

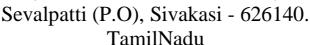
P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai)
(An ISO 9001 : 2008 Certified Institution)

Sevalpatti (P.O), Sivakasi - 626140.

Sevalpatti (P.O), Sivakasi - 626140. TamilNadu

DEPARTMENT OF MECHANICAL ENGINEERING


161ME58 DYNAMICS LABORATORY MANUAL

B.E. Mechanical Engineering III Year / V Semester (2019-2020)

P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai)
(An ISO 9001 : 2008 Certified Institution)

DEPARTMENT OF MECHANICAL ENGINEERING

161ME58

DYNAMICS LABORATORY MANUAL

B.E. Mechanical Engineering

III Year / V Semester

(2019-2020)

Rev

: 02

June

: 2019

Prepared By

Dr. A. Muthiah, Professor/Mech - -

Mr. C. Kanagaraj, Assistant Professor/Mech

Approved By

HOD/Mech

Head Of the Department
Department of Mechanical Engineering
P.S.R. Engineering College

Sevalpatti, Sivakasi - 626 140

P.S.R. Engineering College

Vision & Mission Statement

Vision

 To contribute to the society through excellence in technical education with societal values and thus a valuable resource for industry and the humanity

Mission

- To create an ambience for quality learning experience by providing sustained care and facilities
- To offer higher level training encompassing both theory and practices with human and social values
- To provide knowledge based services and professional skills to adapt tomorrow's technology and embedded global changes

Department of Mechanical Engineering

Vision & Mission Statement

Vision

 To provide broad-based education and training in mechanical engineering and its applications to enable the graduates to meet the demands in a rapidly changing needs in industry, academia and society

Mission

- To impart high quality technical education and training that encompasses both theory and practices with human and social values
- To equip the students to face tomorrows technology embedded global changes
- To create, explore, and develop innovations in mechanical engineering research

Department of Mechanical Engineering Programme Specific Outcomes

- PSO 1 Apply the concepts of mathematics and science in mechanical systems
- PSO 2 Design and analyze components and systems for mechanical engineering applications
- PSO 3 Synthesis data and technical concepts for application to mechanical engineering software
- PSO 4 Apply manufacturing and management practices in industries

Programme Outcomes of Mechanical Engineering

- Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem Analysis: Identify, formulate, review research literature, and analyze complex
 engineering problems reaching substantiated conclusions using first principles of mathematics,
 natural sciences, and engineering sciences.
- Design/ Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct Investigations of Complex Problems: Use research-based knowledge and research
 methods including design of experiments, analysis and interpretation of data, and synthesis of the
 information to provide valid conclusions.
- Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern
 engineering and IT tools including prediction and modeling to complex engineering activities with
 an understanding of the limitations.
- The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
 of the engineering practice.
- Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Lifelong learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai) (An ISO 9001 : 2008 Certified Institution)

DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS

161ME58 DYNAMICS LABORATORY

Programme: B.E. Mechanical Engineering Sem: 5 Category: PC

Aim: To educate the students to apply the kinetic solutions to various experiments

Course Outcomes:

The students will be able to

CO1. Know the functions of kinematic links and its mechanisms

CO2. Interpret the fundamentals of the natural frequency of free vibration of fixed beam

CO3. Find the gyroscopic effect

CO4. Determine the basic concepts of governor apparatus

CO5. Identify the different cam profile mechanisms

CO6. Enumerate the critical speed of shaft

LIST OF EXPERIMENTS

- 1. Study of velocity ratios of simple, compound, Epicyclic and differential gear trains.
- 2. Study of kinematics of Four Bar, Slider Crank, Crank Rocker, Double crank, Double rocker, Oscillating cylinder Mechanisms.
- 3. Determination of Mass moment of inertia of Fly wheel and Axle system.
- 4. Determination of Mass Moment of Inertia of axisymmetric bodies using Turn Table apparatus.
- 5. Determination of Mass Moment of Inertia using bifilar suspension and compound pendulum.
- 6. Determination of gyroscopic effect and couple.
- 7. Determination of range sensitivity, effort etc., for Watts, Porter and Proell Governors.
- 8. Cam profile and Motion curve drawings
- 9. Determination of natural Frequency and verification of Laws of springs in Single degree of freedom Spring Mass System.
- 10. Determination of torsional natural frequency of single and Double Rotor systems.
- 11. Vibration of Equivalent Spring mass system.
- 12. Determination of critical speeds of shafts.
- 13. Balancing of rotating masses
- 14. Transverse vibration of Free-Free beam with and without concentrated masses.

Total Periods: 45

LIST OF EQUIPMENTS

S. NO	Description of Equipment	Quantity Required
1.	Cam Analyzer	1 No.
2.	Motorized Gyroscope	1 No.
3.	Governor Apparatus - Watt, Porter, Proell and Hartnell governors.	1 No.
4.	Whirling of Shaft Apparatus	1 No.
5.	Static and Dynamic Balancing Machine	1 No.
6.	Vibrating Table	1 No.
7.	Vibration Test Facilities Apparatus	1 No.
8.	Gear Model	1 No.
9.	Kinematic Models to Study Various Mechanisms	1 No.

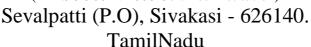
Evaluation Criteria & Marks	Contin	uous Assessment	End Semester					
	Model Observation & Exam Record Work		Attendance (10%)	Examination	Total Marks			
	7.5 15		2.5	75 [Min Pass: 37]	100 [Min Pass: 50]			
Attendance Mark	91% and above –	91% and above – 10, 86-90% - 8, 81-85% - 6, 76-80% - 4, 75% - 2						
Grade Criteria	O (90-100), A+ ((90-100), A+ (80-89), A (70-79),B+ (60-69), B (50-59), (<50)-RA						

Course Outcomes	Program Outcomes (POs)						Progr	am Spec		comes						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2		2					3			2		3	1	3
CO2	3	2		3					3			2		3	2	3
CO3	2	3		2					3			2		2		3
CO4	3	3		2					3			2		2		2
CO5	3	3		2					3			2		3		3
CO6	3	2		3					3			2		2		3

^{1:} Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

MODES OF DELIVERY

	Course Content							
Course Name with Code	Lab Manual	Viva Questions	PPT	Videos	Group Activity (Quiz, Case Studies and others)	Industrial Training/ Industrial visit	Mini Project	
161ME58- Dynamics Laboratory	√	√	√	√	√			


CONTENTS BEYOND THE SYLLABUS

Course Name with Code	Content			
161ME58	Natural frequency of free vibration			
Dynamics Laboratory	Vibration measurement			

P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai) (An ISO 9001: 2008 Certified Institution)

DEPARTMENT OF MECHANICAL ENGINEERING **COURSE PLAN**

Year/ Sem/Sec: III / V / I & II Subject Code: 161ME58 Subject Name: DYNAMICS LABORATORY Branch : MECHANICAL

Aim: To educate the students to apply the kinetic solutions to various experiments

a) To apply natural frequency of vibration Course **Objectives:**

b) To study the various gear parameters

c) To understand the concepts of vibration analysis

At the end of the course, the students will be able to **Course** 1. Know the functions of kinematic links and its mechanisms **Outcomes:**

2. Interpret the fundamentals of the natural frequency of free vibration of fixed beam

3. Find the gyroscopic effect

4. Determine the basic concepts of governor apparatus

5. Identify the different cam profile mechanisms

6. Enumerate the critical speed of shaft

S. No	Topics to be Covered	No of Periods	Cumulative Periods
1.	Fixed Beam Vibration With Central Point Load	2	2
2.	Fixed Beam Vibration With Eccentric Point Load	2	4
3.	Natural Frequency Of Free Transverse Vibration Of Cantilever Beam	3	7
4.	Turn Table Apparatus	2	9
5	Determination Of Spring Force By Using Watt's Governor	2	11
6.	Determination Of Sensitivity Effort For The Proell Governor	2	13
7.	Dynamic Analysis Of Cam Mechanism	3	16
8.	Bifilar Suspension	3	19
9.	Motorized Gyroscope	2	21
10.	Simply Supported Beam Vibration With Point Load	3	24
11.	Whirling Of Shaft	3	27
12.	Compound Pendulum	3	30
13.	Free Torsional Vibration Of Single And Two Rotor System	3	33
14.	Wheel And Axle System	3	33
15.	Static And Dynamic Balance Of Rotor	3	36
16.	Study Of Gear Parameters And Gear Trains	3	42
17.	Study Of Kinematics Of Various Mechanisms And Universal Joint	3	45
	TOTAL	45	

CONTENTS

	Name of the Experiments	Page
1.	FIXED BEAM VIBRATION WITH CENTRAL POINT LOAD	12
2.	FIXED BEAM VIBRATION WITH ECCENTRIC POINT LOAD	14
3.	NATURAL FREQUENCY OF FREE TRANSVERSE VIBRATION OF CANTILEVER BEAM	16
4.	TURN TABLE APPARATUS	18
5.	DETERMINATION OF SPRING FORCE BY USING WATT'S GOVERNOR	20
6.	DETERMINATION OF SENSITIVITY EFFORT FOR THE PROELL GOVERNOR	23
7.	DYNAMIC ANALYSIS OF CAM MECHANISM	25
8.	BIFILAR SUSPENSION	27
9.	MOTORISED GYROSCOPE	30
10.	SIMPLY SUPPORTED BEAM VIBRATION WITH POINT LOAD	33
11.	WHIRLING OF SHAFT	35
12.	COMPOUND PENDULUM	38
13.	FREE TORSIONAL VIBRATION OF SINGLE AND TWO ROTOR SYSTEM	40
14.	WHEEL AND AXLE SYSTEM	43
15.	STATIC AND DYNAMIC BALANCE OF ROTOR	46
16.	STUDY OF GEAR PARAMETERS AND GEAR TRAINS	49
17.	STUDY OF KINEMATICS OF VARIOUS MECHANISMS AND UNIVERSAL IOINT	53

S. No	Name of the Experiments	MARKS	SIGNATURE
1.			
2.			
3.			
4.			
5.			
6.			
7			
7.			
0			
8.			
0			
9.			
10			
10.			
11.			
11.			
12.			
12.			
13.			
13.			
14.			
- ''			
15.			
16.			
17.			

	Load in Kg		Deflection in	Frequency in	
Sl. No.		Loading	Unloading	Average	Hz

OBSERVATIONS:

Width of the beam b =----in mm

Depth of the beam d =

Length of the beam 1 =

Ex. No. : 1 FIXED BEAM VIBRATION WITH CENTRAL POINT LOAD

Date:

AIM:

To determine the natural frequency of free transverse vibration of fixed beam with central point load.

APPARATUS REQUIRED:

- Main frame made from channel about 1.2 m length.
- Trunnion Two brackets of trunnion bearing with slots to insert beam fitted at 1 m apart.
- Weights.

FORMULA TO BE USED:

Natural frequency () =

Where δ = deflection = m

Take $E = 2 \times 10^5 \text{ N/mm}^2$, $I = \dots$

PROCEDURE:

- Proper lubrication is ensured for bearings.
- Beam is fitted into both slots of trunnion bearings and is tightened.
- Weights are added on the load hanger, deflection and frequency are calculated and are tabulated.

GRAPH:

The graph is drawn by taking load in x-axis and deflection in y-axis.

RESULT:

Thus the natural frequency of free transverse vibration of fixed beam with central point load is determined and the graph is plotted.

- 1) Natural frequency by analytical method =
- 2) From graph =

	Load in Kg		Deflection in	Frequency in	
Sl. No.		Loading	Unloading	Average	Hz

OBSERVATIONS:

Width of the beam b =

Depth of the beam d =

Length of the beam 1 =

Distance from load to left support a

= Distance from load to right

support b =

Ex. No.: 2 FIXED BEAM VIBRATION WITH ECCENTRIC POINT LOAD

Date :

AIM:

To determine the natural frequency of free transverse vibration of fixed beam with Eccentric point load.

APPARATUS REQUIRED:

- Main frame made from channel about 1.2 m length.
- Trunnion Two brackets of trunnion bearing with slots to insert beam fitted at 1 m apart.
- Weights.

FORMULA TO BE USED:

Natural frequency () = Hz

Where δ = deflection = m

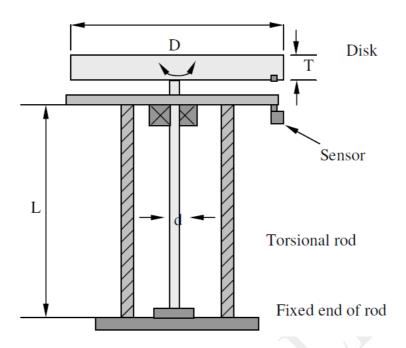
Take $E = 2 \times 10^5 \text{ N/mm}^2$, $I = \dots m^4$

PROCEDURE:

- Proper lubrication is ensured for bearings.
- Beam is fitted into both slots of trunnion bearings and is tightened.
- Weights are added on the load hanger, deflection and frequency are calculated and are tabulated.

GRAPH:

The graph is drawn by taking load in x-axis and deflection in y-axis.


RESULT:

Thus the natural frequency of free transverse vibration of fixed beam with eccentric point load is determined and the graph is plotted.

- 1) Natural frequency by analytical method =
- 2) From graph =

GI M	Applied	De		Frequency	
Sl. No.	Applied Weights (Kg)	Loading	Unloading	Average	(HZ)

Ex. No.: 3 NATURAL FREQUENCY OF FREE TRANSVERSE VIBRATION OF CANTILEVER BEAM Date : AIM: To determine the natural frequency of free transverse vibration of Cantilever beam. APPARATUS REQUIRED: • Cantilever beam with displacement measuring system. Set of weights. FORMULA TO BE USED: Natural Frequency = Where δ = deflection in m. PROCEDURE: • Power supply is switched on. Read mode is calibrated to zero by switching to read mode. Calibration mode is set to 10.00 by changing the switch to calibration mode. Ensure zero in the read mode by again switch to read mode. • Load is placed on the hanger in the steps of 0.5 kg and deflections are noted during loading and unloading positions and are tabulated. The frequency is calculated by using the above formula

OBSERVATIONS:

1.	Weights added on each side	W	=	kg
2.	Initial distance of total weight from axis	\mathbf{r}_1	=	cm
3.	Final distance of weight from axis	\mathbf{r}_2	=	cm
4.	Speed of disc motor	(N)	=	rpm
5.	Time for change in position of weights from r	1 to r2	=	sec

Ex. No. : 4 TURN TABLE APPARATUS

Date:

AIM:

To determine i) Angular velocity ii) Angular acceleration iii) Mass moment of inertia and iv) Centrifugal force using turn table apparatus. APPARATUS REQUIRED:

- Turn table apparatus experimental setup.
- Set of weights
- Stop watch

THEORY

Mass moment of inertia of machine member such as connecting rod, flywheel plays an important role for the evaluation of inertia force and consequent stress in various members of the machine. Moment of inertia of flywheel or other rotating member, contributes for kinetic energy stored and consequent fluctuation of speed due to variable input or loading condition. Certain machine members have complicated shape and theoretical determination of mass moment of inertia is tedious and time consuming. With the use of Turn Table apparatus we can find the moment of inertia of any object easily.

FORMULAS USED:

•	Initial velocity	V_1 =m/s
•	Final Velocity	$V_2 = \dots m/s$
•	Angular acceleration	a = m/
•	Centrifugal force	$f = \dots \dots N$
•	Mass moment of inertiakg-m ² Where D m, N = speed inrpm	I = m. $D_1 = 2 r_1 \dots m$., $D_2 = 2 r_2$
	_ speed mipm	

PROCEDURE:

- Initial setup is made by adjusting the weights to the original position and the distance is noted.
- Power supply is switched on.
- Then the speed is gradually increased by adjusting the knob.
- After sometime any one of the weights is moved to the extreme end of the rod.
- Stop watch is started to note the time taken.
- The other weight is also reached the extreme position of the rod.
- Stop watch is stopped and the readings ie., time, speed and the distance are noted.
- Speed is decreased to zero and power supply is switched off.

RESULT:

Thus the experiment on turn table apparatus was done.

i)	Initial velocity	=	m/s
ii)	Final Velocity	=	m/s
iii)	Angular acceleration	(a) =	m/s^2
iv)	Mass moment of inertia	(I) =	kgm ²
v)	Centrifugal force	(F) =	N
vi)	TABULATION:		

Sl. No.	Motor Speed(rpm)	Angular velocity (w) rad/s	Sleeve displacement (X) mm	Height (h) mm	$\alpha = \cos^{-1}$ (h/L) (\alpha) degrees	Radius of rotation (r) m	Force (F) kgf
						~ (°	
) }		

OBSERVATIONS:

Length of each link (L) = Initial height of governor (h_o) = Initial radius of rotation (r_o) = Weight of each ball assembly (w) =

Ex. No. : 5 **DETERMINATION OF SPRING FORCE BY USING WATT'S GOVERNOR**

Date :

AIM:

To determine the spring force by using watt's governor and to draw its characteristic curves.

APPARATUSREQUIRED:

- Watt's governor apparatus.
- Digital tachometer
- Steel rule.

FORMULASUSED:

- 1. Angular velocity () =rad/s.
- 2. Height of the governor $(h) = \dots mm$
- 3. $\alpha = \cos^{-1}$ degrees
- 4. Radius of rotation (γ) = 50 + L sin α m
- 5. Spring force (F) = r.....kgf

Where X = sleeve displacement in mm.

- = Initial height of governor in mm L= Length of each link in mm
- = Initial radius of rotation in mm W = weight of each ball in kgf.

PROCEDURE:

When the control unit is switched on and the speed control valve is slowly rotated it increases the governor speed until the center sleeve rises off the lower stop and aligns with first division on the graduated scale. The sleeve positions and speed are then recorded. Speed may be determined using Digital tachometer. The governor speed is increased in steps to give suitable sleeve movement and readings are repeated at each stage throughout the range of sleeve movement possible.

The result may be plotted as curves of speed against sleeve position. Further test are carried out changing the value of one variable at a time to produce a family of curves.

GRAPHS:

The following graphs are plotted.

- Radius of rotation vs force
- Displacement vs speed.

•

RESULT: Thus the spring force using watt's governor is determined and its characteristics curves are plotted.

Sl. No.	Sleeve displacement X (mm)	Speed N (RPM)	Radius of Rotation r (cm)
			<i>></i>

Ex. No. : 6 **DETERMINATION OF SENSITIVITY EFFORT FOR THE PROELL GOVERNOR**

Date:

AIM

To determine the sensitiveness, effort and various characteristics of the Watt, Porter, Proell and Hartnell Governors

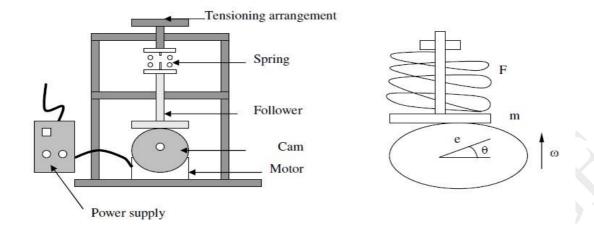
DESCRIPTION

In the Proell Governor, with the use of fly weights (Forming full ball) the governor becomes highly sensitive. Under these conditions large sleeve displacement is observed for very small change in speed.

In order to make it stable, it is necessary to carry out the experiments by using half ball fly weight on each side.

DIMENSIONS

(1) Length of each link 'L' = mm (2) Initial height of governor h_0 = mm (3) Initial radius of rotation r_0 = mm (4) Weight on sleeve. = kg (5) Weight of each ball. = gm (6) Extension of length BG. = mm


Go on increasing the speed gradually and take the readings of speed of rotation 'N' and corresponding sleeve displace- X complete the following table

Draw the following Graphs

- 1. Speed Vs Sleeve displacement 'X'
- 2. Keeping static position draw the graph of sleeve displacement vs radius of rotation of balls by actual measurement.
- 3. Plot the graph of sleeve displacement vs speed when the governor is rotating.

RESULT

Thus the sensitivity and effort of governors of various types are found and the related graphs are drawn.

Sl. No.	Angle (degree)	Distance (mm)	Displacement from Dial Gauge (mm)
SI. NO.	Aligie (degree)	Distance (IIIII)	Dial Gauge (mm)

Ex. No.: 7 DYNAMIC ANALYSIS OF CAM MECHANISM

Date:

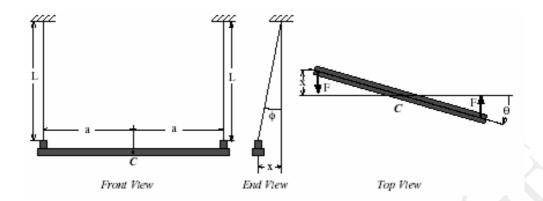
AIM:

To draw the follower displacement diagram for given cam profile.

APPARATUSREQUIRED:

- Cam analysis machines with cam.
- Follower.
- Set of weights
- Controller bar
- Dial gauge

THEORY


A reciprocating or oscillating cam is subjected to acceleration or angular acceleration and retardation. During retardation, the contact between cam and follower is maintained by spring force. The force required for retardation, $F = m \times f$ where, m is the mass of the follower and f is the retardation. If F is less than $m \times f$, then the follower will not follow the cam profile and gap will be created. This phenomenon is called cam jump. The retardation f depends on square of angular of cam. In other words, as angular speed is increased, at one particular speed cam jump will occur, corresponding to a spring setting. The minimum speed at which cam jump occurs can be determined.

PROCEDURE:

- Dial gauge is set to zero by rotating the hand wheel attached to the cam.
- Reading of the displacement scale is noted as zero.
- The hand wheel is rotated in steps of 20° for one complete revolution.
- Readings are tabulated ie., displacement from dial gauge, distance from linear scale are noted.
- The graph is plotted by taking crank angle in x-axis and distance in y-axis and the follower displacement diagram is drawn.

RESULT:

Thus the dynamic analysis of cam is observed and the follower displacement diagram is drawn.

S.No.	H (cm)	Time taken for 10 oscillations (Seconds)	Frequency of oscillation (f_n)	Radius of Gyration(K)
5.140.	II (clii)	oscillations (Seconds)	oscillation (f_n)	Gyration(K)

Ex. No.: 8 BIFILAR SUSPENSION

Date :

AIM:

To determine the radius of gyration using bifilar suspension.

APPARATUS REQUIRED:

Bifilar suspension arrangement.

THEORY

A uniform rectangular bar is suspended by strong cord from the pin vices of the sub frame. It is drilled at regular intervals along its length to accept two pegged masses. By measuring the periodic time of torsional vibration for various lengths of suspension, values for the radius of gyration of the bar assembly can be found and compared with the theoretical value.

PROCEDURE:

- The bifilar suspension strings are attached in the chucks mounted on the top of the beam present in the frame.
- The strings are adjusted to equal lengths.
- Required weights are fixed over the beam of bifilar.
- System is oscillated about the vertical axis passing through the center of beam.
- Time required for 'n' oscillations is noted. Say n = 10.
- The procedure is repeated by changing the length of the suspension.

FORMULA TO BE USED:

For Bifilar suspension

=

```
Where = frequency of oscillations, CPS
b = Distance of string from center of gravity = 28
```

cm. L = Length of strings in m = h

K = Radius of

gyration K =

=

= sec

RESULT:

Thus the radius of gyration of a body using bifilar suspension is determined.

$$F_n = \frac{1}{2\pi} \times \frac{b}{k} \sqrt{\frac{g}{l}}$$

 f_n

$$\frac{\frac{1}{2\pi} \times b \times f_n \times \sqrt{\frac{g}{l}}}{f_n}$$

$$f_n = \frac{1}{t_{expt}}$$

 $t_{expt} \hspace{0.2cm} \begin{array}{c} \frac{\text{time taken for 10 oscillaitons}}{10} \end{array}$

		Weight	Added	Time for	Applied	
Sl. No.	Rotor speed in RPM	KG	N	45 ^O Precession in seconds	torque in N-m	Gyroscopic couple in N-m

OBSERVATION:

Radius of the disc (r) = Mass of the disc (m)Thickness = Distance of weight from center of disc (x) <math>=

Ex. No.: 9 MOTORISED GYROSCOPE

Date :

AIM:

To determine the gyroscopic couple applied to the spinning motor with gyroscope.

APPARATUS REQUIRED:

- Stop watch.
- Dead weight.
- Measuring tape.
- Digital Tachometer.

THEORY

Gyroscope is a body, which, while spinning about an axis, is free to rotate in either directions under the action of external forces. Schematic arrangement of Gyroscope is as shown in the Figure. The motor is coupled to the disc rotor, which is balanced. The disc shaft rotates about 'X-X' axis in two-ball bearing housed in the frame No.1. This frame can swing about 'Y-Y axis in bearings provided in the yoke type frame No.2. While in a steady position, Frame No.1 is balanced. The yoke frame is free to rotate about vertical axis 'Z-Z'. Thus freedom of rotation about three perpendicular axis is given to the rotor

A) AXIS OF SPIN

If a body is revolving about an axis is known as axis of spin. (XX is the axis of spin).

B) PRECESSION

Precession means the rotation about the third axis OZ which is perpendicular to both the axis of spin 'XX' and that of couple 'YY'.

C) AXIS OF PRECESSION

The third axis OZ is perpendicular to both the axis of spin 'XX' and that of couple 'YY' is known as axis of precession.

D) GYROSCOPIC EFFECT

To a body, revolving (or spinning) about an axis say 'OX'. If a couple represented by a vector OY perpendicular to 'OX' is applied, the body tries to precess about an axis 'OZ' which is perpendicular both to 'OX' and 'OY'. Thus the plane of spin, plane of precession and plane of gyroscopic couple are mutually perpendicular. The above combined effect is known as precession or gyroscopic effect

FORMULA TO BE USED:

1. Moment of inertia I = m $Kg - m^2$

2. Angular velocity of spin $\omega = \dots$ rad/s.

3. Angular velocity of precession =rad/s

4. Gyroscopic couple $c = I \omega$ N-m.

5. Torque applied T = W

.....N-m Where x = distance of weight from

center of disc.

PROCEDURE:

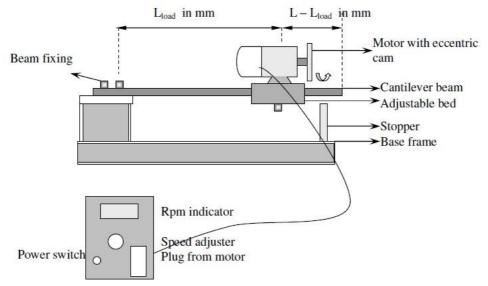
 The rotor is checked for vertical position and the balance weight is adjusted if required.

• The time is to be kept at zero position and the supply is switched on.

• The rotor is started by applying the voltage of ground no volts and then reduced. The speed of the rotor is to be adjusted as required.

• The rotor speed is to be noted using digital tachometer. The speed is to be noted when it becomes steady.

• At the same instant the required weight is to be added on weight pan.


• The time for 10 precession is noted down by using stop watch.

PRECAUTIONS:

- Check out the fastening to the tight before start.
- Check the balance of the rotor before start.
- Lubricate the bearings periodically.
- Keep the base over a level position.

RESULT:

Thus the motorized gyroscopic couple applied to the spinning motor with gyroscope has been determined.

TABULATION Control panel

Sl.	Loa	d in	Theoretical Calculation (δ)	Exper	imental Defle	ection	Frequen	cy in Hz
No.	Kg	N		Loading (mm)	Un Loading (mm)	Average (m)	Experimental	Experimental

OBSERVATIONS:

Width of the beam b =

Depth of the beam d =

Length of the beam 1 =

Ex. No.: 10 SIMPLY SUPPORTED BEAM VIBRATION WITH POINT LOAD

Date :

AIM:

To determine the natural frequency of free transverse vibration of Simply Supported beam with point load.

APPARATUS REQUIRED:

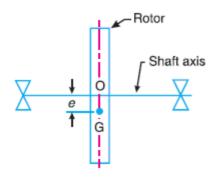
- Main frame made from channel about 1.2 m length.
- Trunnion A bracket of trunnion bearing with slots to insert beam.
- Weights.

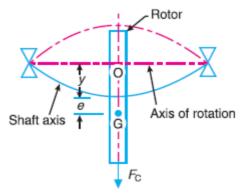
FORMULA TO BE USED:

```
Natural frequency ( ) = ...... 
 Hz Where \delta = deflection = m 
 Take E = 2 x 10<sup>5</sup> N/mm<sup>2</sup>, I = .... m<sup>4</sup>
```

PROCEDURE:

- Proper lubrication is ensured for bearings.
- Beam is fitted into both slots of trunnion bearings and is tightened.
- Weights are added on the load hanger, deflection and frequency are calculated and are tabulated.


GRAPH:


The graph is drawn by taking load in x-axis and deflection in y-axis.

RESULT:

Thus the natural frequency of free transverse vibration of Simply Supported beam with point load determined and the graph is plotted.

- 1) Natural frequency by analytical method =
- 2) From graph =

(a) When shaft is stationary.

(b) When shaft is rotating.

TABULATION:

GL N	Length of shaft between Centre	Diameter of shaft	Calculated speed (Critical)	Observed speed (Critical)
Sl. No.	L	d	rpm	rpm
	mm	mm		
			N _C	No

Ex. No.: 11 WHIRLING OF SHAFT

Date:

AIM

To determine the Critical speed of the shaft

Description

The apparatus consists of a frame to support its driving motor and fixing and sliding blocks, etc. A special design to provided to clear out the effects of bearings of motor spindle from those of testing shafts. The special design features of this equipment are as follows.

APPARATUS

- 1. Tachometer
- 2. Kinematic coupling: This coupling is specifically designed to eliminate the effect of motor spindle bearings on those of the rotating shafts.
- 3. Ball bearing fixing ends: (m and n). These ends fix the shaft while it rotates. The shaft can be replaced within a short time with the help of this unit. The fixing ends provide change of the fixing condition of the rotating shaft as per the requirement.
- 4. End fixing arrangement. At motor end as well as at tail end different end conditions can be developed by making use of different fixing blocks.
- 5. Supported end condition Make of end block with single self-aligning bearing.

Fixed end condition - Make use of end block with double bearing:

The guards D1 and D2 can be fixed at any position on the supporting bar frame which fits on side supports F. Rotating shafts are to be fitted in blocks in A and B stands. *Speed control of drying motor*

The driving motor is 250V, AC/DC, 1/6 HP, 6000 rpm 50 c/s motor and speed control unit is dimmer stat of 240 V, 2A, 50 c/s.

Measurement of speed

To measure the speed of the rotating shaft a simple tachometer may be used by removing the bearing cover on the opposite side of the shaft extension of the motor. *Whirling of elastic shafts*

If, L = Length of shaft in meter E = Young's modulus
$$290x10^9$$
 N/m² I = Moment of inertia of the shaft m4 σ = Density of the material shaft (kg/m³)

Then the frequency of vibration for the various modes is given by the equation

$$f = k$$
 $E I$ σL^4

The various values for k are given below

End condition	Value of K for 1 st mode	
Supported, supported	1.57	
Fixed, supported	3.95, 3.8	
Fixed, fixed	3.56	

Shaft Dia 'm'	I m4	$\sigma = Kg/m^3$
0.47×10^{-2}	25.39 x 10 ⁻¹²	0.15
0.64 x 10 ⁻²	79.91 x 10 ⁻¹²	0.28
0.79 x 10 ⁻²	194.78 x 10 ⁻¹²	0.424

PRECAUTION

If the revolutions of an unloaded shaft are gradually increased it will be found that a certain speed will be reached at which violent instability will occur. The shaft deflecting will become so large, the shaft will be fractured, but if this speed is quickly run through the shaft will become straight again and run true until at another higher speed the same phenomenon will occur, the deflection now however, being in a double bow and so on. Such are called critical speeds of whirling.

It is advisable to increase the speed of shaft rapidly and pass through the critical speeds first rather than observing the 1st critical speed which increases the speed of rotation slowly. In this process there is a possibility that the amplitude of vibration will increase suddenly bringing the failure of the shaft. If however, the shaft is taken to maximum first and then slowly reduced. (Thus not allowing time to build-up the amplitude of vibration at resonance) higher ends will be observed first and the corresponding speed noted and then by reducing the speed further the next mode of tower frequency can be observed without any danger of rise in amplitude as the speed is being decreased and the internal forces are smaller in comparison with the bending spring forces hence possibility of build-up of dangerous amplitudes at response or near response is avoided.

Thus it can be seen that it is destructive test of shafts and it is observed that the elastic behavior of the shaft material changes a little after testing it for a few times and it is advisable therefore, to user fresh shaft samples after wards. Fix the apparatus firmly on the suitable foundation.

RESULT: The whirling speed of the shaft for various conditions are thus noted.

TABULATION:

Sl. No.	Distance of C.G	Time for 10 Oscillations in	Natural Frequency of	Time	Period
51. 110.	h (mm)	(sec)	Oscillation in	Theoretical	Experimental
	` ,	` '	Hz	(sec)	(sec)

Mass of the Rod (m) = kg Length of the Rod (L) = mm

Date :

AIM:

Determination of mass moment of inertia of a given compound pendulum.

PROCEDURE:

Fix the brass bush in any of the holes of pendulum, and mount the pendulum over the suspension shaft, fitted at top beam of frame. Oscillate the pendulum and measure the time required for 10 oscillations. Repeat the procedure by putting the bush in different holes.

CALCULATIONS:

m = Mass of compound pendulum

h = Distance of c.g. from axis of suspension.

K = Radius of gyration about an axis through c.g.

Perpendicular to plane of oscillation.

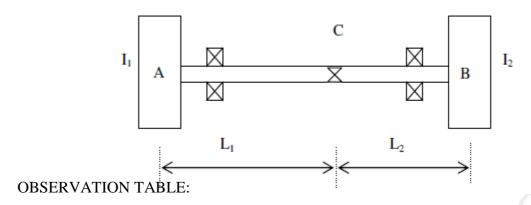
Natural frequency of oscillation:

$$f_n = \frac{1}{2\pi} \sqrt{\frac{g \times h}{k^2 + h^2}} = \frac{1}{t}$$

$$t = 2\pi$$
Practically, $t = \frac{1}{2\pi} \sqrt{\frac{k^2 + h^2}{g \times h}}$

time for 10 oscillations

Therefore
$$K = {}^{10}$$


And equivalent languages
$$\left(\left(\frac{t}{h}\right)^2 \times g \times h\right) + h^2$$

pendulum
$$I = b^2 + b^2$$

The equivalent length can be verified by setting the simple pendulum to 1.

Result

Thus the mass moment of inertia of a given compound pendulum has been determined

S.No.	Rotor Locked	No. of Oscillations	Time	(Hz)	(Kgm ²)
				ω_n	I _A

Mass	I _A	I _B	No. Oscillations	Time Required for n OSC	$_{\omega_{n}}^{(\mathrm{EXPT})}$	(THEO) ω_n
3						

Ex. No. : 13 FREE TORSIONAL VIBRATION OF SINGLE AND TWO ROTOR SYSTEM

Date:

AIM:

To study the free vibrations of single rotor system and determine the natural frequency of vibration theoretically and experimentally.

DISCRIPTION OF SET UP:

Two discs having different mass moment of inertia are clamped one at each end of shaft by means of collect and chucks. Mass moment of inertia of any disc can be changed by attaching the cross lever weights. Both discs are free too oscillate in the ball bearings. This provides negligible damping during experiment.

PROCEDURE:

- 1. Initially determine experimentally the mass moment of inertia of the single rotors by conducting a free vibration test after fixing one the rotors.
- 2. Fix two discs to the shaft and fit the shaft in the bearings.
- 3. Deflect the discs in opposite direction by hand and release.
- 4. Note down time required for particular number of oscillations.
- 5. Fit the cross arm to one of the discs say B and again note down time.
- 6. Repeat the procedure with different equal masses attached to the ends of cross arm and note down the time.

SPECIMEN CALCULATIONS:

1) Find of shaft as follows =

Where G = modulus of rigidity of shaft = 0.8 x 10^6 k/gq.cm

```
= \pi/32 \ d4
= M.I. \ of \ disc, \ A
= M.I. \ of \ disc, \ B \ (With \ weights \ on \ cross \ arm)
d = shaft \ diameter
L = Length \ of \ the \ shaft
= w/g * D^2/8
= w/g*D^2/8 + 2
```

D²/8 (Neglecting

effect of cross arm)

```
Where W1 = Wt. attached to the cross arm R = Radius of Fixation of wt. of the arm
```

=theoretical = Number of oscillations / time for n oscillations = c/sec.

RESULT: Thus the study of free vibrations of single rotor system has been determined and the natural frequency of vibration was compared with theoretical and experimental results.

TABULATION:

						I	
Sl. No.	W	h	n	t	N	Experimental	Theoretical

OBSERVATIONS:

Diameter of shaft, d= Diameter of flywheel D=

Date :

AIM:

To determine the moment of inertia of a flywheel.

APPARATUS REQUIRED:

Flywheels, cord, weights, stop watch, meter rod.

THEORY:

The flywheel as shown in figure is a solid disc made of steel. It is mounted on a horizontal shaft supported on two bearings. The shaft also serves as an axis about which the wheel rotates. A cord is attached to the shaft, at the other end of which weights can be hung. The whole structure is supported by the wall bracket. The polar moment of inertia of the flywheel method. The cord is wound over the shaft. Then the flywheel is released so that it starts rotating under the action of the weights attached to the cord. After the weights have moved a distance h, during time t, the cord detaches itself from the shaft. Let n be the number of revolutions made by the flywheel in time t. Let N be the total number of revolutions made by the flywheel to come to rest form the start.

PROCEDURE:

- 1. Given some turns of the cord on the shaft and hold the flywheel.
- 2. Hang some weight on the other end of the cord.
- 3. Release the flywheel so that the weight starts moving down. Simultaneously press knob of the stop watch.
- 4. Note the time's' taken by the weight 'W' to travel the height 'h' when the cord detaches from the shaft.
- 5. Also count the number of revolutions 'n' made by the flywheel in time't'.
- 6. Further count the number of revolutions till the flywheel comes to rest. Let the total revolutions made by the flywheel from start to stop be 'N'.
- 7. Increase the weight W and repeat the experiment.
- 8. Measure the diameter of shaft and flywheel.

PRECAUTIONS:

- 1. The bearings should be lubricated before performing the experiment.
- 2. Stop watch should be started simultaneously with the release of the weight.
- 3. Distance traveled by weight should be measured accurately.

SOURCES OF ERROR:

- 1. Error in measuring time by stop watch.
- 2. Error in counting exact number of revolution up to the detachment of the cord

RESULT:

Thus the moment of inertia of a flywheel was determined.

TABULATION:

Sl. No.	Plane	Block	Distance from Reference plane L (cm)	Centrifugal force in terms of balls	Couple with respect to L

Ex. No.: 15 STATIC AND DYNAMIC BALANCE OF ROTOR

Date :

AIM:

To study the counter balance weight in rotating mass system and to perform static and dynamic balancing on the given rotor mass system.

APPARTUS REQUIRED:

Steel ball, steel rule, Weighing scale, Allen key.

DESCRIPTION:

The apparatus basically consists of a shaft mounted frame and cylinder with the circular protector scale allows the exact longitudinal angular position of each adjustable to back to be determined.

For dynamic balance of the rotating main frame suspended from support frame by two short lines such that the main frame and supporting frame are in the same plane.

PROCEDURE:

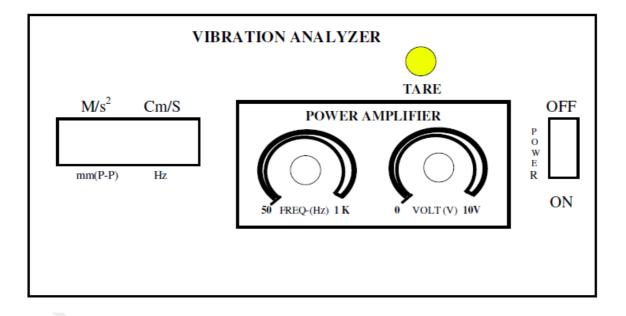
STATIC BALANCING:

- The belt was removed
- Combined hook gored to screwed pulley
- The chord ends of the paired screw were attached to that shaft material in a downward direction.
- The steel balls were put in pairs until the block becomes horizontal.
- The number of balls gives the value of centrifugal force in terms of number of balls for the block. Repeat same procedure with another block.

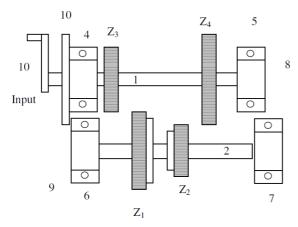
DYNAMIC BALANCING:

- The machine was left and the couple blocks were kept ready for the experiment.
- The angular position of the rotating blocks were determined.

ASSUMPTIONS:

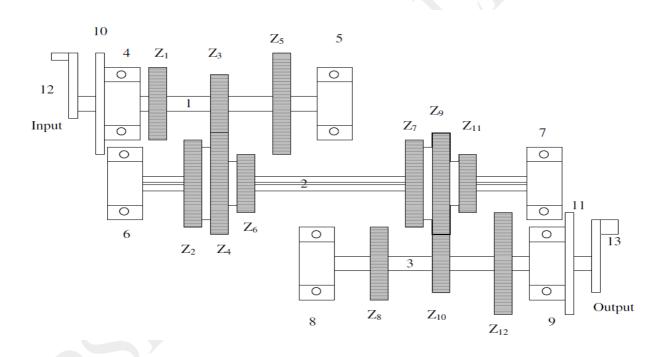

- The block is assumed to be horizontal
- The four blocks are uniformly spaced at 5cm along the length of the shaft.

RESULT


Thus the counter balance weight in rotating mass system and the performance of static and dynamic balancing on the given rotor mass system was studied.

SIGNAL GENERATOR 50Hz -1 Kz. VIBRATION METER CONTROL UNIT

BLOCK DIAGRAM FIG-1


SIMPLE GEAR TRAIN

COMPOUND GEAR TRAIN

Input shaft.
 Output shaft.
 Plumber block.
 protractor.
 handle.

 $Z_1, Z_2 \qquad \quad \text{- Input shaft gears} \\ Z_3, Z_4 \qquad \quad \text{- Output shaft gears}$

1 - Input shaft.

2 - Intermediate shaft.

Output shaft.

4 - 9 - Plumber block.

10, 11 - Angle protector.

12,13 - hand wheels.

 Z_1, Z_3, Z_5 - Input shaft gears

Z₂, Z₄, Z₆ - Intermediate shaft gears

 Z_8, Z_{10}, Z_{12} - Output shaft gears

Ex. No.: 16 STUDY OF GEAR PARAMETERS AND GEAR TRAINS

Date : **AIM**

To study the gear parameters and velocity ratios for various gear trains

APPARATUS REQUIRED

1. Various gear models

THEORY

Spur, Helical, Bevel and worm and worm gear models

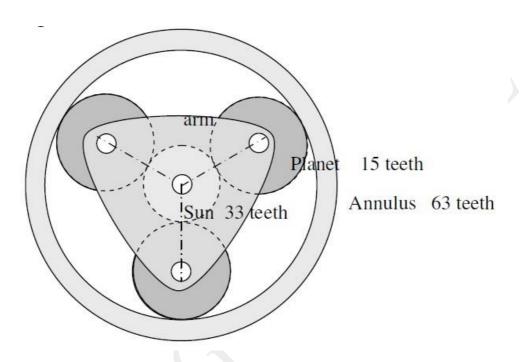
Each and every gear models are mounted in separate wooden boards. The provisions are made for measurement of angle turned by pinion and gear.

Experiments

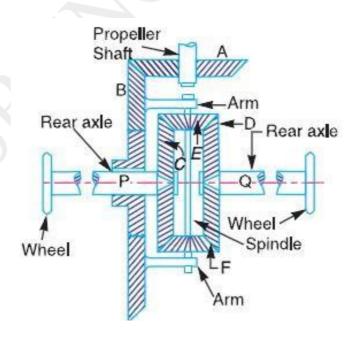
- 1. Rotate the pinion shaft find angle of rotation of output shaft for one revolution of input shaft.
- 2. Measure number of teeth and find speed ratio
- 3. Compare with practical value.

Simple gear train

In simple speed gear box, only three different output speeds can be obtained by change gears. These types of gear boxes are widely used in machine tools, automobiles and number of machines, where speed change is required. This speed will be in geometric progressive inversely proportional to speed ratio for constant power transmission. This also can be verified by this setup.


Experimental setup:

The gear train arrangement consists of Two shafts. In shaft 1 (input), three fixed gears are provided. In output shaft (No 2) sliding gear are provided for selectively engaging with gears in 1 & 2. All shafts are mounted on ball bearings. All items are mounted on a single base. The speed change can be achieved by manual shifting of sliding gears.


Experimental procedure

- 1. Count the number of teeth in each gear.
- Calculate module of gears, Verify that it is same for all the gears. Module = outer diameter of any gear teeth/(number of teeth + 2)
- 3. Measure center distance between the shafts. Eg., Center distance of shaft1- $2 = ((40 \times m) + (20 \times m))/2$.
- 4. Estimate gear ratio (output rev/input rev) in each combination 1-3, 2-4, etc.,
- 5. Set different position of 1/3 and 2/4, give and revolution to output shaft andmeasure output revolutions. Estimate gear ratio and verify with calculated values.

EPICYCLIC GEAR TRAIN

DIFFERENTIAL GEAR

Compound Gear Train

In multi speed gear box, different output speeds can be obtained by change gears. With two numbers of 3 positions sliding gear in intermediate shaft $3 \times 3 = 9$ different speeds can be obtained in the output shaft for a constant input shaft speed. These types of gear boxes are widely used in machine tools, automobiles and number of machines, where speed change is required. This speed will be in geometric progressive inversely proportional to speed ratio for constant power transmission. This also can be verified by this setup Experimental setup

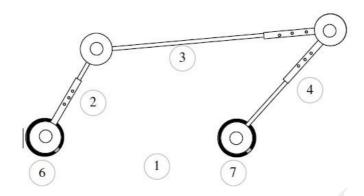
The gear train arrangement consists of three shafts. In shaft 1 & 3 (input and output), three fixed gears are provided. In intermediate shaft (No 2) two sliding gears are provided for selectively engaging

with gears in 1 & 3. All shafts are mounted on ball bearings. Input and output shafts are provided with rope pulleys to measure torque. All items are mounted on a single base. The speed change can be achieved by

manual shifting of sliding gears. If 1, 2 & 3 are positions of slide gear 1 and 4, 5& 6 are positions of slide gear 2, then the following combination are possible 1-4, 1-5, 1-6,2-4, 2-5, 2-6, 3-4, 3-5 & 3-6.

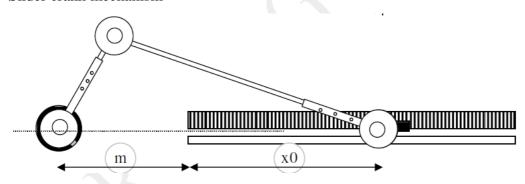
Epicyclic Gear Train

The Epicyclic gear consists of a sun, arm and annulus are mounted on a shaft. The sun is keyed to the shaft. The shaft is driven by a motor through a gearbox and a chain sprocket. The ratio of speeds can be evaluated by fixing any one of the member and giving motor rotation to one member and counting the rotation of the third member. This also can be done for motorized movement of sun wheel.


Differential gear

The bevel gear A (known as pinion) is keyed to the propeller shaft driven from the engine shaft through universal coupling. This gear A drives the gear B(known as crown gear) which rotates freely on the axle P. Two equal gears C and D are mounted on two separate parts P and Q of the rear axles respectively. These gears, in turn mesh with equal pinions E and F which can rotate freely on the spindle provided on the arm attached to gear B. When the automobile runs on a straight path, the gears C and D must rotate together. These gears are rotated through the spindle on the gear B. The gears E and F do not rotate on the spindle. But when the automobile is taking a turn, the inner rear wheel should have lesser speed than the outer rear wheel and due to relative speed of the inner and outer gears D and C the hears E and F start rotating about the spindle axis and at the same time revolve about the axle axis. Due to this epicyclic effect the speed of the inner rear wheel decreases by a certain amount and the speed of the outer rear wheel increases, by the same amount.

RESULT


Thus the gear parameters and velocity ratios of various gear trains were studied

FOUR BAR CHAIN

- 1, 2, 3, 4 Links.
- 6,7 Angle protractors

Slider crank mechanism

Ex. No. : 17 STUDY OF KINEMATICS OF VARIOUS MECHANISMS AND UNIVERSAL JOINT

Date : **AIM**

To study the kinematics of slider crank, four bar mechanisms and universal joints

APPARATUS REQUIRED

1. Experimental setup for four bar chain

2. Experimental setup for Universal joint

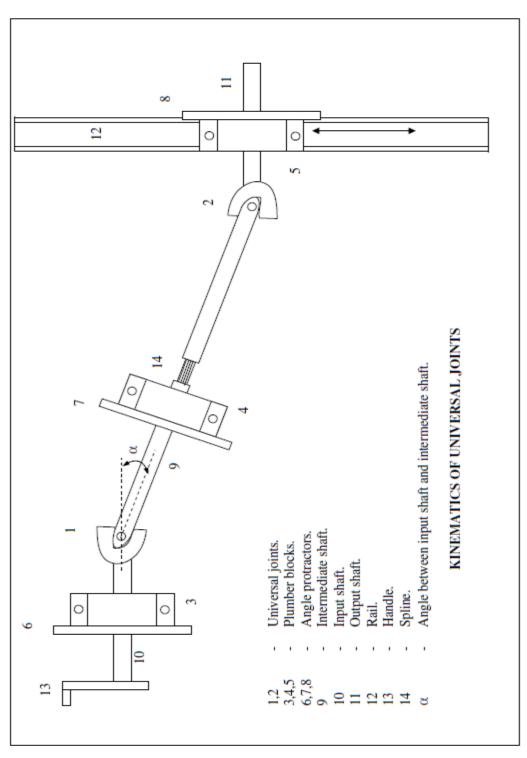
Four bar mechanism

Four bar linkage forms core mechanism for most of the machines. Even complicated mechanism can be split into number of four bar mechanisms. The problems of four bar mechanism namely analysis and synthesis can be solved by graphical, analytical and experimental means. Graphical methods include finding out velocity and acceleration of a point or link by drawing velocity and acceleration diagram. Using relative velocity method or instantaneous center method. Analytical methods include vector approach, trigonometrical method or complex algebra method. Experimental method is by constructing a model and analyzing the motion by measurements.

The experimental set consists of a four bar mechanism model having the following features.

(1) Two links are fixed on to a board. The distance between the pivot is considered as length of fixed link 1.

- (2) Each moving link is telescopic type and its length can be varied by grub screw provided.
- (3) Hinges are provided with ball bearings to reduce error due to clearance.
- (4) Angular position of links 2 (crank) and 4 (rocker) can be measured to are solution of 0.1₀ by venire protractors.
- (5) The links are in two planes so that complete rotation of crank is possible.


Slider crank mechanism

Slider crank chain is a form of four bar mechanism in which length of one of the link is infinity. In this case reciprocating motion is converted into rotary motion and vice versa.

Examples of such applications are in I.C engines. Reciprocating pumps, power presses etc. The relation between motions of links is required to establish kinematics motion and also for analysis of inertia forces. The relation between position and velocity of links can be evaluated by analytical method and experimental method Experimental method is by making model of mechanism and analyzing its moments by physical measurements and analysis.

Oscillating Cylinder Mechanism

Oscillating cylinder mechanism is a form of four bar mechanism in which length of one of the link is infinity. In this case reciprocating motion is converted into rotary motion and vice versa. Examples of such

applications are in I.C engines. Reciprocating pumps, power presses etc. The relation between motions of links is required to establish kinematics motion and also for analysis of inertia forces. The relation between position and velocity of links can be evaluated by analytical method and experimental method. Experimental method is by making model of mechanism and analyzing its moments by physical measurements and analysis.

Kinematics of Universal Joints

Universal joint (or Hooke's joint) can transmit power between inclined axes. If _ is the inclination between the input and output shaft then, angular velocity of output shaft,

$$\omega_2 = \omega_1 \frac{\cos \alpha}{1 - (\cos^2 \theta \sin^2 \alpha)}$$

Where, ω is the angular velocity of input shaft. And θ is the angle turned by input shaft.

It can be seen from the above equation, (ω_2/ω_1) is not constant and varies as a function of θ . This will introduce angular acceleration and hence inertia torque and stresses due to that uniform velocity ratio (or no angular acceleration) can be achieved by introduction of one more universal coupling in the same sense to give angular velocity of output shaft.

$$\omega_2 = \omega$$
 for all values of θ .

An experimental set up is made to verify the above.

RESULT

Thus the kinematics of slider crank, four bar mechanisms and universal joints were studied.

P.S.R. ENGINEERING COLLEGE

SEVALPATTI - 626 140 SIVAKASI Virudhunagar District.

BONAFIDE CERTIFICATE

Certified that this is a Bonafide Record of work done

by R. SEENIVASAN

Roll No 17ME089 in the DYNAMICS (161ME58)

Laboratory of this College during the academic year 2019 - 2010.

Staff - in - Charge

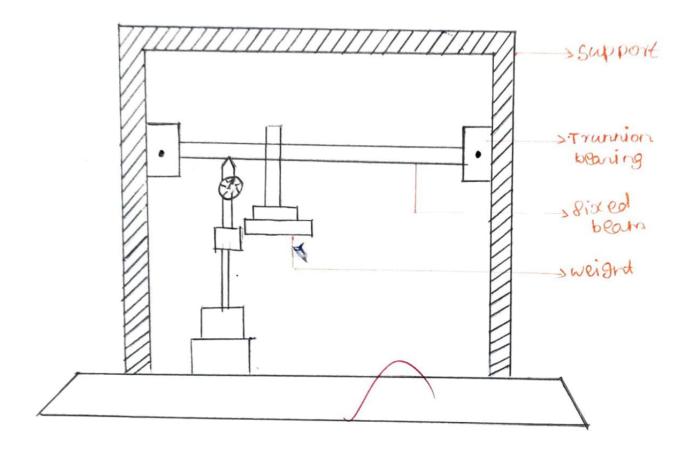
Department Department P.S.R. Engineering College
Sevalpatti, Sivakasi - 626 140

Register No. 1706085

Submitted for the Practical Examination held on 19-10-2019

Internal Examiner

External Examiner


CONTENTS

		CONTENTS			
Exp. No.	Date	Title of the Experiment	Page No.	Marks	Signature
		NATURAL FREQUENCY	1 ,	,	
		OF FREE TRANSVERSE	3	24	N
1.	4-6-19	VIBRATION OF FIXED			ماراله
		BEAM WITH ECCENTRIC			
		POINT LOAD	1		- K
		· · · · · · · · · · · · · · · · · · ·	c		
2-	11-6-19	NATURAL FREDU ENCY			
		OF FREE TRANSVERSE	9	27	
		VIBRATION OF FIXED			Qo.
		BEAM WITH CENTRAL			· · · · · · · · · · · · · · · · · · ·
		POINT LOAD	,		
3-	2-7-19	COMPOUND PENDULUM	15	26	3/2
ц.	9.7-19	BIFILLER SUSPENSION	21	25	12/19
5.	20.8-19	TURN TABLE APPARATUS	24	28	. 0 6/8
6.	27.8-19	DETERMINATION			700
		OF SENSITIVITY	26	26	Q 210
		EFFORT FOR THE			3 11.
		PROELL CHOVERNOR			
		•			

CONTENTS

		CONTENTS			
Exp. No.	Date	Title of the Experiment	Page No.	Marks	Signature
7.	3.9.19	DETERMINATION OF SPRINGS	28	27	279.19
		FORCE BY USING WATTLS	4 1 .	4	11
		CTOVERNOR	- 1 4		S. I
				5 7 4	4
8-	7.9-19	DYNAMICS ANALYSIS	34	24	17/9.19
		OF CAM MECHANISM			C/\(\)
			·		
9.	17.9.19	MOTORISED CHROSCOPE	36	24	A COLOR
		· · ·	*	25.66	
	(26/20	Choustage of the states			
		(Leub,)			
		J. v. July			
			7 *	i.	-
	•	Sar, JA	1.1		i i
					1.0
				4 (
				-	
					1 1 1 2 2 2

DIAMRAM:

NATURAL FREDUENCY OF FREE TRANSVERSE

VIBRATIONS OF FIXED BEAM WITH

ECCENTRIC POINT LOAD

NATURAL FREQUENCY OF FREE TRANSVERSE VIBRATIONS OF FIXED BEAM WITH ECCENTRIC POINT LOAD

AIM:

To determine the natural frequency of force free transverse vibrations of sixed beam with eccentric point load.

Apparatus Reguireol:

Main frame- Made from channel about 1-2m longth.

Truntion - Two brackets of truntion bearing with slots inserts beam fitted at im apart

formula to Be USED

Natural frequency (fn). 0-4985 HZ

S = doflection = Wa3b3 in m

F = 2×105 N/mm2 x I = bd3 m4

PROCEDURE:

The proper lubrication for bearing was ensured.

The beam was fitted into both slots of trunnion bearings and it was tightened.

OBSERVATION:

Width of the beam ib = 20 m/mDepth of the beam id = 7 m/mLength of the beam il = 1070 m/mDistance of Load from Left Support ia = 340 m/mDistance of Load from Right Support ib = 730 m/mYoung's modulus $ill = 2 \times 105 \text{ N/mm}^2$ $I = \frac{bd^3}{12} = 571.67 \text{ m/m}^4$

TABULATION:

S.	LOA	D	DELTE	CTION IN	mm	FREQUENC	YIN HZ	
NO.	kg	N	NVICAOL mm	UNLOADING	AVERAGE mm	THEORETIC -AL	EXPERI- MENTAL	
1-	1,	9-81	0.90	0.99	0.95	26-42	16-21	
2-	2	19.61	1.78	1-85	1-82	18-68	11-70	4
3.	3	29-43	2-50	2.56	2.53	15-23	a-9	
Ч·	4	39-24	3-21	3-21	3.21	13-21	8-79	

Exp. No.: Page No. 5 Date: The weight was added in the load harger and calculated deflection and frequency was calculated. The dial garge was sixed such that the plunger marke contact with the boarn. where there is no load condition.

CALCULATION:

a - Distance from Load to left support

b - Distance from Load to Right support

E - young's modulus in N/mm2

I - Moment of inentia in mm4

L - Length of the shast

THEORITICAL CALCULATION:

$$S = \frac{19.62 \times (1.53 \times 10^{16})}{4.20 \times 10^{17}} = \frac{2.99 \times 10^{17}}{4.20 \times 10^{17}}$$

$$S = 0.712 \text{ mm}$$

THEORITICAL FREDUENCY:

$$f = 0.4985 - 0.4985$$
 $\sqrt{8}$
 $\sqrt{6.3547 \times 10^{-3}}$

RESULT:

transverse vibration of fixed beam with eccentric point load was determined carrouphs were plotted.

FROM ANALYTICAL METHOD:

Natural frequency in theoritical y = 18-39 HZ

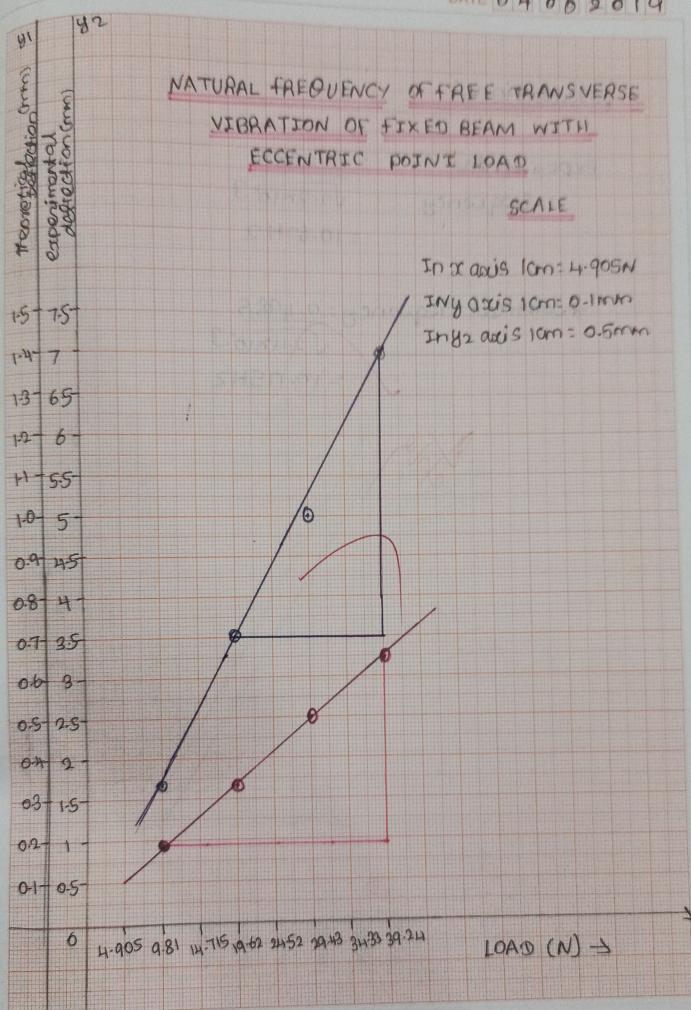
Natural frequency in experimentally-11.65Hz

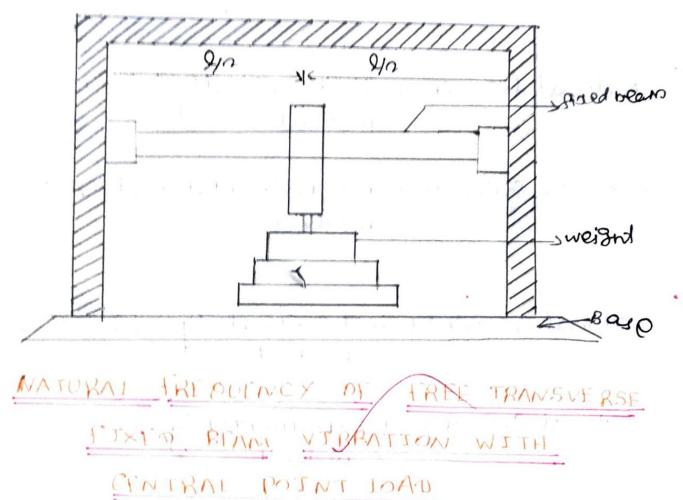
FROM GYAPH =

Natural frequency in theoritical y: 18.70H2

Natural frequency in experimental y: 12-66H7

B KIN


PRACTICAL EVALUA	ATION
Observation (10)	8
Calculation / Result (10)	8
Viva (10)	8
Total Marks (30)	24
Signature pt y	


CALCULATION:

i) Experimental frequency = 0.4985 1.55×10-3 =12.66Hz

ii) theoretical brognericy = 0.4985 \[\sqrt{0.71\times 10^{-3}} \]
= 18.79 H 2

Pilos

(d); conjeve

(OL) flyer's trace penigon (OL) cviv (OL) evil strates

Evn No	0.: 2		
Date:	11.6-19		Page No.: 9
	.AM.	TURAL FREDUENCY OF FREE TR	ew sverse
		VIBRATION OF FIXED BEAM	MITH
	THE RESERVE THE PARTY OF THE PA	CENTRAL POINT LOAD	1 -
	AIM:		,
	TO	determine the natural breque	ence of the
	freo tro	ansverse vibration of fixed	d horn
	with	Central point load.	04901)
	APPARAT	US REQUIRED:	
		Main frame - Mode from ch	hannel about
	1-07m		
	_	19 minion - Two bracket of	Trurrion
		g with slots to insent f	
		art weights.	
	FORMUL		
	Nati	nal frequency (fr.) = 0-4985	14 2
		18	
		S = WQ3	
		192EI	
***************************************	5	= 2×105 N/mm2	
	-	E = bd3 mmH	*
	whose		
		8 = deflection in mm	
P T water to come their layers a company		w-load applied in N	1
		l - length of the beam in	
No. of Control and		E - Young's modulus of b	can
war and the first of the first			
		* * * * * * * * * * * * * * * * * * *	

observation:

width of the beam (b): 20 mm
Depth of the beam (d): 7 mm
Longth of the beam (l): 10 70 mm

Tabulation:

Ś	8	Š	ACHO G	रिसरिसका धाम		frequency	Thooph.	Thording Theretical
2	621	2	Leading	unbooking Average	Average	(H2)	\$ 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	value deflesion
-		18-6	14G-0	1-39	14.1	1-375	21-34	13-44
2.	Q	19-62	460-1	2.61	39-7	2.645	15.68	10.04
3	1, co	54-43	1-642	3.69	8-68	3,67	12-30	8-23
*	In	39-24	2-189	59.4	S9-H	H-65	10.65	7.08
Company of the compan	111	Vertical Control of the Control of t						

Date .

PROCEDURE:

Proper Lubrication was ensured for bearing.

The beam was fifted into the both slots of trunnion bearing and tightened. Then the load hanger was fixed over the beam.

Then the dial crange was fixed such that the plunger that make contact with the beam while in the ho load condition. Then the weight were added on the load hanger.

Deflection was measured and tabulated.

finally the natural frequency was calculated by using formula

GTRAPH:

The graph is drawn by taking load in a axis and deflection in y axis.

MODEL CALCULATION:

$$I = \frac{bol^3}{12} = \frac{20 \times 7^3}{12}$$

I = 571-6mm

THEORETICAL CALCULATION:

$$S = \frac{WL^3}{192EI} = \frac{9.81 \times (1070)^3}{192EI}$$

 $S = 0.547 \text{ mm}$

THEORITICAL FREQUENCY:

$$f_n = 0.4985$$
 $\sqrt{0.547\times10^{-3}}$
 $f_n = 21.31 HZ$

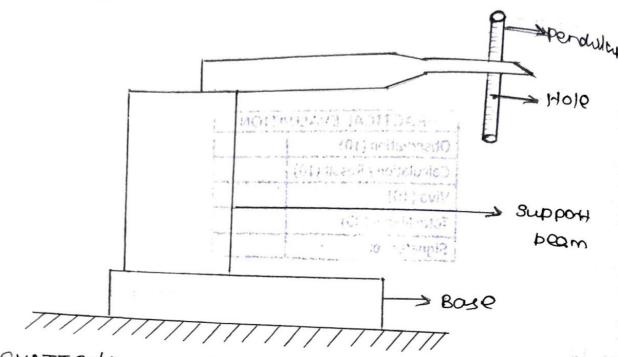
EXPERIMENTAL FREQUENCY:

Page No.: 13

Result:

xp. No.:

Thus the natural frequency as the trapsluence vibration of priored beam with contral point load was determined and the graph was plotted.


Theoretical:

i) Natural frequency of analytical: 14.84HZ ii) Natural frequency of creaphical (fn): 9.665HZ

crappical:

i) natural frequency of craphical: 10.175Hz

calculations: Experimental - 0-4985 fraguency V2.2×103 =10-62412 prometical frequency: 0-4985 12.47103 =10-175HZ

OBSERVATION:

COMPOUND PENDULUM

transport of the second standards.

The serve to the server

mass of the square rod : 0.9kg

Length of the square rod : 500 mm

mass of the circular rod : 2.09kg

longth of aircular rod : 550 mm

COMPOUND PENDULUM

AIM:

of a given compound perdulum.

FORMULA TO BE USED:

m - mass of the compound pendulum.

h - distance of cg from assis of

Suspension.

k - Radius of gyration about an axis
throad c.g perpendicular to plan of
oscillation.

Natural frequency of oscillation.

8a = 1 ((3xh) ((x2+h2) = 1/2

4 = 2TT/k2+h2

t = time for 10 oscillation

k = \((\forall_{2TT})^2 \times g \times h) + h 2

An equivalent length of pendulum,

I = k2 + h2

The equivalent length can be varified by setting the simple pendulum.

TABULATION:

s.		ALERI CCO OSCI		MATURAL FREQUENCY	TIME	PER IOD	MASS
No 9.	MATERI-			OSCILLATION (USEC (HZ)		EXPERIMEN - TAL (Sec.)	INERITIA
	22 122	225	12.68	0.843	(sec)	1-256	0.353
t-	SOUARE	175	11-57	0.848	1-116	1-116	0-354
		80	12-09	0-749	1-833	1-25	0-44
				T and			
		210	12.06	1.116	1-203	1-203	0.309
2- (CIRCULAR	140	10-63	1-678	1-063	1-063	0.288
		70	10-68	1-216	1.068-	1-068	0-367

MODEL CALCULATION:

$$k^2 = \frac{L^2}{I^2} = \frac{(0.59)^2}{12}$$

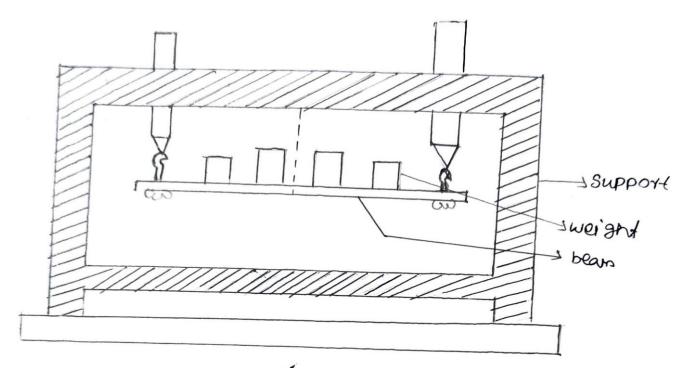
-0.028m2

NATURAL FREQUENCY:

Date:

The brass brush was staged in the hole of perdulum.

The perdulum was mounted over the Suspension stast sitted at top beam of frame.


The pendulum was oscillated and the time was measured required for 10 osallation.

The procedure was repeated by changing the brush in different hole.

MOMENT OF INERTIA:

$$T = \frac{(0.0208)^2 + (0.210)^2}{h}$$

DIAGRAM:

BIFILLER SUSPENSION

OBSERVATION:

radius of the string (B): 28cm: 0.28m

Length of the string (L): 56cm: 0.56m

weight (W): 1-5kg

BIFTLAR SUSPENSTON

AIM:

to determine the radius of gyration using bililar suspension.

APPARATUS REBUIRED:

Bifilan suspension orrangement

FORMULA TO BE USED:

for bisilar suspension.

In = 1/217 × 1/2/2

fn = 1/277 x b/ x 19/2

In = temp

- Time taken for 10 oscillations sec

where ,

In : frequency of oscillations

b : distance of spring from

cendre of gravity: 28 cm

L : Length of String (m)

K = fadius of gyration

TABULATION:

			· ·	
N0	H	TIME TAKEN FOR 10 OSCILLATION (Sec.)	FREQUENCY OF OSCILLATION Cfn)	RADIUS OF GYRATION (K) M
1-	40	13.60	0.735	0.300
2-	35	12-59	0-794	0.296
3.	30	12-19	0-833	0.308
Н	25	10.88	0-925	0.300

0.301

MODEL CALCULATION:

k=1/211 xbx fnx (9/h 8n=1/4

t = time taken for 10 oscillation

f=13.60 = 1-356 Sec

In= 4 = 1-356 = 0-735 Sec

K= KTT xbxfn x 19/h

= 1/2 x 0-28 x 0-735 x 19-81 0-45

K:0.300m

PROCEDURE -

The bifillar suspension strings are attached in the chucks mounted on the top of the beam present in the frame.

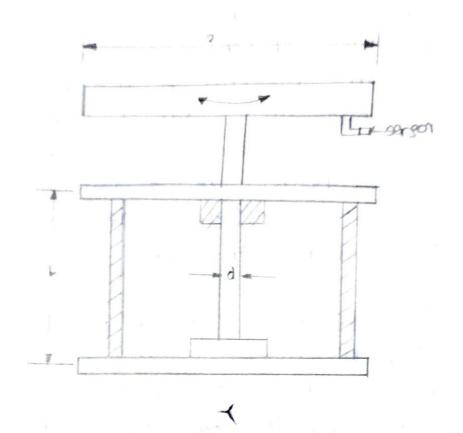
The strings are adjusted to equal length required weight are fixed over the beam of bifilar.

system is oscillated about the vertical axis passing through the under of beam.

Time required for 'n' oscillation is noted say no 10

the procedure is repeated by changing the length of the suspension.

RESULT:


Thus the radius of gyration of body using bisiler suspension was determined.

Tras Date 1100

Radius of gyration k = 0.301m

PRACTICAL EVALUATION (10)	9
Calculation / Result (10)	10
Vi	1/
	25

TURN TABLE APPARATUS

OBSERVATION:

1-mays added on each side (m): 0.2 kg

2. Initial distance of total yr = 0.2m weight from asu's

3. Final distance of weightlyrz: 0.29m

4- Speed of disc motor N= 61 7pm

5- Time for change in position y = 4-53 sec of weight from 7, to 72 D1 = 2x7 = 2x0.2: 0.4m D2 = 2x72 = 2x0.29: 0.58m

```
MODEL CALCULATION
  initial relocity in: ITOIN mys
          = TIX 6-LIXBI = 1.27 m/s
        VI=1-27m/9
 final velocity, v2= ITOON (m/g)
               = 11x0,58x61=1.85mB
            12= 1.85m/s
  Radius 17=71+72 =0.2+0.29
          Y= 0.245m2
   acceleration, a=v2-V1 (M/s2)
           a=0-128 m/s2
      contrisugal sorce f= mv22 N
                  0-2×(1.85)2
0-245
2-79 N
                 of inadia, I: mr22
                       I= 0.2 x (0-29)?
                           = 0-016 kg/m2
  Angular velocity w=250 rools
                   =211×61 - 6-38 rad/se
```

W= 638 rad/sec

PROCEDURE:

the weights to the original position and the distance γ_i was noted.

the power supply was switched on.

The speed was gradually increased by adjusting the trob.

After sometime one of weight was moved to extreme end of the rod.

taken was noted.

following reading was noted ger time speed and the distance x2

Switch off the power supply

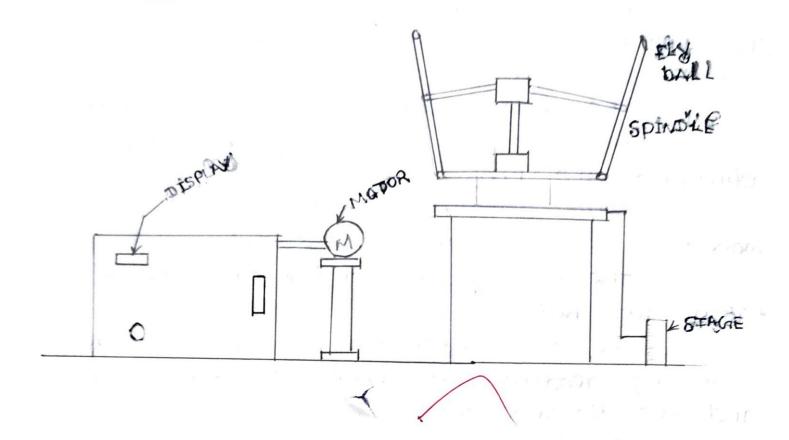
ROSULT:

Thus the experiment on turn table was

i) final velocity $v_1 = 1.27 \text{ m/s}$

iii) Angulan acceleration (a): 0-128 m/s2

(v) mass moment of inatia (I): 0-016Kg m? v) contribugal force (f): 2-79N


vii) Angulan velocity (W): 6:38 mod/sec

Vi) A OSVION a COBRASTICAL EXALUATION - 408 MOLEM
Observation (10)
Calculation / Result (10)

Viva (10)

Total Marks (30)
Signature of racuity

Delega .

DETERMINATION OF SENSITIVITY EFFORT FOR THE PROELL CHOVERNOR

AIM:

various characteratic of the Proell
governor:

DESCUPTION:

of fly weights the governor with the use highly sensitive under these conditions large slower displacement is observed for very small change in spead. In order to make it stable - It is necessary to carry out the experiment by using bell ball fly weight on each side.

DIMENSIONS:

length of each lint 11.

Initial height of governor (no):

Initial radius of rotation (ro).

weight of each ball:

	TABUAL						3
g. Nº	Spæd N Orpm)	Heigard (man)	Porc C	Angulan Molocity (W)	sleone displace	podity rotation	a= cos'(0/2)
1.	240	32-5	14.09	25-13	35	181-02	76-06
2.	260	28-2	16-54	27-22	48	181-95	77.81
9.	280	26.5	19-29	29-32	47	182-36	78-67
4.	300	25	22-14	31-41	50	182-66	79-32
5	320	24	25-20	33.51	52	182-64	79.75

MODEL CALCULATION

2. Height of the governor (h): ho-(%) min.

-32-5mm

3)
$$a = \cos^{-1}(\frac{h}{2})$$

= $\cos^{-1}(\frac{32-5}{2})$

PROCEDURE:

The spead control value was rotated and the governor spead was in closed.

The control value was stopped when the centre sleave rises off the lower stop and first division awithed on the graduated scale.

the sleene position was recorded and the speed was also recorded.

The governor speed was innoced in steps to suitable sleene movement is given and the readings were noted down.

The range of the sleene movement

was continued this through out

$$-(25-13)^{2}(0-181)(\frac{110-21}{9.81})$$

$$-14-09 + 9. + F$$

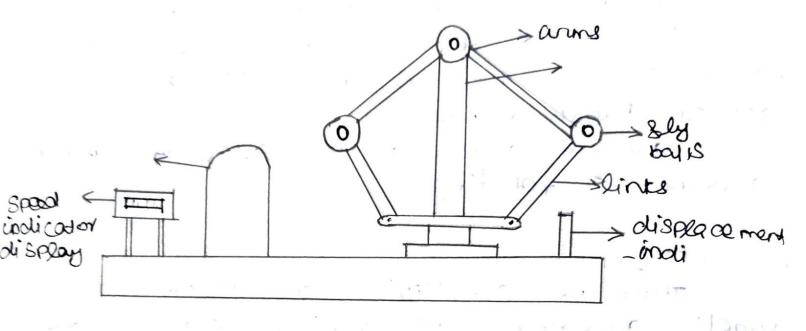
CAYAPH:

Speed vs seeme displacement.

for static position allowe displacement vs radius of rotation of balls by

actual masurement.

governor is rotating.


RESULT:

thus the sensitivity and esfort of proel 1 governor of various types were found and the related graph were atraut.

15/4

PRACTICAL EVALUATION
Observation (10)
Calculation / Result (10)
Viva (10)
Total Marks (30)
Signature of Facult

EC-NO: 6 DATE 27 08 2019 Determination of sensitivity eggors Tooling Tool Spean for the proess governor In X cool SICTO: STONO Iny, axis icm: 20 pm In y garais icm : 0.01m 21101010 100-00 100 00 120 0.00 100-0.5 80.000 60-003 20-10-61 25 30 35 40 AS 80 85 40 10 15 20 sleave displacement >

ولر وسي

OBSERVATION:

Length of each link (l)= 135 mm

Initial height of governor=70mm

(no)

Initial radiation of rotation=165 mm

(ro) =165 mm

weight of each ball (w)=0.21kg.

assembly

xp. No.: 7 ate: 3.9-19

> DETERMINATION OF SPRING FORCE BY USING WATT'S CHOVERNOR

AIM:

To determine the spring sorce by using wattis governor and to draw this characteratics curve.

APPARATUS REDUIRED:

waltis governor apparatus Digital tachometer Steel rule.

FORMULA:

Angular velocity 1 2 = 2TTN (road/sec)

Hoight of the governor, h: ho- (3/2) (mm) de cosi (/e) degree Radius of rotation, Y = SO + 1 Sind m spring force, f= D2 x xx (w/g) - kg f

where:

a - sleave displacement in min ho - Initial height of governor in mm L - Length of each link in mm. go - Initial radius of rotation in more w - weight of each ball in kg-f.

NO S.	MOTOR SPEED (YPM)	ANGULAR VELOCITY	SIEEVE DISPLACE -MENT:	HEICH	T costh	APOIVS OF ROTA- TION	FORCE
1.	220	23.03	14	63	62 181	169.53	11-05
2.	240	25-03	30	55	65811	173.28	13-4
3-	260	27-22	45	47.5	69°23'	176-35	16
	280	29.32	58	41	700191	178.64	19
4.	300	31.42	61	39.5	72°59 '	A CONTRACTOR OF THE CONTRACTOR	22
5-							and and and
			400				

CALCULATION;

Angular velocity, w= 21TN/60

w = 23-03 rod |ser

$$\lambda = \cos(6\%) = 1 \cos(63\%)$$

$$=(23.03)^2 \times (0.109) \times (1+0.21)$$

 $=(23.03)^2 \times (0.109) \times (1+0.21)$

79/19

PRACTICAL EVALUATION	0
Observation (10)	
Calculation / Result (10)	- 2
Viva (10)	7
Total Marks (30)	4
Signature of Facult	Contract Constraints and
からからからの はとなりに一切のない	

Ex-No: 7 DATE 0 3 09 2019 DETERMINATION Speed Won Porce (19-m) USENO WATTS scale : CHOVERNOR * acis km; stron Y. anisicm: 200 YPm 1000is 10m: 2 kg- ho 300-500000 VS Speed A0_ displace 26-260-24 24 22 - 220-20-200 18-180 asseme vs force displace 16-160 ment) 14-140 12+120 10-100-8-80-6-60 4- 40 2- 20-40 45 50 55 60 65 70 15 20 25 30 35 10 8 sleene displacement (MN)

96.00

e sunt

March 1

DYNAMICS ANALYSIS OF CAM MECHANISM

AIM:

to draw the follower displacement diagram for given cam project.

APPARATUS REQUIRED:

Cam analysis machine with cam followers set of weight controller ban vial gauge.

PROCEDURE:

the dial gauge was setted to zero by rotating the hard wheel attached to the cam.

the reading was ported on the displacement the dial gauge and scale as zero

the following reading were noted down. displacement from the dial gauge and distance from the binear scale was tabulated.

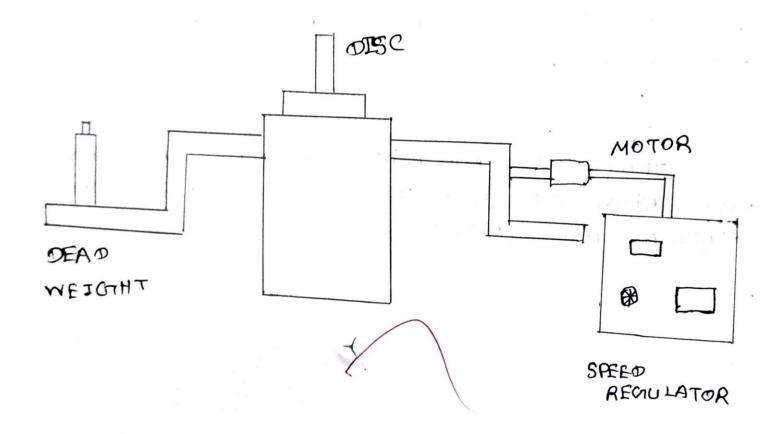
TABULATION.

	ACEMENT FROM L GAUGE Com
1. 30	
2. 60 0 0-2	XO.
3. 90 0.3	2
4- 120 4 4-3.	3
5- 150 7 8-36	5
6- 180 8 8-4	
7. 210 4-6	S
8. 240 0.3	
10.	3
11.	j.
330	
360	

and the first of the second of

OTRAPH -

the graph was plotted by taking crank angle to x-axis and distance y-axis and the following displacement diagram was drawn.


RESULT:

was observed and the follower displacement diagram was drawn.

	*
	-
116	
mar.	
1	

	N. C.	
1	PRACTICAL EVALUA	ATION
-	Observation (10)	-5
1	Calculation / Result (10)	0
	Viva (10)	0
	Total Marks (30)	24
	and the real	

Ex-NO:8. DATE 0 7 09 2019 oxnamic analysis scale: CAM mechanism xaruis Icm: 30° (distance thm, y azuis 10m : 2mm 8 6 4 2 30 60 90 120 150 180 210 240 270 300 330 360 × Angle (degree) -> can profile D = 58mm 7 - 29mm

Exp. No.: 9 Date: 17.9.19

MOTORISED CHROSCOPE

AIM:

applied to the motor with gyroscope.

APPARATUS REQUIRED:

stop watch
blade weight
measuring tape
Digital tachomoter.

FORMULA:

moment of inentia I - Mk² kg m²

Angular velocity of spin w= 2TTN road/se c

Angular relocity of per = (0×17/80) rad/sec consi(Wp) (+++) rad/sec

Torque applied T-WXX N-M

PROCEDURE:

the motor is checked for rectial position and the balance weight is adjusted is required.

position and the supply is switched on-

OBSERVATION:

pading of disc (7):105 mm:0.105 m;

max of the disc m:69 kg

Thickness:10mm:0.01m

pistance of weight from centre

of disc x:175 mm

= 0.175 m

TABULATION:

S. 0	ROTOR SPEED in RPM	kg	HTADDED N	TIME for PRECESION SOCI	TOTAL	ON ROSCOPE COUPLE N-M
1-	1440	0-5	4-905	4.29	0.859	1-04
0.	1440		9.81	1-53	1-717	2.92
		1		No. Sauce		

MODEL CALCULATION:

i) movement of inertia I: m/2 =6-9 ×10-074322

I= 0.378 F9-m2

The motor is standed by applying the voltage of ground to volts and then reduced.

No

The speed of the motor is to be a adjusted as required.

The motor speed is to be noted using digital tachometer. The speed is to be noted down it become steady. At the same instant the required weight is to be added on weight pan. The time for 10 precession is noted

down by using stop watch. THE STATE OF THE S

PRECAUTION. checkoul the testening to the votor before Start.

checkout the balance of rotor before Start. Lubricate the bearings predically.

keep the ball over a position.

iii) we = (8+ 17/80 / € = 45×17/180 4.2 = 0.183 rod/s

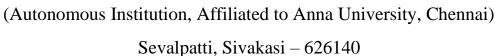
in) organscopic couple:

C-IXWXWP

= 0.0378×150-79 ×0-183

= 1-04 N-m

1) TOIGNO = WX U


:4-905 70.175

-0.85 N-M

	Page No.: 35
RESULT:	
Thus	the motorised gyroscope coupled the spiriting motor with is determined.
applied to	the spinning motor with
ggroscope	is altermined.
	PRACTICAL EVALUATION
will	
	Calculation / Result
	(10)
	Total Marks (30) Signature if Fac
	The state of the s
	The state of the s
	SERVICE IS OUR MOTTO
Total Control of the	

SERVICE IS OUR MOTTO

P.S.R. ENGINEERING COLLEGE

Department of Mechanical Engineering

ATTAINMENT VALUE OF LABORATORY OUTCOMES

161ME58 - DYNAMICS LABORATORY

Course Outcomes:

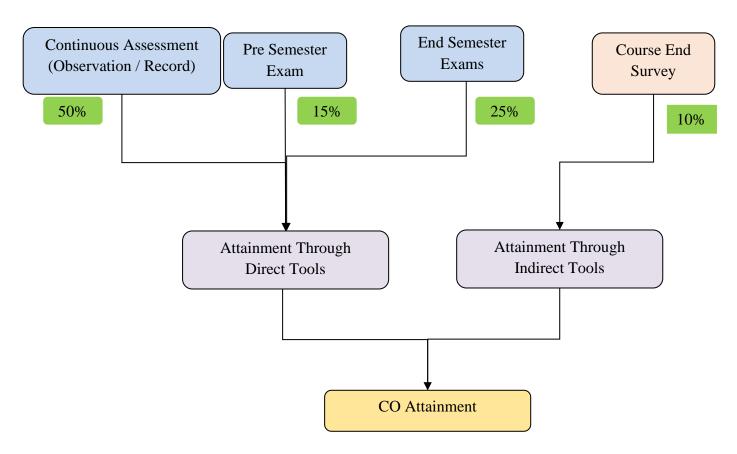
The students will be able to

CO1. Know the functions of kinematic links and its mechanisms	
---	--

CO2. Interpret the fundamentals of the natural frequency of free vibration of fixed beam

CO3. Find the gyroscopic effect

CO4. Determine the basic concepts of governor apparatus


CO5. Identify the different cam profile mechanisms

CO6. Enumerate the critical speed of shaft

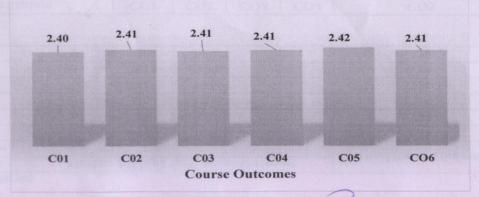
Course Outcomes				I	Progr	am O	utcor	nes (I	POs)					ogram itcome		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2		2					3			2		3	1	3
CO2	3	2		3					3			2		3	2	3
CO3	2	3		2					3			2		2		3
CO4	3	3		2					3			2		2		2
CO5	3	3		2					3			2		3		3
CO6	3	2		3					3			2		2		3

^{1:} Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

COURSE OUTCOMES ATTAINMENT – PRACTICAL COURSES

[Reference from Evaluation Manual]

	Evalua	tion	of Course Or	itcomes	
Course Code & Name	: 161ME58	- DY	NAMICS LA	ABORATORY	
Course Teacher	: Dr.A.Mut	hiah	& Mr.D.Sun	darrajan	
Year / Semester	: III/V/ I &	II	TENIE OF LINE		MARINE N
Academic Year	:2019-20 O		Batch	2017-2021	No. of the last of


Course End Survey

Course	Marks	obtained	for Cour	se Outco	me	Tatal Na of Standards	Sc	ore
Outcomes	5	4	3	2	1	Total No of Students	Net	100
CO1	91	33	10			134	617	92.09
CO2	76	45	13			134	599	89.40
CO3	85	36	13	ME TOUR		134	608	90.75
CO4	75	46	13			134	598	89.25
CO5	95	31	8			134	623	92.99
CO6	90	30	14			134	612	91.34

Particulars	CO1	CO2	CO3	CO4	CO5	C06
Internal	78.38	79.32	78.77	79.25	79.22	78.85
End Semester Exam	79.44	79.44	79.44	79.44	79.44	79.44
Course End Survey	92.09	89.40	90.75	89.25	92.99	91.34
Attainment (0.65 of Internal+0.25 of ESE + 0.1 of CES)	80.07	80.36	80.17	80.31	80.66	80.28

Course Outcomes	C01	C02	C03	C04	C05	CO6
Average Score Out of 5	4.00	4.02	4.01	4.02	4.03	4.01
Average Score Out of 3	2.40	2.41	2.41	2.41	2.42	2.41

Average Score out of 3

Signature of the Course Tutor

Signature of the Course Co-ordinator/Moderator

Head of the Department

161ME58 - DYNAMICS LABORATORY CO- PO Mapping

Course					P	rogram Ou	tcomes (PO	ls)					Progra	m Specific	Outcomes	(PSOs)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2		2					3			2		3	1	3
CO2	3	2		3	DESCRIPTION OF THE PARTY OF THE				3			2		3	2	3
CO3	2	3		2					3			2		2		3
CO4	3	3		2					3			2	BASIN NAME	2		2
C05	3	3		2					3			2		3		3
C06	3	2		3					3			2		2		3

Internal CO- PO Mapping

						Antes		O wanbbu	*5							
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	78.38	78.38		78.38					78.38			78.38		78.38	78.38	78.38
CO2	79.32	79.32		79.32		Manufacture.		KALUKATA	79.32	EXPLINE.		79.32		79.32	79.32	79.32
CO3	78.77	78.77		78.77	INTERNATION OF THE PARTY OF THE			Remarkant S	78.77			78.77		78.77		78.77
CO4	79.25	79.25		79.25					79.25			79.25		79.25		79.25
CO5	79.22	79.22		79.22	LI CONTRACTOR		DISTRIBUTION		79.22			79.22		79.22		79.22
C06	78.85	78.85		78.85				F 1 3 X 1/4 1 12	78.85	The Park Total	Missississis in	78.85		78.85	Shall Filling	78.85

External CO- PO Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	79.44	79.44		79.44		Part of the same	La Harrania		79.44			79.44		79.44	79.44	79.44
CO2	79.44	79.44		79.44	THE RULE OF			The state of the	79.44			79.44	IN INC.	79.44	79.44	79.44
CO3	79.44	79.44		79.44					79.44	100		79.44		79.44		79.44
C04	79.44	79.44		79.44					79.44	Salara Maria		79.44		79.44		79.44
CO5	79.44	79.44	JE PROJEK	79.44					79.44		ENERT IN	79.44		79.44		79.44
C06	79.44	79.44		79.44				THE REAL PROPERTY.	79.44		III CONTRACTOR OF THE CONTRACT	79.44	Action (all)	79.44	A SECULIAR	79.44

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Internal	79.0	79.0		79.0					79.0			79.0		79.0	79.0	78.9
External	79.4	79.4		79.4					79.4	DECEMBER OF THE		79.4		79.4	79.4	79.4

Tutor

Signature of the Course Co-ordinator/Moderator

Programme Co-ordinator

	Evaluation of PO & PSO
Course Code & Name	: 161ME58 - DYNAMICS LABORATORY
Year / Semester	: IV / VII
Direct Tool	: Program Outcomes (POs) & Program Specific Outcomes (PSOs)
Table 3 Average attainment so	ore of Course Outcomes based on Program Outcomes (POs) & Program Specific Outcomes (PSOs)

Attainment of POs & PSOs from a Course considering all the Direct tools

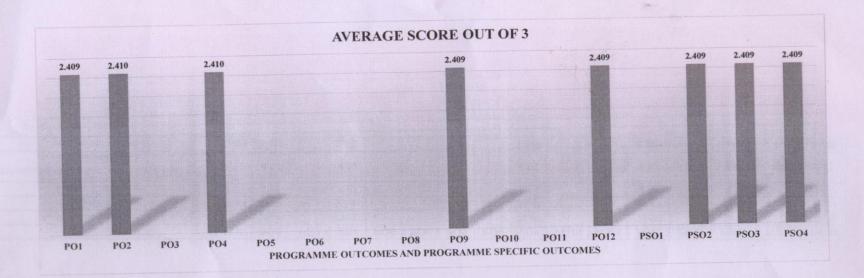
Course End Survey From CO
Attainment

Course Outcomes Survey Score

C01 92.09

C02 89.40

C03 90.75


C04 89.25

C05 92.99

C06 91.34

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	92.09	92.09		92.09		100	101	100	92.09	1010	1011	92.09	1501	92.09	92.09	92.09
C02	89.40	89.40		89.40					89.40			89.40		89.40	89.40	89.40
C03	90.75	90.75		90.75					90.75			90.75		90.75		90.75
C04	89.25	89.25		89.25	Mary 1			Market 1	89.25			89.25		89.25	3 100	89.25
C05	92.99	92.99	Time Con	92.99	TO LESS				92.99			92.99		92.99		92.99
CO6	91.34	91.34		91.34					91.34			91.34		91.34		91.34
Score	4.55	4.55		4.55		1200	The same		4.55			4.55		4.55	4.54	4.55

Particulars	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Internal	78.98	78.99		78.98			To Arrive		78.97		VOR IN	78.97		78.97	79.01	78.95
Endsemester	79.44	79.44		79.44					79.44			79.44		79.44	79.44	79.44
Course End Survey	4.55	4.55		4.55	THE STATE OF		A CONTROLL	The Control	4.55			4.55		4.55	4.54	4.55
Attainment (0.65 of Internal+0.25 of ESE + 0.1 of CES) Out of 5	4.02	4.02		4.02					4.02			4.02		4.02	4.02	4.01
Attainment Out of 3	2.409	2.410		2.410			T WEST	Mark Street	2.409			2.409		2.409	2.409	2.409

Signature of the Course Tutor

Signature of the Course Co-ordinator/Moderator Programme Co-ordinator

lead of the Department