseconds, as in all the other
animation methods. Its second argument is a
number between 0 and 1. What happens when
you run the following code?

fadeTo

$("h1").fadeTo(2000, 0.5);

• What do you think the second argument
means?

• Try using different values between 0 and 1 to
figure out what the second argument is used
for.

CHAPTER 10 - INTERACTIVE PROGRAMMING

 Create interactive web pages that change over

time and respond to actions by the user.

 Programming in this way is called interactive

programming.

DELAYING CODE WITH SETTIMEOUT

 Function-to execute a function after a certain

period of time.

 To set a timeout in JavaScript, we use the

function setTimeout.

 This function takes two arguments : the function

to call after the time has elapsed and the amount

of time to wait (in milliseconds).

THE ARGUMENTS FOR SETTIMEOUT()

SETTIMEOUT TO DISPLAY AN ALERT DIALOG

var timeUp = function () {

alert("Time's up!");

};

setTimeout(timeUp, 3000);

SETTIMEOUT()

 create the function timeUp,
 which opens an alert dialog that displays the text

"Time's up!".

• Call setTimeout with two arguments: the function we

want to call (timeUp) and the number of milliseconds

(3000) to wait before calling that function.

 “Wait 3 seconds and then call timeUp.”

When

 setTimeout(timeUp, 3000) is first called,

nothing happens, but after 3 seconds

timeUp is called and the alert dialog pops

up.

SETTIMEOUT()

 setTimeout returns 1.

 This return value is called the timeout ID. The

timeout ID is a number that’s used to identify this

particular timeout (that is, this particular

delayed function call).

 The actual number returned could be any

number, since it’s just an identifier. Call

setTimeout again, and it should return a

different timeout ID.

SETTIMEOUT();

setTimeout(timeUp, 5000);

use this timeout ID with the

clearTimeout function to cancel that

specific timeout.

CANCELING A TIMEOUT

To cancel a timeout, use the function
clearTimeout on the timeout ID returned
by setTimeout.

var doHomeworkAlarm = function () {

alert("Hey! You need to do your
homework!");

};

var timeoutId =
setTimeout(doHomeworkAlarm, 60000);

SETTIMEOUT() WITH TWO ARGUMENTS

 When we call setTimeout(doHomeworkAlarm,

60000)

 JavaScript to execute that function after 60,000

milliseconds (or 60 seconds) has passed.

 Make this call to setTimeout and save the

timeout ID in a new variable called timeoutId.

 To cancel the timeout, pass the timeout ID to the

clearTimeout function like this:

 clearTimeout(timeoutId);

CALLING CODE MULTIPLE TIMES WITH

SETINTERVAL

 The setInterval function is like setTimeout,

except that it repeatedly calls the supplied

function after regular pauses, or intervals.

 To update a clock display using JavaScript, you

could use setInterval to call an update function

every second.

 call setInterval with two arguments:

 the function you want to call and the length of the

interval (in milliseconds).

THE ARGUMENTS FOR SETINTERVAL()

WRITE A MESSAGE TO THE CONSOLE EVERY

SECOND

var counter = 1;

var printMessage = function () {

console.log("You have been staring at your console

for " + counter + " seconds");

counter++;

};

var intervalId = setInterval(printMessage, 1000);

clearInterval(intervalId);

TRY IT OUT!

 Modify the preceding example to print the

message every five seconds instead of every

second.

SETINTERVAL()

 we create a new variable called counter and set it

to 1.

 create a function called printMessage.

 This function does two things.

 First, it prints out a message telling you how long

you have been staring at your console. Then, at

it increments the counter variable.

SETINTERVAL()

 call setInterval(), passing the printMessage

function and the number 1000.

Calling setInterval like this means “call

printMessage every 1,000 milliseconds.”

 setTimeout returns a timeout ID,

 setInterval returns an interval ID, which is

to save in the variable intervalId.

use this interval ID to tell JavaScript to

stop executing the printMessage function

using the clearInterval function.

TRY IT OUT!

 Modify the preceding example to print the

message every five seconds instead of every

second

ANIMATING ELEMENTS WITH SETINTERVAL

!DOCTYPE html>

<html>

<head>

<title>Interactive programming</title>

</head>

<body>

<h1 id="heading">Hello world!</h1>

<script src="https://code.jquery.com/jquery-
2.1.0.js"></script>

<script>

// We'll fill this in next

</script>

</body>

</html>

PUT YOUR CODE INSIDE THE <SCRIPT> TAGS

OF THE HTML DOCUMENT

var leftOffset = 0;

var moveHeading = function () {

$("#heading").offset({ left: leftOffset });

leftOffset++;

if (leftOffset > 200) {

leftOffset = 0;

}

};

setInterval(moveHeading, 30);

ANIMATING ELEMENTS WITH SETINTERVAL

 heading element gradually move across the
screen until it travels 200 pixels, at that point, it
will jump back to the beginning and start again.

 we create the variable leftOffset, which we’ll use
later to position our Hello world! heading. It
starts with a value of 0, which means the heading
will start on the far left side of the page.

 create the function moveHeading, which we’ll

 call later with setInterval. Inside the
moveHeading function, at, weuse $("#heading")
to select the element with the id of "heading" (our
h1 element) and use the offset method to set the
left offset of the heading—that is, how far it is
from the left side of the screen.

RESPONDING TO USER ACTIONS

 fixed amount of time-

setTimeout(),setTimeInterval()

when a user performs certain actions -

clicking, typing, or even just moving the

mouse.

perform an action such as clicking, typing,

or moving your mouse, something called

an event is triggered

events by adding an event handler to the

element where the event happened

RESPONDING TO CLICKS

When a user clicks an element in the browser,

this triggers a click event.

 jQuery makes it easy to add a handler for a

click Event.

var clickHandler = function (event) {

console.log("Click! " + event.pageX + " " +

event.pageY);

};

$("h1").click(clickHandler);

THE MOUSEMOVE EVENT

<!DOCTYPE html>

<html>

<head>

<title>Mousemove</title>

</head>

<body>

<h1 id="heading">Hello world!</h1>

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

<script>

$("html").mousemove(function (event) {

$("#heading").offset({

left: event.pageX,

top: event.pageY

});

});

</script>

</body>

</html>

PROGRAMMING CHALLENGES

 #1: Follow the Clicks

Modify the previous mousemove program so that

instead of following your mouse, the heading will

follow just your clicks. Whenever you click the

page, the heading should move to the click

location.

#2: CREATE YOUR OWN ANIMATION

 Use setInterval to animate an h1 heading

element around the page, in a square.

 It should move 200 pixels to the right, 200 pixels

down, 200 pixels to the left, 200 pixels up, and

then start again.

 Hint: You’ll need to keep track of your current

direction (right, down, left, or up) so that you

know whether to increase or decrease the left or

top offset of the heading. You’ll also need to

change the direction when you reach a corner of

the square.

#3: CANCEL AN ANIMATION WITH A CLICK

 Building upon Challenge #2, add a click handler

to the moving h1 element that cancels the

animation.

 Hint: You can cancel intervals with the

clearInterval function.

#4: MAKE A “CLICK THE HEADER” GAME!

Modify Challenge #3 so that every time a player

clicks the heading, instead of stopping, the

heading speeds up, making it harder and harder

to click. Keep track of the number of times the

heading has been clicked and update the heading

text so it shows this number. When the player

has reached 10 clicks, stop the animation and

change the text of the heading to “You Win.”

Hint:

To speed up, you’ll have to cancel the current

interval and then start a new one with a shorter

interval time.

Find the Buried Treasure

Chapter 11

The buried treasure game

 Designing the Game

- list of steps we need to take to set up

the game so it can respond accordingly

when a player clicks the treasure map.

Steps

 1. Create a web page with an image (the

treasure map) and a place to display

messages to the player.

 2. Pick a random spot on the map picture

to hide the treasure.

 3. Create a click handler. Each time the player clicks the map,
the click handler will do the following:

a. Add 1 to a click counter.

b. Calculate how far the click location is from the

treasure location.

c. Display a message on the web page to tell the player

whether they’re hot or cold.

d. Congratulate the player if they click on the treasure

or very close to it, and say how many clicks it took to

find the treasure.

Creating the Web Page with HTML

 use a new element called img for the

treasure map and add a p element where

we can display messages to the player.

Enter the following code into a new file

called treasure.html.

<!DOCTYPE html>

<html>

<head>

<title>Find the buried treasure!</title>

</head>

<body>

<h1 id="heading">Find the buried treasure!</h1>

<img id="map" width=400 height=400

src="http://nostarch.com/images/treasuremap.png">

<p id="distance"></p>

<script src="https://code.jquery.com/jquery-2.1.0.js"></script>

<script>

// Game code goes here

</script>

</body>

</html>

Picking a Random Treasure Location

 Picking Random Numbers

var getRandomNumber = function (size)

{

return Math.floor(Math.random() * size);

};

Setting the Treasure Coordinates

var width = 400;

var height = 400;

v var target = {

x: getRandomNumber(width),

y: getRandomNumber(height)

};

The Click Handler

$("#map").click(function (event) {

// Click handler code goes here

});

Counting Clicks

 var clicks = 0;

Calculating the Distance Between the

Click and the Treasure

var getDistance = function (event, target) {

var diffX = event.offsetX - target.x;

var diffY = event.offsetY - target.y;

return Math.sqrt((diffX * diffX) + (diffY * diffY));

};

Calculating the horizontal and

vertical

distances between event and target

Using the Pythagorean

Theorem
 To calculate the distance between the

click and the treasure,we need to

calculate the length of the hypotenuse,

based on the lengths diffX and diffY.

Sample calculation

Calculating the hypotenuse to find out the distance between event and target

• Math.sqrt((diffX * diffX) + (diffY * diffY))

Telling the Player How Close They Are

var getDistanceHint = function (distance) {

if (distance < 10) {

return "Boiling hot!";

} else if (distance < 20) {

return "Really hot";

} else if (distance < 40) {

return "Hot";

} else if (distance < 80) {

return "Warm";

} else if (distance < 160) {

return "Cold";

} else if (distance < 320) {

return "Really cold";

} else {

return "Freezing!“; }

};

click handler to calculate the distance, pick

the appropriate string and display that string

to the player

var distance = getDistance(event, target);

var distanceHint = getDistanceHint(distance);

$("#distance").text(distanceHint);

Checking If the Player Won

if (distance < 8) {

alert("Found the treasure in " + clicks + "

clicks!");

}

Putting It All Together

Programming Challenges

#1: Increasing the Playing Area

 You could make the game harder by

increasing the size of the playing area.

How would you make it 800 pixels wide

by 800 pixels tall?

#2: Adding More Messages

 Try adding some extra messages to

display to the player (like "Really really

cold!"), and modify the distances to make

the game your own.

#3: Adding a Click Limit

 Add a limit to the number of clicks and

show the message "GAME OVER" if the

player exceeds this limit.

#4: Displaying the Number of Remaining Clicks

 Show the number of remaining clicks as

an extra piece of text after the distance

display so the player knows if they’re

about to lose.

CHAPTER 12

OBJECT ORIENTED PROGRAMMING

Object-oriented programming

• It is a way to design and write programs so
that all of the program’s important parts are
represented by objects.

For example, when building a racing game

• car as an object

• create multiple car objects that share the
same properties and functionality.

A Simple Object

var dog = {

name: "Pancake",

legs: 4,

isAwesome: true

};

“Accessing Values in Objects”

• access its properties using dot notation

• dog.name;

• "Pancake“

Add properties to a JavaScript

dog.age = 6;

dog;

OUTPUT:

Object {name: "Pancake", legs: 4, isAwesome: true,
age: 6}

Adding Methods to Objects

created several properties with different

• kinds of values

• a string ("Pancake")

• Numbers (4 and 6)

• a Boolean (true).

function as a property inside object

• save a function as a property in an object, that

property is called a method.

Accessing Bark method

dog.bark = function () {

console.log("Woof woof! My name is " +
this.name + "!");

};

• dog.bark();

Using the this Keyword

• this keyword inside a method to refer to the
object on which the method is currently being
called

• For example, when call the bark method on
the dog object, this refers to the dog object.

• this.name refers to dog.name.

this keyword

• The this keyword makes methods more
versatile, allowing you to add the same
method to multiple objects and have it access
the properties of whatever object it’s
currently being called on.

Sharing a Method Between
Multiple Objects

var speak = function () {

console.log(this.sound + "! My name is " +
this.name + "!");

};

Sharing a Method Between
Multiple Objects

• create a new function called speak that we
can use as a method in multiple objects that
represent different animals.

• When speak is called on an object, it will use
the object’s name (this.name) and the sound
the animal makes (this.sound) to log a
message.

Multiple Objects

var cat = {

sound: "Miaow",

name: "Mittens",

speak: speak

};

cat.speak();

speak function as a method in other
objects too:

var pig = {
sound: "Oink",
name: "Charlie",
speak: speak
};

var horse = {
sound: "Neigh",
name: "Marie",
speak: speak
};

pig.speak();
horse.speak();

Creating Objects Using Constructors

• constructor is a function that creates objects
and gives them a set of built-in properties
and methods.

Anatomy of the Constructor

Creating a Car Constructor

create a Car constructor that will add an x and y
property to each new object it creates. These
properties will be used to set each car’s
onscreen position when we draw it.

cars.html

• Creating the HTML Document Before we can
build our constructor, we need to create a
new HTML document.

• Make a new file called cars.html

<!DOCTYPE html>
<html>
<head>
<title>Cars</title>
</head>
<body>
<script src="https://code.jquery.com/jquery-

2.1.0.js"></script>
<script>
// Code goes here
</script>
</body>
</html>

cars.html

The Car Constructor Function

• Now add this code to the empty <script> tags in
cars.html (replacing the comment // Code goes
here) to create the Car constructor that gives
each car a set of coordinates.

<script>
var Car = function (x, y) {
this.x = x;
this.y = y;
};
</script>

• Our new constructor Car takes the arguments
x and y. We’ve

• added the properties this.x and this.y to store
the x and y values

• passed to Car in our new object. This way,
each time we call Car as

• a constructor, a new object is created with its
x and y properties set

• to the arguments we specify.

Calling the Car Constructor

• calling a constructor to create a new object.
For example, to create a car object named
tesla, open cars.html in a web browser.

var tesla = new Car(10, 20);

tesla;

Car {x: 10, y: 20}

• The code new Car(10, 20) tells JavaScript to create an
object

• using Car as a constructor, pass in the arguments 10
and 20 for its

• x and y properties, and return that object. We assign
the returned

• object to the tesla variable with var tesla.
• Then when we enter tesla, the Chrome console returns

the
• name of the constructor and its x and y values: Car {x:

10, y: 20}.

Drawing the Cars

• To show the objects created by the Car
constructor, create a function called drawCar
to place an image of a car at each car object’s
(x, y) position in a browser window. how this
function works, rewrite it in a more object-
oriented way in “Adding a draw Method to the
Car Prototype”.

• Add this code between the <script> tags in
cars.html

• create a string containing HTML that points to
an image of a car. (Using single quotes to
create this string lets us use double quotes in
the HTML.)

• pass carHTML to the $function, which
converts it from a string to a jQuery element.
That means the carElement variable now
holds a jQuery element with the information
for our tag, and we can tweak this
element before adding it to the page.

• use the css method on carElement to set the
position of the car image. This code sets the
left position of the image to the car object’s x
value and its top position to the y value.

• In other words, the left edge of the image will
be x pixels from the left edge of the browser
window, and the top edge of the image will be
y pixels down from the top edge of the
window

Testing the drawCar Function

• Let’s test the drawCar function to make sure it
works. Add this code to your cars.html file
(after the other JavaScript code) to create two
cars.

• Here, we use the Car constructor to create
two car objects, one at the coordinates (20,
20) and the other at (100, 200), and then we
use drawCar to draw each of them in the
browser. Now when you open cars.html,

Customizing Objects with
Prototypes

• A more object-oriented way to draw our cars
would be to give each car object a draw
method.

• Then, instead of writing drawCar(tesla), write
tesla.draw().

• In object-oriented programming, want objects
to have their own functionality built in as
methods

• In this case, the drawCar function is always meant to
be used on car objects, so instead of saving drawCar as
a separate function, we should include it as part of
each car object.

• JavaScript prototypes make it easy to share
functionality (as methods) between different objects.

• All constructors have a prototype property, and we can
add methods to it.

• Any method that we add to a constructor’s prototype
property will be available as a method to all objects
created by that constructor.

syntax for adding a method to a
prototype property.

Adding a draw Method to the Car
Prototype

• add a draw method to Car.prototype so that
all objects we create

• using Car will have the draw method. Using
File->Save As,

• Save your cars.html file as cars2.html. Then
replace all of the JavaScript

• in your second set of <script> tags in
cars2.html

Adding a draw Method to the Car Prototype

• After creating our Car constructor, we add a new
method called draw to Car.prototype.

• This makes the draw method part of all of the objects
created by the Car constructor.

• The contents of the draw method are a modified
version of our drawCar function.

• First, we create an HTML string and save it as carHTML.

• create a jQuery element representing this HTML, but
this time we save it as a property of the object by

assigning it to this.carElement.

Adding a draw Method to the Car Prototype

• Then at x, we use this.x and this.y to set the
coordinates of the top-left corner of the current
car image. (Inside a constructor, this refers to the
new object currently being created.)

• Haven’t changed the code’s functionality, only its
organization. The advantage to this approach is
that the code for drawing the car is part of the
car, instead of a separate function.

Adding a moveRight Method

• add some methods to move the cars around,
beginning with a moveRight method to move
the car 5 pixels to the right of its current
position. Add the following code after your
definition of Car.prototype.draw:

moveRight method

• Save the moveRight method in Car.prototype to share
it with all objects created by the Car constructor.

• With this.x += 5 we add 5 to the car’s x value, which
moves the car 5 pixels to the right. Then we use the css
method on this.carElement to update the car’s position
in the browser.

• Try the moveRight method in the browser onsole.
First, refresh cars2.html, and then open the console
and enter these lines

tesla.moveRight();
tesla.moveRight();
tesla.moveRight();

tesla.moveRight

• Each time you enter tesla.moveRight, the top
car should move 5 pixels to the right.

• You could use this method in a racing game to
show the car moving down the racetrack.

Try It Out!

• Try moving nissan to the right. How many
times do you need to call moveRight on nissan
to make it line up with tesla?

• Use setInterval and moveRight to animate
nissan so that it drives across the browser
window.

Adding the Left, Up, and Down
move Methods

• Now we’ll add the remaining directions to our
code so that we can move our cars around the
screen in any direction.

• These methodsare basically the same as
moveRight, so we’ll write them all at once.

• Add the following methods to cars2.html just
after the code for moveRight:

Programming Challenges

• #1: Drawing in the Car Constructor

Add a call to the draw method from inside the
Car constructor so that car objects automatically
appear in the browser as soon as you create
them.

#2: Adding a speed Property

• Modify the Car constructor to add a new
speed property with a value of 5 to the
constructed objects.

• Then use this property instead of the value 5
inside the movement methods.

• Now try out different values for speed to make
the cars move faster or slower.

#3: Racing Cars

• Modify the moveLeft, moveRight, moveUp, and moveDown methods so

they take a single distance argument, the number of pixels to move, instead

of always moving 5 pixels. For example, to move the nissan car 10 pixels

to the right, you would call nissan.moveRight(10).

• Now, use setInterval to move the two cars (nissan and tesla) to the right

every 30 milliseconds by a different random distance between 0 and 5. You

should see the two cars animate across the screen, jumping along at varying

speeds. Can you guess which car will make it to the edge of the window

first?

UNIT IV

CANVAS

UNIT – IV

CHAPTER 13

The canvas Element

CANVAS

• use JavaScript to draw pictures with the
HTML canvas element, which you can think of
as a blank canvas or sheet of paper

• Lines

• Shapes

• Text

Creating a Basic Canvas

• create a new HTML document for the canvas
element.

canvas.html
<!DOCTYPE html>

<html>

<head>

<title>Canvas</title>

</head>

<body>

<canvas id="canvas" width="200"
height="200"></canvas>

<script>

// We'll fill this in next

</script>

</body>

</html>

• Create a canvas element and give it an id
property of "canvas“

• The width and height properties set the
dimensions of the canvas element in pixels.

• Set both dimensions to 200.

Drawing on the Canvas

var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");

ctx.fillRect(0, 0, 10, 10);

Selecting and Saving the canvas Element

1. Select the canvas element using
document.getElementById("canvas")

2. The getElementById method returns a DOM object
representing the element with the supplied id.

3. This object is assigned to the canvas variable with the
code

var canvas = document.getElementById("canvas")

Getting the Drawing Context

• Get the drawing context from the canvas element
• A drawing context is a JavaScript object that

includes all the methods and properties for
drawing on a canvas.

• To get this object, we call getContext on canvas
and pass it the string "2d" as an argument.

• This argument says that we want to draw a two-
dimensional image on our canvas.

• We save this drawing context object in the
variable ctx using the code

var ctx = canvas.getContext("2d").

Drawing a Square

• draw a rectangle on the canvas by calling the
method fillRect on the drawing context.

• The fillRect method takes four arguments.

• x- and y-coordinates of the top-left corner of
the rectangle (0, 0) and the width and height
of the rectangle (10, 10).

• Draw a 10-pixel-by-10-pixel rectangle at
coordinates (0, 0), which are at the top-left
corner of the canvas.

Drawing Multiple Squares

• use a loop to draw multiple squares running
diagonally down the screen. Replace the code in
the <script> tags with the following.

• set of eight black squares:

var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");

for (var i = 0; i < 8; i++) {

ctx.fillRect(i * 10, i * 10, 10, 10);

}

Try It Out!

• Now that you know how to draw squares and
rectangles on the canvas, try drawing this little
robot using the fillRect method.

Hint: You’ll need to draw six separate rectangles.
I made the head using a 50-pixel-by-50-pixel
rectangle. The neck, arms, and legs are all 10
pixels wide.

Changing the Drawing Color

• By default, when you call fillRect, JavaScript
draws a black rectangle.

• To use a different color, you can change the
fillStyle property of the drawing context.

• When you set fillStyle to a new color, everything
you draw will be drawn in that color until you

change fillStyle again.

• The easiest way to set a color for fillStyle is to
give it the name of a color as a string.

• var canvas =
document.getElementById("canvas");

• var ctx = canvas.getContext("2d");

• ctx.fillStyle = "Red";

• ctx.fillRect(0, 0, 100, 100);

OUTPUT

• JavaScript understands more than 100 color
names, including Green, Blue, Orange, Red,
Yellow, Purple, White, Black, Pink, Turquoise,
Violet, SkyBlue, PaleGreen, Lime, Fuchsia,
DeepPink, Cyan, and Chocolate. You’ll find a
full list on the CSS-Tricks

• website: http://css-tricks.com/snippets/css/
named-colors-and-hex-equivalents/.

Try It Out!

• Look at the CSS-Tricks website (http://css-
tricks.com/ snippets/css/named-colors-and-
hex-equivalents/) and choose three colors you
like. Draw three rectangles using these colors.
Each rectangle should be 50 pixels wide and
100 pixels tall. Don’t include any space
between them. You should end up with
something like this:

Draw three rectangles using these
colors

Drawing Rectangle Outlines

• fillRect method draws a filled-in rectangle.

• use the strokeRect method

• Running this code should draw the outline of
small rectangle

• var canvas =
document.getElementById("canvas");

• var ctx = canvas.getContext("2d");

• ctx.strokeRect(10, 10, 100, 20);

STROKE OUTPUT

• The strokeRect method takes the same arguments as

fillRect:

first the x- and y-coordinates of the top-left corner, followed
by the width and height of the rectangle. In this example, we
see that a rectangle is drawn starting at 10 pixels from the top
left of the canvas, and it is 100 pixels wide by 20 pixels tall.

• Use the strokeStyle property to change the color of the
rectangle’s outline.

• To change the thickness of the line, use the lineWidth
property.

CODE AND OUTPUT

• var canvas = document.getElementById("canvas");

• var ctx = canvas.getContext("2d");

• u ctx.strokeStyle = "DeepPink";

• v ctx.lineWidth = 4;

• ctx.strokeRect(10, 10, 100, 20);

Drawing Lines or Paths

• Lines on the canvas are called paths. To draw
a path with the canvas, you use x- and y-
coordinates to set where each line should
begin and end. By using a careful combination
of starting and stopping coordinates, you can
draw specific shapes on the canvas.

CODE SNIPPETS

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
ctx.strokeStyle = "Turquoise";
ctx.lineWidth = 4;
ctx.beginPath();
ctx.moveTo(10, 10);
ctx.lineTo(60, 60);
ctx.moveTo(60, 10);
ctx.lineTo(10, 60);
ctx.stroke();

Try It Out!

• Try drawing this happy stickman using the

beginPath, moveTo, lineTo, and stroke methods.

• You can use the strokeRect method for the
head. The head is a 20-pixel-by-20-pixel
square, and the line width is 4 pixels.

Filling Paths
var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");

ctx.fillStyle = "SkyBlue";

ctx.beginPath();

ctx.moveTo(100, 100);

ctx.lineTo(100, 60);

ctx.lineTo(130, 30);

ctx.lineTo(160, 60);

ctx.lineTo(160, 100);

ctx.lineTo(100, 100);

ctx.fill();

House with each coordinate labeled
• After setting our drawing color

• to SkyBlue, we begin our path with beginPath and
then move to ourstarting point of (100, 100)
using moveTo.

• Next we call lineTo five times for each corner of
the house, using five sets of coordinates.

• The final call to lineTo completes the path by
going back to the starting point of (100, 100).

• call the fill method, which fills our path with

the chosen fill color, SkyBlue.

Drawing Arcs and Circles

• In addition to drawing straight lines on the canvas, you can
• use the arc method to draw arcs and circles. To draw a

circle,
• you set the circle’s center coordinates and radius (the

distance
• between the circle’s center and outer edge) and tell

JavaScript
• how much of the circle to draw by providing a starting

angle and
• ending angle as arguments. You can draw a full circle, or

just a
• portion of a circle to create an arc.

• The starting and ending angles are measured in
radians. When

• measured in radians, a full circle starts at 0 (at the right
side of the

• circle) and goes up to π × 2 radians. So to draw a full
circle, you tell

• arc to draw from 0 radians to π × 2 radians. Figure 13-9
shows a

• circle labeled with radians and their equivalent in
degrees. The

• values 360° and π × 2 radians both mean a full circle.

code will create a quarter circle, a
half circle, and a full circle

• ctx.lineWidth = 2;
• ctx.strokeStyle = "Green";
• ctx.beginPath();
• u ctx.arc(50, 50, 20, 0, Math.PI / 2, false);
• ctx.stroke();
• 210 Chapter 13
• ctx.beginPath();
• v ctx.arc(100, 50, 20, 0, Math.PI, false);
• ctx.stroke();
• ctx.beginPath();
• w ctx.arc(150, 50, 20, 0, Math.PI * 2, false);
• ctx.stroke();

Drawing a Quarter Circle or an Arc

• The first block of code draws a quarter circle.

• At u, after calling beginPath, we call the arc method.
We set the center of the circle at the point (50, 50) and
the radius to 20 pixels. The starting angle is 0 (which
draws the arc starting from the right of the circle), and
the ending angle is Math.PI / 2. Math.PI is how
JavaScript refers to the number π (pi). Because a full
circle is π × 2 radians, π radians means a half circle, and
π ÷ 2 radians (which we’re using for this first arc) gives
us a quarter circle. Figure 13-11 shows the start and
end angles.

start and end angles

start and end angles

• We pass false for the final argument,which
tells arc to draw in a clockwise direction.

• If you want to draw in a counter clockwise

direction, pass true for this final argument.

Drawing a Half Circle

The start angle (0 radians, or 0°) and
end angle (π radians, or 180°) of the half
circle

Drawing a Full Circle

• The start angle (0 radians, or 0°) and end
angle (π . 2 radians, or 360°) of the full circle

Drawing Lots of Circles
with a Function

var circle = function (x, y, radius) {

ctx.beginPath();

ctx.arc(x, y, radius, 0, Math.PI * 2, false);

ctx.stroke();

};

draw some colorful concentric circles

ctx.lineWidth = 4;
ctx.strokeStyle = "Red";
circle(100, 100, 10);
ctx.strokeStyle = "Orange";
circle(100, 100, 20);
ctx.strokeStyle = "Yellow";
circle(100, 100, 30);
ctx.strokeStyle = "Green";
circle(100, 100, 40);

ctx.strokeStyle = "Blue";

circle(100, 100, 50);

ctx.strokeStyle = "Purple";

circle(100, 100, 60);

colorful concentric circles

Try It Out!

• How would you modify our circle function to make
it fill the circle instead of outline it? Add a fourth
argument, a Boolean, that says whether the circle
should be filled or outlined. Passing true indicates
that you want the circle to be filled. You can call the
argument fillCircle.

• Using your modified function, draw this snowman,
using a mix of outlined and filled circles.

Programming Challenges

• #1: A Snowman-Drawing Function

• Building on your code for drawing a snowman

• write a function that draws a snowman at a
specified location, so that calling this . . .

• drawSnowman(50, 50);

would draw a snowman at the point (50, 50).

#2: Drawing an Array of Points
Write a function that will take an array of points like this:

var points = [[50, 50], [50, 100], [100, 100], [100, 50],

[50, 50]];

drawPoints(points);

and draw a line connecting the points. In this example,

the function would draw a line from (50, 50) to (50, 100) to

(100, 100) to (100, 50) and back to (50, 50).

Now use this function to draw the following points:

var mysteryPoints = [[50, 50], [50, 100], [25, 120],

[100, 50], [70, 90], [100, 90], [70, 120]];

drawPoints(mysteryPoints);

Hint: You can use points[0][0] to get the first x-coordinate

and points[0][1] to get the first y-coordinate.

#3: Painting with Your Mouse

Using jQuery and the mousemove event, draw a filled circle
with a radius of 3 pixels at the mouse position whenever
you move your mouse over the canvas. Because this event is
triggered by every tiny movement of the mouse, these circles
will join into a line as you move the mouse over the canvas.
Hint: Refer to Chapter 10 for a reminder of how to respond
to mousemove events.

#4: Drawing the Man in Hangman

• we created our own version of the game
Hangman.

• Now you can make it closer to the real game by
drawing part of a stick man every time the player
gets a letter wrong.

• Hint: Keep track of the number of times the
player has guessed incorrectly.

• Write a function that takes this number as an
argument and draws a different part of the body
depending on the number passed in.

Unit 4

MAKING THINGS MOVE
ON THE CANVAS

Moving Across the Page

• Creating canvas animations in JavaScript
<!DOCTYPE html>
<html>
<head>
<title>Canvas Animation</title>
</head>
<body>
<canvas id="canvas" width="200" height="200"></canvas>
<script>

// We'll fill this in next
</script>
</body>
</html>

script element
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var position = 0;
setInterval(function () {
ctx.clearRect(0, 0, 200, 200);
ctx.fillRect(position, 0, 20, 20);
position++;
if (position > 200) {
position = 0;
}
}, 30);

Clearing the Canvas

ctx.clearRect(0, 0, 200, 200)

Drawing the Rectangle

ctx.fillRect(position, 0, 20, 20)

Changing the Position

if (position > 200)

Viewing the Animation in the Browser

A close-up of the top-left corner of the canvas
for the first four steps of the animation.

At each step, position is incremented by 1
and the square moves 1 pixel to the right

Animating the Size of a Square

var size = 0;

ctx.fillRect(0, 0, size, size);
size++;
if (size > 200) {
size = 0;

In each step of this animation, size is incremented by 1
and the width and height of the square grow by 1 pixel

A Random Bee

• A New circle Function
var circle = function (x, y, radius, fillCircle) {
ctx.beginPath();
u ctx.arc(x, y, radius, 0, Math.PI * 2, false);
v if (fillCircle) {
w ctx.fill();
} else {
x ctx.stroke();
}
};

Drawing the Bee

var drawBee = function (x, y) {
ctx.lineWidth = 2;
ctx.strokeStyle = "Black";
ctx.fillStyle = "Gold";
circle(x, y, 8, true);
circle(x, y, 8, false);
circle(x - 5, y - 11, 5, false);
circle(x + 5, y - 11, 5, false);
circle(x - 2, y - 1, 2, false);
circle(x + 2, y - 1, 2, false);
};

• set the lineWidth,strokeStyle, and fillStyle
properties for our drawing

• set the lineWidth to 2 pixels and the
strokeStyle to Black. This means that our
outlined circles.

• The fillStyle is set to Gold, which will fill the
circle for bee body with a nice yellow color.

• The first circle draws the bee’s body using a
filled circle with a center at the point (x, y) and
a radius of 8 pixels.

circle(x, y, 8, true);

• set the fillStyle to Gold, this circle will be filled
in with yellow like so:

• This second circle draws a black outline
around the bee’s body that’s the same size
and in the same place as the first circle

• circle(x, y, 8, false);

• Added to the first circle, it looks like this

• circle(x - 5, y - 11, 5, false);

• circle(x + 5, y - 11, 5, false);

var update = function (coordinate) {

var offset = Math.random() * 4 - 2;

coordinate += offset;

if (coordinate > 200) {

coordinate = 200;

}

if (coordinate < 0) {

coordinate = 0;

}

return coordinate;

};

Updating the Bee’s Location

Updating the Bee’s Location

• Changing the Coordinate with an offset Value

• Checking If the Bee Reaches the Edge

• Returning the Updated Coordinate

x = update(x);

y = update(y);

Animating Our Buzzing Bee

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var x = 100;
var y = 100;
setInterval(function () {
ctx.clearRect(0, 0, 200, 200);
drawBee(x, y);
x = update(x);
y = update(y);
ctx.strokeRect(0, 0, 200, 200);
}, 30);

• To clear the canvas .

• Draw the bee at the point (x, y). The first time
the function is called, the bee is drawn at the
point (100, 100)

• The update function takes a number, adds a
random number between –2 and 2 to it, and
returns that updated number. So the code x =
update(x) basically means “change x by a
small, random amount.”

• call strokeRect at x to draw a line around the
edge of the canvas.

• This makes it easier for us to see when the
bee is getting close to it. Without the border,
the edge of the canvas is invisible.

Bouncing a Ball!

• make a ball that bounces around the canvas

ball.html

<!DOCTYPE html>

<html><head><title>A Bouncing Ball</title></head>

<body>

<canvas id="canvas" width="200"

height="200"></canvas>

<script>

// We'll fill this in next

</script></body></html>

The Ball Constructor

var Ball = function () {

this.x = 100;

this.y = 100;

this.xSpeed = -2;

this.ySpeed = 3;

};

Drawing the Ball
var circle = function (x, y, radius, fillCircle) {

ctx.beginPath();

ctx.arc(x, y, radius, 0, Math.PI * 2, false);

if (fillCircle) {

ctx.fill();

} else {

ctx.stroke();

}

};

Ball.prototype.draw = function () {

circle(this.x, this.y, 3, true);

};

Moving the Ball

Ball.prototype.move = function () {

this.x += this.xSpeed;

this.y += this.ySpeed;

};

The first three steps of the animation, showing how the x and y properties change

Bouncing the Ball
• At every step of the animation, we check to see if the

ball has hit one of the walls.
• If it has, we update the xSpeed or ySpeed property by

negating it (multiplying it by –1).

Ball.prototype.checkCollision = function () {
if (this.x < 0 || this.x > 200) {

this.xSpeed = -this.xSpeed;
}
if (this.y < 0 || this.y > 200) {

this.ySpeed = -this.ySpeed;
}
};

Bouncing the Ball

• determine whether the ball has hit the left wall or
the right wall by checking to see if its x property is
either less than 0 (meaning it hit the left edge) or
greater than 200 (meaning it hit the right edge).

• If either of these is true, the ball has started to
move off the edge of the canvas, so we have to
reverse its horizontal direction. We do this by
setting this.xSpeed equal to -this.xSpeed. For
example, if this.xSpeed was -2 and the ball hit the
left wall, this.xSpeed would become 2.

How this.xSpeed changes after a
collision with the left wall

Animating the Ball
var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");

var ball = new Ball();

setInterval(function () {

ctx.clearRect(0, 0, 200, 200);

ball.draw();

ball.move();

ball.checkCollision();

ctx.strokeRect(0, 0, 200, 200);

}, 30);

Programming Challenges

• #1: Bouncing the Ball Around a Larger Canvas

Our 200-by-200-pixel canvas is a bit small.
What if you wanted to increase the canvas size
to 400 by 400 pixels or some other arbitrary
size? Instead of entering the width and height
of the canvas manually throughout your
program, you can create width and height
variables and set the variables using the
canvas object. Use the following code:

• var width = canvas.width;

• var height = canvas.height;

Now if you use these variables throughout your
program, you only have to change the
properties on the canvas element in the HTML
if you want to try out a new size. Try changing
the size of the canvas to 500 pixels by 300
pixels. Does your program still work?

#2: Randomizing this.xSpeed and this.ySpeed

• To make the animation more interesting, set
this.xSpeed and this.ySpeed to different
random numbers (between –5 and 5) in the
Ball constructor.

#3: Animating More Balls

• Instead of creating just one ball, create an
empty array of balls, and use a for loop to add
10 balls to the array. Now, in the setInterval
function, use a for loop to draw, move, and
check collisions on each of the balls.

#4: Making the Balls Colorful

• How about making some colored bouncing
balls? Set a new property in the Ball
constructor called color and use it in the draw
method. Use the pickRandomWord function
from Chapter 8 to give each ball a random
color from this array:

• var colors = ["Red", "Orange", "Yellow",
"Green", "Blue", "Purple"];

THANK YOU

UNIT V

GAME DEVELOPMENT

GAME DEVELOPMENT

Making a Snake Game

Building the Block Constructor

Define a Block constructor that will create
objects that represent individual blocks on
our invisible game grid.

Each block will have the properties col (short
for column) and row, which will store the
location of that particular block on the grid.

The block containing the green apple is at column
10, row 10. The head of the snake (to the left of the apple) is
at column 8, row 10.

code for the Block constructor

var Block = function (col, row) {

this.col = col;

this.row = row;

};

var sampleBlock = new Block(5, 5);

Adding the drawSquare Method

Block.prototype.drawSquare = function (color) {

u var x = this.col * blockSize;

v var y = this.row * blockSize;

ctx.fillStyle = color;

ctx.fillRect(x, y, blockSize, blockSize);

};

var sampleBlock = new Block(3, 4);
sampleBlock.drawSquare("LightBlue");

This square drawn on the canvas and how
the measurements for the square are calculated.

Adding the drawCircle Method

Block.prototype.drawCircle = function (color) {

var centerX = this.col * blockSize + blockSize / 2;

var centerY = this.row * blockSize + blockSize / 2;

ctx.fillStyle = color;

circle(centerX, centerY, blockSize / 2, true);

};

var sampleCircle = new Block(4, 3);
sampleCircle.drawCircle("LightGreen");

Figure 17-3 shows the circle, with the calculations for
the center point and radius.

Adding the equal Method

Block.prototype.equal = function (otherBlock) {

return this.col === otherBlock.col && this.row ===
otherBlock.row;

};

create two new blocks called apple and head
and see if they’re in the same location

var apple = new Block(2, 5);

var head = new Block(3, 5);

head.equal(apple);

False

head = new Block(2, 5);

head.equal(apple);

true

Creating the Snake

• Store the snake’s position as an array called
segments, which will contain a series of block
objects.

• To move the snake, we’ll add a new block to
the beginning of the segments array and
remove the block at the end of the array.

• The first element of the segments array will
represent the head of the snake.

Writing the Snake Constructor

var Snake = function () {
this.segments = [
new Block(7, 5),
new Block(6, 5),
new Block(5, 5)
];
this.direction = "right";
this.nextDirection = "right";
};

Defining the Snake Segments

• The segments property at u is an array of
block objects that each represent a segment
of the snake’s body. When we start the game,
this array will contain three blocks at (7, 5), (6,
5), and (5, 5).

initial three segments of the snake

Setting the Direction of Movement

Drawing the Snake
• The direction property at v stores the current direction

of the snake. Our constructor also adds the

nextDirection property at, which stores the direction

in which the snake will move for the next animation

step.

• This property will be updated by our keydown event

handler when the player presses an arrow key

• For now, the constructor sets both of these properties

to "right", so at the beginning of the game our snake

will move to the right.

Drawing the Snake

Snake.prototype.draw = function () {

for (var i = 0; i < this.segments.length; i++) {

this.segments[i].drawSquare("Blue");

}

};

var snake = new Snake();
snake.draw();

Moving the Snake

• create a move method to move the snake
one block in its current direction. To
move the snake, we add a new head
segment (by adding a new block object
to the beginning of the segments array)
and then remove the tail segment from
the end of the segments array.

• The move method will also call a
method, checkCollision, to see whether
the new head has collided with the rest
of the snake or with the wall, and
whether the new head has eaten the
apple. If the new head has collided with
the body or the wall, we end the game by
calling the gameOver function.

Adding the move Method

Snake.prototype.move = function () {

var head = this.segments[0];

var newHead;

this.direction = this.nextDirection;

if (this.direction === "right") {

newHead = new Block(head.col + 1, head.row);

}

Adding the move Method contd..

else if (this.direction === "down") {

newHead = new Block(head.col, head.row + 1);

} else if (this.direction === "left") {

newHead = new Block(head.col - 1, head.row);

} else if (this.direction === "up") {

newHead = new Block(head.col, head.row - 1);

}

Adding the move Method contd..
if (this.checkCollision(newHead)) {

gameOver();

return;

}

z this.segments.unshift(newHead);

{ if (newHead.equal(apple.position)) {

score++;

apple.move();

} else {

this.segments.pop();

} };

Creating a New Head

• save the first element of the this.segments
array in the variable head.

• create the variable newHead, which we’ll use
to store the block representing the new head
of the snake.

• set this.direction equal to this.nextDirection,
which updates the direction of the snake’s
movement to match the most recently
pressed arrow key.

Creating newHead when
this.nextDirection is "down"

Checking for Collisions and Adding the
Head

• call the checkCollision method to find out
whether the snake has collided with a wall or
with itself.

• The code for this method in a moment, but as
you might guess, this method will return true
if the snake has collided with something. If
that happens, the body of the if statement
calls the gameOver function to end the game
and print “Game Over” on the canvas.

• The return keyword that follows the call to
gameOver exits the move method early,
skipping any code that comes after it. We
reach the return keyword only if heckCollision
returns true, so if the snake hasn’t collided
with anything, we execute the rest of the
method.

• As long as the snake hasn’t collided with
something, we add the new head to the front
of the snake at by using unshift to add
newHead to the beginning of the segments
array. For more about how the unshift method
works on arrays, see “Adding Elements to an

Array”

Eating the Apple

• use the equal method to compare newHead
and apple.position. If the two blocks are in the
same location, the equal method will return
true, which means that the snake has eaten
the apple.

Eating the Apple CONTD…

• If the snake has eaten the apple, we increase the
score and then call move on the apple to move it
to a new location. If the snake has not eaten the
apple, we call pop on this.segments.

• This removes the snake’s tail while keeping the
snake the same size (since move already added a
segment to the snake’s head).

• When the snake eats an apple, it grows by one
segment because we add a segment to its head
without removing the tail.

Adding the checkCollision Method

• this.segments.pop();
• Each time we set a new location for the snake’s

head, we have to
• check for collisions. Collision detection, a very

common step in
• game mechanics, is often one of the more

complex aspects of game
• programming. Fortunately, it’s relatively

straightforward in our
• Snake game.

• We care about two types of collisions in our Snake
game: collisions

• with the wall and collisions with the snake itself. A wall

• collision happens if the snake hits a wall. The snake can
collide

• with itself if you turn the head so that it runs into the
body. At the

• start of the game, the snake is too short to collide with
itself, but

• after eating a few apples, it can.

checkCollision method

Snake.prototype.checkCollision = function (head) {

u var leftCollision = (head.col === 0);

var topCollision = (head.row === 0);

var rightCollision = (head.col === widthInBlocks - 1);

var bottomCollision = (head.row === heightInBlocks -
1);

v var wallCollision = leftCollision || topCollision ||

rightCollision || bottomCollision;

var selfCollision = false;

for (var i = 0; i < this.segments.length; i++) {

if (head.equal(this.segments[i])) {

y selfCollision = true;

}

}

z return wallCollision || selfCollision;

};

Checking for Wall Collisions

• we create the variable leftCollision and set it to
the value of

• head.col === 0. This variable will be true if the
snake collides with

• the left wall; that is, when it is in column 0.
Similarly, the variable

• topCollision in the next line checks the row of the
snake’s head to

• see if it has run into the top wall.

• After that, we check for a collision with the right wall by
• checking whether the column value of the head is equal to
• widthInBlocks - 1. Since widthInBlocks is set to 40, this

checks
• whether the head is in column 39, which corresponds to

the right
• wall, as you can see back in Figure 17-1. Then we do the

same
• thing for bottomCollision, checking whether the head’s row

property
• is equal to heightInBlocks - 1.

• At v, we determine whether the snake has
collided with a wall

• by checking to see if leftCollision or
topCollision or rightCollision

• or bottomCollision is true, using the || (or)
operator. We save the

• Boolean result in the variable wallCollision.

Checking for Self-Collisions

• To determine whether the snake has collided with
itself, we create

• a variable at w called selfCollision and initially set
it to false. Then

• at x we use a for loop to loop through all the
segments of the snake

• to determine whether the new head is in the
same place as any

• segment, using head.equal(this.segments[i]).

• The head and all of the other segments are
blocks, so we can use the equal method that we
defined for block objects to see whether they are
in the same place.

• If we find that any of the snake’s segments are in
the same place as the new head, we know that
the snake has collided with itself, and we set
selfCollision to true (at y). Finally, at z, we return
wallCollision || selfCollision, which will be true if
the snake has collided with either the wall or
itself.

Setting the Snake’s Direction with
the Keyboard

• write the code that lets the player set the
snake’s direction using the keyboard. We’ll
add a keydown event handler to detect when
an arrow key has been pressed, and we’ll set
the snake’s direction to match that key.

Adding the keydown Event Handler

var directions = {

37: "left",

38: "up",

39: "right",

40: "down"

};

keyboard events

$("body").keydown(function (event) {

var newDirection = directions[event.keyCode];

if (newDirection !== undefined) {

snake.setDirection(newDirection);

}

});

• At u we create an object to convert the arrow keycodes into
• strings indicating the direction they represent (this object is
• quite similar to the keyActions object we used in “Reacting

to the
• Keyboard” on page 244). At v we attach an event handler to

the
• keydown event on the body element. This handler will be

called when
• the userpresses a key (as long as they’ve clicked inside the

web
• page first).

• This handler first converts the event’s keycode
into a direction

• string, and then it saves the string in the
variable newDirection. If

• the keycode is not 37, 38, 39, or 40 (the
keycodes for the arrow keys

• we care about), directions[event.keyCode] will
be undefined.

• At w we check to see if newDirection is not equal
to undefined.

• If it’s not undefined, we call the setDirection
method on the snake,

• passing the newDirection string. (Because there is
no else case in

• this if statement, if newDirection is undefined,
then we just ignore

• the keypress.)

Adding the setDirection Method

• The setDirection method takes the new
direction from the keyboard

• handler we just looked at and uses it to
update the snake’s

• direction. This method also prevents the
player from making

• turns that would have the snake immediately
run into itself.

• For
• example, if the snake is moving right, and then it suddenly

turns
• left without moving up or down to get out of its own way, it

will
• collide with itself. We’ll call these illegal turns because we

do not
• want to allow the player to make them. For example, Figure

17-6
• shows the valid directions and the one illegal direction

when the
• snake is moving right.

• The setDirection method checks whether the
player is trying

• to make an illegal turn. If they are, the method
uses return to end

• early; otherwise, it updates the nextDirection
property on the snake

• object.

code for the setDirection method

Snake.prototype.setDirection = function (newDirection) {

u if (this.direction === "up" && newDirection === "down") {

return;

} else if (this.direction === "right" && newDirection === "left") {

return;

} else if (this.direction === "down" && newDirection === "up") {

return;

}

else if (this.direction === "left" && newDirection
=== "right") {

return;

}

this.nextDirection = newDirection;

};

• The if...else statement at u has four parts to deal
with the

• four illegal turns we want to prevent. The first
part says that

• if the snake is moving up (this.direction is "up")
and the player

• presses the down arrow (newDirection is
"down"), we should exit the

• method early with return.

• The other parts of the statement deal
• with the other illegal turns in the same way.
• The setDirection method will reach the final line

only if
• newDirection is a valid new direction; otherwise,

one of the return
• statements will stop the method.
• If newDirection is allowed, we set it as the snake’s

nextDirection
• property,

Creating the Apple

• the apple as an object with three
components:

• a position property, which holds the apple’s
position as a

• block object; a draw method, which we’ll use
to draw the apple; and

• a move method, which we’ll use to give the
apple a new position once

• it’s been eaten by the snake.

Writing the Apple Constructor

• The constructor simply sets the apple’s
position property to a new block object.

var Apple = function () {

this.position = new Block(10, 10);

};

• This creates a new block object in column 10,
row 10, and

• assigns it to the apple’s position property.
We’ll use this constructor

• to create an apple object at the beginning of
the game.

Drawing the Apple

• Apple.prototype.draw = function () {

• this.position.drawCircle("LimeGreen");

• };

• The apple’s draw method is very simple, as all the
hard work is

• done by the drawCircle method (created in
“Adding the drawCircle

• Method” on page 270). To draw the apple, we
simply call the

• drawCircle method on the apple’s position
property, passing the

• color "LimeGreen" to tell it to draw a green circle
in the given block.

• var apple = new Apple();

• apple.draw();

Moving the Apple

• The move method moves the apple to a
random new position within

• the game area (that is, any block on the
canvas other than the

• border). We’ll call this method whenever the
snake eats the apple

• so that the apple reappears in a new location.

Apple.prototype.move = function () {

var randomCol = Math.floor(Math.random() *
(widthInBlocks - 2)) + 1;

var randomRow = Math.floor(Math.random() *
(heightInBlocks - 2)) + 1;

this.position = new Block(randomCol,
randomRow);

};

• we create the variables randomCol and
randomRow. These

• variables will be set to a random column and
row value within the

• playable area. As you saw in Figure 17-1, the
columns and rows for

• the playable area range from 1 to 38, so we
need to pick two random

• numbers in that range.

• To generate these random numbers, we can
call Math.floor

• (Math.random() * 38), which gives us a
random number from 0 to 37,

• and then add 1 to the result to get a number
between 1 and 38

• (for more about how Math.floor and
Math.random work,

• This is exactly what we do at u to create our
random column

• value, but instead of writing 38, we write
(widthInBlocks - 2). This

• means that if we later change the size of the
game, we won’t also

• have to change this code. We do the same thing
to get a random

• row value, using Math.floor(Math.random() *
(heightInBlocks - 2)) + 1.

• Finally, at v we create a new block object with
our random

• column and row values and save this block in
this.position. This

• means that the position of the apple will be
updated to a new random

• location somewhere within the playing area.

test out the move method

• var apple = new Apple();

• apple.move();

• apple.draw();

