P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Sevalpatti (P.O), Sivakasi – 626140.

Department of Mechanical Engineering

M.E. Engineering Design

CURRICULUM AND SYLLABI

PG Regulations 2019

Department of Mechanical Engineering

CANDIDATES ADMITTED DURING 2019-2020 AND ONWARDS

P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University, Chennai)

Sevalpatti (P.O), Sivakasi – 626140.

Department of Mechanical Engineering

M.E Engineering Design

CURRICULUM AND SYLLABI

Department of Mechanical Engineering

CANDIDATES ADMITTED DURING 2019-2020 AND ONWARDS

DEPARTMENT VISION & MISSION

Vision

• To provide broad-based education and training in mechanical engineering and its applications to enable the graduates to meet the demands in a rapidly changing needs in industry, academia and society.

Mission

- To impart high quality technical education and training that encompasses both theory and practices with human and social values
- To equip the students to face tomorrows technology embedded global changes
- To create, explore, and develop innovations in mechanical engineering research

Programme Specific Outcomes (PSOs)

- Ability to critical analysis and problem-solving skills required in the field of Thermal, Production and design engineering for carrying out research activities.
- Ability to conduct experiment and simulate the real life situations involved in engineering using computational techniques and instrumentation; and can work independently in research or industrial environments.
- Capability to present the acquired knowledge coherently both in oral and written discourse.
- Capability to compete the available employment opportunities and solve complex engineering problems related to production, Design, Thermal and allied industries using systematic tools.

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

PO:1 Critical Thinking Ability to identify, critically analyze, formulate and solve complex engineering problems.

PO:2 Problem Solving Use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions in mechanical engineering.

PO:3 Social and Environmental Sustainability An ability to design, operate, control and maintain a mechanical system and process to meet desired needs within realistic constraints such as health, safety, legal, cultural, environmental and security issues related to manufacturability.

PO:4 Modern Tool Usage An ability to innovate and incorporation of novel research techniques with usage of the techniques, IT skills, and modern engineering tools for various changes in manufacturing engineering practice.

PO:5 Ethics Apply ethical principles and commit to professional ethics and responsibilities and norms of the mechanical engineering practice.

PO:6 Leadership Function affectively as an individual, and as a member or team leader in diverse and inter-disciplinary fields.

PO:7 Communication Communicate effectively through written and oral mediums; make effective presentations and exchanges clear instructions.

PO:8 Life-long Learning Ability to engage in independent research and lifelong learning in the broadest contest of technological changes in Mechanical engineering and allied fields.

P.S.R. ENGINEERING COLLEGE, SIVAKASI-626 140 U.G REGUALTION-2019 (CBCS) M.E. ENGINEERING DESIGN CURRICULUM [I – IV SEMESTER]

Total Credits:69

S.No.	Category	Hour	rs Per	Credits				
				L	Т	Р		
			THEORY					
1	PC	192ED11	Advanced Stress Analysis300Computer Aided Design300					
2	PC	192ED12	Computer Aided Design	3	0	0	3	
3	MC	192SE13	Research Methodology and IPR	3	3 0 0		3	
4	PE		Programme Elective-I		0	0	3	
5	PE		Programme Elective-II	3	0	0	3	
6	MC		Audit Course - 1	2	0	0	0	
			PRACTICAL					
7	PC	192FD17	Design and Modeling	0	0	Δ	2	
/	10	1720017	Laboratory	0	V	–	2	
8	PC	192ED18	Analysis Laboratory	0	0	2		
		Тс	otal Number of Credits				19	

SEMESTER – I

SEMESTER –II

S.No.	No. Category Course Course Title						Credits
		0.040		L	Τ	Р	
			THEORY				
1	PC	192ED21	Finite Element Method	3	0	0	3
2	PC	192ED22	Advanced Vibrations and Acoustics	3	0	0	3
3	PE		Programme Elective-III	3	0	0	3
4	PE		Open Elective-I	3	0	0	3
5	MC		Audit Course - 2	2	0	0	0
			PRACTICAL				
7	PC	192ED27	Advanced Simulation Laboratory	0	0	4	2
8	PC	192ED28	Dynamics and Vibration Laboratory	0	0	4	2
9	PROJ	192ED29	Mini Project	4	2		
		Т	otal Number of Credits	•	•		18

S.No.	Category	Course	Course Title Hours Per week				Credit			
	81	Code	Code	L	Τ	Р				
THEORY										
1.	PE		Programme Elective-IV 3 0 0							
2	OE		Open Elective-II	3	0	0	3			
			PRACTICAL							
3	PROJ 192ED31 Project Phase – I 0 0 20						10			
Total Number of Credits							16			

SEMESTER – III

SEMESTER – IV

S.No.	Category	Course	Course Title		Hours Per week		Credit
		Code		L	Τ	Р	
1	PROJ	192ED41	Project Phase – II	0	0	32	16
			Total Number of Credits				16

PROGRAMME ELECTIVES

		Course		ŀ	Iou	rs	
S.No.	Category	Code	Course Title	Per w		eek	Credit
		Cout		L	Τ	P	
1.	PE	192EDE01	Applied Mathematics for Design Engineers	3	0	0	3
2.	PE	192EDE02	Advanced Engineering Materials	3	0	0	3
3.	PE	192EDE03	Advanced Machine Design	3	0	0	3
4.	PE	192EDE04	Advanced Machining Processes	3	0	0	3
5.	PE	192EDE05	Analysis and Synthesis of Mechanisms	3	0	0	3
6.	PE	192EDE06	Concepts of Engineering Design	3	0	0	3
7.	PE	192EDE07	Condition Based Monitoring	3	0	0	3
8.	PE	192EDE08	Design for Manufacturing and Assembly	3	0	0	3
9.	PE	192EDE09	Fracture Mechanics	3	0	0	3
10.	PE	192EDE10	Industrial Robotics and Expert Systems	3	0	0	3
11.	PE	192EDE11	Integrated Manufacturing Systems	3	0	0	3
12.	PE	192EDE12	Mechanical Behavior of Materials	3	0	0	3
13.	PE	192EDE13	Mechanical Testing of Materials	3	0	0	3
14.	PE	192EDE14	Multi-body Dynamics	3	0	0	3
15.	. PE	192EDE15	Nano materials and Nanotechnology	3	0	0	3
16.	PE	192EDE16	Optimization Techniques in Design	3	0	0	3
17.	PE	192EDE17	Product Design and Development	3	0	0	3
18.	PE	192EDE18	Productivity Management and Re-engineering	3	0	0	3
19.	. PE	192EDE19	Quality Concepts in Design	3	0	0	3
20.	PE	192EDE20	Rapid Prototyping and Tooling	3	0	0	3
21.	PE	192EDE21	Reverse Engineering	3	0	0	3
22.	PE	192EDE22	Supply Chain Management	3	0	0	3
23.	PE	192EDE23	Tribology in Design	3	0	0	3

OPEN ELECTIVES

S.No.	Category	Course	Course Title	H Pe	Iou r we	rs eek	Credit
		Couc			Τ	Р	
1.	OE	192OE01	Business Analytics	3	0	0	3
2.	OE	192OE02	Industrial Safety	3	0	0	3
3.	OE	192OE03	Operations Research	3	0	0	3
4.	OE	192OE04	Design of Experiments	3	0	0	3
5.	OE	192OE05	Cost Management of Engineering Projects	3	0	0	3
6.	OE	192OE06	Composite Materials	3	0	0	3
7.	OE	192OE07	Waste to Energy	3	0	0	3
8.	OE	192OE08	Nanomaterials and Nanotechnology	3	0	0	3

AUDIT COURSES

S.No.	Category	Course Code	Course Title	Ho	ours weel	Credit	
		coue		L	Τ	Р	
1.	MC	192AC01	Constitution of India	2	0	0	0
2.	MC	192AC02	Disaster Management	2	0	0	0
3.	MC	192AC03	English For Research Paper Writing	2	0	0	0
4.	MC	192AC04	Sanskrit for Technical Knowledge	2	0	0	0
5.	MC	192AC05	Value Education	2	0	0	0
6.	MC	192AC06	Pedagogy Studies	2	0	0	0
7.	MC	192AC07	Stress Management by Yoga	2	0	0	0
8.	MC	192AC08	Personality Development through Life Enlightenment Skills	2	0	0	0

PC – Programme Core, PE – Programme Elective, OE – Open Elective, AC – Audit Course, EEC – Employability and Enhancement Course

192ED1	1			ADVAN	ICED S	TRES	S ANA	LYSIS		L-	T-P	С
n		мее	NICILI		DECLA	NT		0	T	3-	0-0	3
Programn	ne:	M.E.E.			DESIG	IN aminor	Deri	Se	m: I	Catego	ry: PC	
Aim:		10 imp	art kno	wledge 1	n Mech	anisms	Design	i, Kinem	atic analy	sis and Sir	nulation.	
Course O	utcome	2 S: 1					-f + + + + + + - + + + - + - + +					
research ma	nterial	i under	stand ti	ne tonso	riai app	oroacii (inuum n	lechanics	and comp	renend i	nodern
CO 2: Stud	ent will	learn b	asic fie	ld equati	ions suc	ch as ec	uilibriu	im equat	tions, com	patibility a	and cons	titutive
relationship).			1			L	I	,	1 5		
CO 3: Stude	ents wil	l be abl	e to app	oly basic	field ea	quation	s to tors	sion, ben	ding and t	wo dimen	sional el	asticity
problems, a	nd ener	gy metł	nods.									
CO 4: Stud	ents wil	1 be ab	le to so	lve prob	lems in	unsym	metrica	al bendar	ng and she	ar center,	contact s	tresses
and pressur	ized cyl	inders a	and rota	iting disc	cs.							0
Stress-Strai	n relatio	as and	III gener	al equati	ons of	elastici	ty in C	artesian	Polar and	1 curviline	ear coord	9 inates
differential equations of equilibrium – compatibility – boundary conditions – representation of three-											three-	
dimensiona	l stress	of a ten	ision ge	eneralized	d hook's	s law –	St. Ver	nant's pri	inciple – p	lane stress	s – Airy's	s stress
function – I	Energy 1	nethods	5.					1	1 1		2	
UNSYMM	ETRIC	AL BE	NDIN	G AND S	<u>SHEAF</u>	<u>R CEN</u>	<u>FER</u>		11.0			9
Concept of	shear ce	enter in s	symmet	trical and	l unsym	metrica	al bendi	ng, stres	s and defle	ctions in b	eams sub	ojected
to unsymm	etrical	open se	g, snear	center 1	for thin	wall b	eam cr	oss sect	ion, open	section w	ith one a	axis of
symmetry, g	general	open se		ind close	u sech	Л						
CURVED	FLEXI	BLE M	EMBF	ERS ANI	D STRI	ESSES	IN FL	AT PLA	TES			9
Circumfere	nce and	radial s	stresses	– deflec	tions –	curved	beam	with rest	rained end	ls – closed	l ring sul	ojected
to concentra	ated loa	d and u	niform	load – cl	hain lin	ks and	crane h	ooks – S	Solution of	rectangul	ar plates	– pure
bending of	plates –	deflect	ion - u	niformly	distribu	uted loa	ud – var	ious end	condition	s.		
THEODY		DCION	T								-	0
Torsion of t	<u>OF IO</u> vrismati	c bars c	n Anglid	section a	and thin	walled	section	Analo	nies for to	sion men	brane ar	9 valogy
fluid flow a	analogy	and el	ectrical	analogy	. Torsie	on of c	onical s	shaft, ba	r of varia	ble diamet	ter. thin	walled
members of	f open c	ross see	ction in	which s	ome see	ctions a	re prev	ented fro	om warpin	g, Torsion	of nonc	ircular
shaft	•						•		•			
STRESSES	S IN RO	DTARY	SECT	TIONS A	ND CO	ONTA	CT STF	RESSES				9
Radial and	tangent	ial stres	sses in	solid dis	c and r	ing of u	uniform	thickne	ess and va	rying thick	cness all	owable
speeds. Met	thods of	compu	iting co	ntact stre	ess – de	flection	n of bod	lies in po	oint and lir	e contact	applicati	ons.
									,	ΤΟΤΛΙ =	45 PFR	
REFEREN	CE BO	OKS								IUIAL-	4 51 EK	1005
1. Arthur	P Bore	si, Rich	ard J. S	Schmidt,	"Advar	nced me	chanics	s of mate	erials", Joł	n Wiley, ((2002)	
2. Borg.S	5.F., "M	atrix-T	ensor n	nethods i	n conti	nuum N	Mechan	ics", Wo	orld Scient	tific pub. (Co., 2^{nd}	edition,
(1990)										-		
3. Robert	D. Coc	ok, War	ren C. Y	Young, "	Advanc	ed Med	chanics	of Mate	rials", Mc	-millan pu	b. Co., (1985)
4. Srinath	n. L.S., '	'Advan	ced Me	chanics	of solid	s", Tata	a McGr	aw Hill,	(1992)	010)		
5. Timosl	henko a	nd Goo	dier, "I	heory of	t Elastic	city", M	lcGraw	Hil, $3^{\rm Hu}$	edition, (2	010)		
										Program	Specific	
Course			Prog	ram Ou	tcomes	(Pos)				Outcome	s(PSOs)	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO
CO1		3		3					3		2	
CO2	3	2							3		2	
CO3	3	2				1			3	2	_	
<u>CO4</u>	2	3				1			3	2		1
CO5		5							5			-
CO5												_
	I				1	1	1	1			1	

192ED1	D12 COMPUTER AIDED DESIGN									L-	T-P	С
								1	· · ·	3-	-0-0	3
Programn	ne:	M.E EN	IGINE	RING D	ESIGN			Sem:	Ι	Catego	ry:	PC
Aim:		To prov design	vide an	overviev	v of ho	w comp	uters are	e being	used in	mechan	ical c	omponent
Course Ou	utcome	es:										
The Student	ts will t	be able to)		0.1							0.1
COI: Have	a condita	ceptual u	indersta	nding of	t the prior CAE guide	inciples	of CAD	system	is, the 1	mplemer	itatior	of these
CO2: Under	rstand 2	$^{2}D_{1}$ 3D tr	ansform	ations a	nd proie	stems.	nsforma	tions				
CO3: Get k	nowled	ge of var	ious app	proaches	of geon	netric m	odeling	litonis				
CO4: Under	rstand r	nathema	tical rep	resentati	on of 21	D and 3I) entities	5				
CO5: Under	rstand t	he CAD	standard	ls								
FUNDAM	ENTA	<u>LS OF (</u>	CAD	6		1		• • • •	•	. 1		9
CAD Hardware and Software, Types of systems and system considerations, input and output devices,											t devices,	
hardware integration and networking, hardware trends, Software modules, Computer Communications,												
Principle of networking, classification networks, network wring, methods, transmission media and interfaces,												
network operating systems, COMPUTER GRAPHICS 9											9	
Introduction	n, trans	formation	n of geo	metric	models:	translat	ion, scal	ing, refl	ection,	rotation,	home	geneous
representati	on, co	ncatenate	ed trans	formatio	ons; ma	ppings	of geon	netric n	nodels,	translati	onal	mapping
rotational m	napping	, general	l mappir	ng, mapp	oings as	changes	s of coor	dinate s	ystem; i	nverse ti	ransfo	rmations
and mappin	g; DIC M	ODEL I										0
GEOMETRIC MODELING 9												
surface modeling – surface patch- Coons and bicubic patches- Bezier and R-spline surfaces											ilquestor	
SOLID MO)DELI	NG,										9
Fundamenta	als, bou	ndary re	presenta	tion (B-	rep), Co	onstructi	ve Solid	Geomet	ry (CSF	'), sweep	repre	sentation,
Analytic S	olid M	lodeling	(ASM)	, other	represe	entations	; solid	manipu	lations,	solid n	nodeli	ng based
applications	s: mass	propertie	es calcul	ations, r	nechani	cal toler	ancing, e	etc.				-
CAD STAN	DARD	DS										9
Standards f	or com	puter gra	phics- (Graphica	ıl Kerne	l Systen	n (GKS)	- stand	ards for	exchang	geimag	ges- Open
Graphics Li	brary (OpenGL)) - Data (exchang	e standa	rds - IGl	ES, STE	P, CALS	Setc co	ommunic	ation	standards.
DEFEDEN]	TOTAL=	= 45 P	ERIODS
REFEREN	CE BC	DOKS MaMa	.	ad The		D	"C A D		Dainai		"Due of	
1.	Manuf	acturing	non a manager	na Jin nent" S	econd F	dition F	CAD Pearson F	//CAM Educatio	n 1999	pies,	Praci	lice and
2.	Donald	l Hearn a	and M. F	Pauline H	Baker "C	Compute	r Graphi	cs". Pre	entice H	all, Inc,	1992.	
	Educat	tion - 200	03.			1	1					
3.	Foley,	Wan Da	m, Feine	er and H	ughes -	"Compu	iter grapl	hics prin	ciples &	z practice	e" Pea	rson
4.	Ibrahir	n Zeid "I	Masterir	ng CAD	CAM"	Fata Mc	Graw-Hi	ill Publis	shing Co	5.2007	• • • •	о тт'11
Э.	Willian Book (n M Ne	umann a anore 19	and Kob 280	ert F.Sp	oroul "P	rinciples	of Con	nputer C	raphics	, MC	Jraw Hill
	DOOK	Jo. Singe	<u>ipore, 1</u>	/0/.								
									1	Program	Spec	ific
Course		1	Prog	ram Ou	tcomes	(Pos)	I I I			Outcom	es(PS	Os)
Outcome	DO1	DOI	DO 2	DO 4	DO5	DOC	DO7	DOQ	PSO 1	PSO	PSO	PSO
<u>\$</u>	2	PO2	PO3	PO4	P05	PU6	PO/	PU8	1	2	3	4
	3		2	2					3	2		
CO2 CO2	3	<u>^</u>	2	2					3	2	2	
CU3	2	2	3	3					2	3		2
CO4	3	2		2					3	2		2
C05												
CU6												

192SE13	RESEARCH METHODOLOGY A	ND IPR		L-T-P	С				
				3-0-0	3				
Programme:	M.E ENGINERING DESIGN	Sem: I	Cat	tegory:	РС				
	To develop the research skills of the students in	investigating in	nto the	e research p	roblems				
Aim:	with a view to arriving at objective findings and	d conclusions a	nd into	erpreting the	e results				
	of their investigation in the form of systematic r	eports.							
Course Outcom	les:								
The Students will	be able to								
CO1: Understand	the basics elements in research.								
CO2: Discuss the	various faces of experimental design methodolog	y.							
CO3: illustrate the	e data collection methods with its aspects.								
CO4: Apply the k	nowledge of multivariate statistical techniques an	d develop resea	rch re	port as a mo	odel				
CO5: Understand that IPR protection provides an incentive to inventors for further research work and									
investment in R &									
CONCEPT OF H	RESEARCH AND ITS APPLICATION	<u> </u>	1.0		9				
Concept of resea	rch and its Application - types of research -	Quantitative an	nd Qu	alitative Re	esearch				
Techniques - Typ	es of problems Encountered by the Researcher -	Process of Rese	earch -	- Steps Invo	lved in				
Research Process	- Hypothesis development – Hypothesis testing w	71th quantitative	data.	Research d	esign –				
Purpose of the stu	dy: Exploratory, Descriptive, Hypothesis Testing	•							
EXPERIMENTA	L DESIGN		<u>с (;</u>	T (1	9				
Laboratory and the	le Field Experiment –Internal and External Valic	hty –Factors an	tecting	g Internal v	alidity.				
Measurement of v	Variables – Scales and measurements of variables	. Developing so	cales -	- Rating sca	ale and				
Magures	-validity testing of scales -Reliability concep	t in scales bei	ng de	veloped -S	lability				
DATA COLLEC	ΤΙΩΝ ΜΕΤΗΩΝς				0				
DATA COLLEC	LION METHODS	rious Types of	Some	ling Techn	9 igues				
Determination and	d Selection of Sample Member. Types of Data:	Secondary and	Samp Drima	ry Precaut	iques -				
Preparation of Ou	estionnaire and Collection of Data - Various Meth	ods of Data Co	llecti	on - Prenars	ation of				
Questionnaire and	Schedule - Types of Questions Sequencing of (Duestions - Che	rek Or	estions I e	noth of				
Questionnaire	i Schedule - Types of Questions, Sequencing of Q	Zuestions - ene	ur Qu		ingui oi				
ANALYSIS OF 1	DATA AND REPORT PREPARATION				9				
Data Analysis - (Coding Editing and Tabulation of Data - Various	Kinds of Char	ts and	Diagrams I	Used in				
Data Analysis -	Factor Analysis –Cluster Analysis –Discrimina	nt Analysis –N	/ultin	le Regressi	on and				
Correlation –Cano	onical Correlation – Use of SPSS in Data Analysis	s - Application a	and Ar	alvsis of V	ariance				
(ANOVA) - Mea	surement and Central Tendency - Measure of D	Dispersion and t	heir a	dvantages.	Report				
Preparation and it	t's Significance - Types and Layout of Research	Report - Prec	autior	ns in Prepar	ing the				
Research Report -	Integral parts of a report.	1		1	C				
INTELLECTUA	L PROPERTY RIGHTS				9				
Nature of Intelle	ectual Property: Patents, Designs, Trade and	Copyright. Pro	ocess	of Patentin	ng and				
Development: te	chnological research, innovation, patenting,	development.	Intern	national Sc	enario:				
International coop	peration on Intellectual Property. Procedure for g	rants of patents	, Pate	enting under	·PCT,				
Patent Rights: So	cope of Patent Rights. Licensing and transfer of	of technology.	Paten	t information	on and				
databases. Geogra	phical Indications.								
			TOT	AL= 45 PE	RIODS				
REFERENCE B	OOKS								
1. Garg,	B.L., Karadia, R., Agarwal, F. and Agarwal, U	J.K., 2002. An	introc	luction to R	Research				
2 Kotho	Juology, NDSA FUOIISIIEIS.	and Techniques	Nov	1 A ao Intonn	ational				
2. Kulla 2. Dobor	rt D Merges Deter S Menell Mark A La	mley " Intall	o. INCW	Property	in New				
J. KODEL	n i. morges, i dei 5. menen, mark A. Le	mey, ment	Jual	Toperty	III INCW				
4 Sinha	S.C. and Dhiman A.K. 2002 Research Method	lology Fee Fee	Public	cations 2 ve	olumes				
5 Troch	im WMK 2005 Research Methods the	concise knowle	edge 1	hase. Atom	nic Dog				
Public	shing.				205				

			-				Program Specific						
Course	Program Outcomes (Pos)									Outcomes(PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1 PSO2 PSO3 PSO				
CO1	3		2						3		2		
CO2	2	2	3	2					3	3	2	2	
CO3			2		3	2	2		2		2		
CO4		3		2	2	2			3	2			
CO5			2		3	2	2				2	3	
CO6													

192ED14	DESIGN AND MODELLING LABOR	RATORY	L-T-P	С					
			0-0-2	1					
Programme:	M.E ENGINERING DESIGN	Sem: I	Category:	PC					
Aim:	To communicate knowledge in Solid Modeling b	by using relevant	t CAD softwar	e					
Course Outcon	nes:								
The Students will	l be able to								
CO1. Interpret th	e fundamentals of the Computer Aided Design								
CO2. Determine	the basic concepts of graphics like CSG, B-Rep app	proaches in solid	l modeling						
CO3. Create the basic shapes of engineering components by using CAD software package									
CO4. Identify the different sheet metal modeling tools in computeraided modeling of complex structural									
problems									
CO5. Illustrate the	ne solid part modelling to join together using weldm	nent							
CO6. Built asser	nbly models								
CAD Introdu	iction								
 Sketcher 									
Solid modeli	ng – Extrude, Revolve, Sweep, etc and Variational	sweep, Loft, etc.	•,						
Surface mod	eling – Extrude, Sweep, Trim etc., and Mesh of cur	ves, Free form et	tc.,						
Feature man	pulation – Copy, Edit, Pattern, Suppress, History of	perations etc.,							
• Assembly –	Constraints, Exploded Views, Interference check								
Drafting - L	avouts Standard & Sectional Views Detailing & Pl	otting							
	ayouts, Standard & Sectional Views, Detaining & T	lotting							
SVSTEM REO	IIRMENTS (for a batch of 25 Students)								
Des	cription of Equipment	Quantity	v Required						
HAI	20WARE		, 1						
Computer Server		1 No.							
Computer Syster	n								
17" VGA Color	Monitor								
Pentium IVProce	essor	25.21							
40GBHDD		25 Nos.							
512MBRAM									
SOFTWARE									
Suitable modeling	ng software like Pro-E/Solid Works/Solid	25 1:00	25						
Edge/CATIA		25 licens							
		I	Program Spec	ific					

						I	Program	ı Specifi	c				
			Prog	ram Ou	itcomes	(Pos)			(Outcomes(PSOs)			
Course											PSO	PSO	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	1	2	3	4	
CO1		3		2			3			3	3		
CO2		2		3					2	3	2		
CO3				3		2				3	3	2	
CO4				3			2			2	3	2	
CO5	2	2		3						2	3		
CO6	2		2	3			2	2		3	2	2	

191ED15	ANALYSIS LABORATO	RY			L-T-P	С				
					0-0-4	2				
Programme:	M.E. ENGINEERING DESIGN	Sem:	Ι	Cat	egory:	PC				
Prerequisites:	-									
Aim: To gain knowledge in analyzing various structures by using relevant software										
Course Outcom	ies:									
The students will	The students will be able to									
CO1. Demonstrat	e the features of ANSYS software									
CO2. Validate the	stress analysis in beam problems with empirica	l formulas								
CO3. Explicit the	stress analysis of a plate with a circular hole and	1 axi-symm	netric c	ompor	ient					
CO4. Identify the	need of mode frequency analysis in 2D compon	ent		-						
CO5. Realize the Thermal analysis of a 2D component										
CO6. Import any solid model to ANSYS for contact analysis										
CO5. Realize the CO6. Import any	Thermal analysis of a 2D component solid model to ANSYS for contact analysis	ent								

List of Exercises

- 1. Static Analysis of 2-D beam problems
- 2. Static Analysis of Plane stress problems
- 3. Static Analysis of Axisymmetric problems
- 4. Mode frequency analysis of a 2D plate
- 5. Mode frequency analysis of beams
- 6. Harmonic analysis of a 2D component
- 7. Transient Heat Transfer Analysis of 2D problems
- 8. Heat Transfer Analysis of Axisymmetric Problems
- 9. Contact Analysis of a simple solid model
- 10. Buckling Analysis of a column

SYSTEM REQUIREMENTS

Hardware:

- 1. Intel i3 core due processor with 4GB ram with 500GB hard disk 25 Nos.
- 2. Laser Printer -1 No.

Software:

1. ANSYS V14.5/equivalent – 25 licenses

TotalPeriods:45

Course			Prog	ram Ou	tcomes	(Pos)			ŀ	Program Outcom	Specifies(PSOs	c)
Outcom es	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO 2	PSO 3	PSO 4
CO1	3	2		2					2	3		
CO2	2	3		3					2	3	2	3
CO3	2	2		3						2	3	2
CO4	2	2		3			2			2	3	2
CO5	2	2		3			2			2	3	
CO6	2	2		3	2		2		2	2	3	

192ED21	FINITE ELEMENT MET	HOD	L-T-P	С						
	•		3-0-0	3						
Programme:	M.E ENGINERING DESIGN	Sem: II	Category:	PC						
Aim	To introduce the fundamentals of vibration	s finite element m	ethods used in	mechanical						
AIIII.	design.									
Course Outcom	es:									
The Students will	be able to									
CO1: Study the ge	neral steps in finite element analysis and deriv	ve the basic finite	element equation	on						
CO2: Study the va	rious finite element methods, concepts, types	of elements and e	element matrice	8						
CO3: Solve the lin	lear elasticity problems in the field of heat tran	nsfer and fluid me	chanics.							
CO4: Assemble th	he finite element structural dynamics and v	ibrational matrice	es, and also de	termine the						
design respo	onse to those conditions									
CO5: Solve the tra	ansient non-linear problems and find out the st	resses and strains	through post p	rocessing.						
GENERAL INTRODUCTION 9										
Introduction – structural element and system – assembly and analysis of a structure – boundary conditions –										
general pattern –	standard discrete system – transformation o	f coordinates – e	xamples – dire	ct physical						
approach to proble	ems in elasticity – direct formulation – disc	lacement approac	ch – minimizati	on of total						
notential – conver	gence criteria – discretization error – nonco	forming elements	s and patch test	- solution						
process		inorming erement.	s and paten tes	bolution						
GENERALIZAT	ION OF FINITE ELEMENT CONCEPTS	AND ELEMEN	T SHAPE	9						
FUNCTIONS										
Boundary value pr	roblems – integral or weak statements – weig	thed residual met	thods – Galerki	n method –						
virtual work as we	ak form of equations in solid and fluid mecha	nics – variational	principles – es	tablishment						
of natural variation	onal principles for linear self-adjoint differe	ntial equations –	standard and	nierarchical						
elements – shape	functions – rectangular elements – complet	eness of polynon	nials – Lagrang	e family –						
Serendipity famil	v – rectangular prisms – tetrahedral eler	nents – global	and local fini	te element						
approximation $-r$	mapped elements – coordinate transformatio	ns – geometrical	conformity of	elements –						
evaluation of elem	ent matrices – order of convergence – numer	cal integration	contennity of							
APPLICATIONS	TO FIELD PROBLEMS			9						
Solution to proble	ems in linear elasticity – plane problems in	elasticity – plate	s and shells –	solution of						
problems in heat-t	ransfer and fluid mechanics – numerical exam	ples – discussion	on error estima	tes.						
FINITE E	LEMENTS IN STRUCTURAL DYNAMI	CS AND VIBRA	TIONS	9						
Dynamic equation	1s - stiffness mass and damping matrices	- consistent and	diagonal mass	matrices –						
Extraction of natur	ral frequencies and modes – Reduction of num	ber of degrees of	freedom – mod	al methods						
– component mode	e synthesis – harmonic analysis – response his	tory – explicit and	1 implicit direct	integration						
- stability and accu	uracy – analysis of response spectra	in provide and	p							
NON-LINEAR A	NALVSIS			9						
Non-linear probler	ms in elasticity $-$ some solution methods $-$ nla	sticity introduction	on general for	nulation for						
small strains – for	mulation for yon Mises theory – computation	al procedure – pro	ohlems of gans	and contact						
geometric non li	inearity modelling considerations	ai procedure – pre	bolenns of gaps							
	nearity – moderning considerations.		TOTAI = 45	PERIODS						
REFERENCE BO	OOKS:		101AL- 43	TERIODS						
1 Charles F	Knight "The Finite Flement Method in N	Aechanical Desig	n" PWS-Kent	publishing						
company	(1993)	feenamear Desig		puolisining						
2 Cook R D) Malkus D S Plesha M E and Witt R I "	Concents and Anr	lications of Fin	ite Flement						
2. Cook, R.D Δnalveie"	Wiley Student Edition 4 th Edition New Del	hi 1 st Reprint (20)	07)							
3 Huebner	KH Dewhirst DI Smith DF & Run	on T G "The Fi	nite Flement 1	Method for						
Engineers	" Wiley Student Edition 4 th Edition John W	ilev & Sone Put I	[td] (2004)							
A Ramamurt	thi V "Finite Element Method in Machine Γ	lesion" Narosa Di	uhlishing House	(2009)						
5 7 jentriouri	cz O C Taylor R I "The Finite Flamont M	ethod" McGraw	Hill Internation	al Editions						
J. ZICIKIEWI Ath Edition	Volume 2 (1901)			ai Luitions,						
+ Euliion	, volume 2, (1991)									
L										

~			Ð	•		Program Specific						
Course			Prog	ram Ou			Jutcom	es(PSOs				
s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	1	2	3	4
CO1	3	2							3	2	2	
CO2	3	2							3	2	2	
CO3	3	3		2					3	2	2	
CO4	3	3		2					3	2		2
CO5	3	3		2					3	2		
CO6												

192ED22	ADVANCED VIBRATIONS AND ACOUSTICS L-T-P C											
				3-0-0	3							
Programme:	M.E ENGINERING DESIGN	Sem:	II	Category:	PC							
Aim:	To introduce the fundamentals of vibrations, stu- of freedom systems.	dy effect	t of vibra	tion of diffe	rent degre							
Course Outcom	les:											
The Students will	be able to											
CO1: Study the fu	ndamentals of vibrations											
CO2: Understand the vibrations of different degrees of freedom system												
CO3: Know the methods of vibration analysis, controlling the effect of vibration.												
CO4: Discuss the	effect of vibrations on important mechanical elem	ents	transmis	sion derive	nlana an							
spherical wave eq	CO5: Know various terminologies used in acoustics and acoustic wave transmission, derive plane and											
spherical wave equations, and obtain sound pressure level at a given distance from a simple sound source of known strength.												
FUNDAMENTA	known strength. 9											
Introduction – So	urces of Vibration – Mathematical Models – Dis	placeme	nt, velo	city and Acc	eleration							
Review of Single	e Degree Freedom Systems – Vibration isolatio	on, Vibı	rometers	and accele	rometers							
Response to Arbit	rary and non-harmonic Excitations – Transient Vi	ibration	-Impulse	e loads – Cri	tical Spee							
of Shaft – Rotor s	ystems.		-		-							
TWO DEGREE	FREEDOM SYSTEM AND MULTI-DEGREE	FREEI	DOM SY	STEM	9							
Introduction-Free	Vibration Of Undamped And Damped-Forced Vibra	tion Wit	h Harmoi	nic, Excitatio	on System							
Coordinate Couplin	ngs And Principal Coordinates -Multi Degree Freed	lom Syst	em – Inf	luence Coeff	icients an							
stiffness coefficie	nts – Flexibility Matrix and Stiffness Matrix – Ei	gen Vali	ues and I	Eigen Vector	rs – Matri							
Iteration Method -	- Approximate Methods: Dunkerley, Rayleigh's, a	and Holz	zer Meth	od - Geared	Systems							
Eigen values & E	igen vectors for large system of equations using si	ub space	e, Lanczo	s method –	Continuou							
System: Vibration	of String, Shafts and Beams.											
CONTINUOUS	SYSTEM				9							
Continuous Syster	ms. Natural Vibrations of beams – Differential equ	ution of	motion.	solution by	the metho							
of separation of v	ariables, frequency parameter, natural frequencie	s and m	ode shar	bes. forced v	ibration o							
simply supported	beam subjected to concentrated harmonic force	at a po	oint, Mo	de summatio	on method							
discretized models	s of continuous systems and their solutions using F	Rayleigh	– Ritz n	nethod								
VIBRATION CO	DNTROL				9							
Specification of V	ibration Limits – Vibration severity standards – V	Vibration	n as cond	lition Monito	oring tool							
Vibration Isolatio	n methods - Dynamic Vibration Absorber, Tors	sional ar	nd Pendu	ulum Type A	Absorber							
Damped Vibration	n absorbers - Static and Dynamic Balancing - B	Balancing	g machir	nes – Field b	alancing							
Vibration Control	by Design Modification - Active Vibration Contr	ol.										
ACOUSTICS					9							
Plane acoustic wa	ves, Sound speed, characteristic acoustic impedan	ice of ela	astic mee	lia, sound in	tensity, dl							
scale, Transmissio	n Phenomena, transmission from one fluid medium	n to anot	her, norn	hal incidence	, reflection							
at the surface of a	a solid, standing wave patterns, Symmetric Sphe	rical wa	ves, nea	r and far fie	lds, simpl							
models of sound s	ources, sound power, determination of sound pow	er and ir	itensity I	evers at a po	int due to							
simple source.												
			Т	OTAL = 45	PERIOD							
REFERENCE B	OOKS		1	J 1111 T J								
1. Graham Kelly Delbi (2007)	, S. & Shashidar K. Kudari, "Mechanical Vibratio	ns", Tata	a McGra	w Hill Publi	shing, Nev							
2. Lawrence E	Kinsler and Austin R.Frev. "Fundamentals of acou	stics". V	Vilev Ea	stern Ltd., 19	987.							
3. Ramamurti, V	⁷ ., "Mechanical Vibration Practice with Basic The	ory", Na	rosa, Ne	w Delhi, (20	00)							
4. Rao, S.S., "M	echanical Vibrations", Addison Wesley Longman	, (1995)	-		,							
5. Thomson, W.	T., "Theory of Vibration with Applications", CBS	Publish	ers and I	Distributors, 1	New Delh							
(1990)												

			Prog	Program Specific Outcomes(PSOs)								
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2							3			
CO2	3	2			2				3	2	2	
CO3	3	2			2				3	2	2	
CO4	3	2			2				3	2	2	
CO5	3	3			2				3	2	2	
CO6												

192ED23	ADVANCED SIMULATION LABOR	ADVANCED SIMULATION LABORATORY										
				0-0-4	2							
Programme:	M.E ENGINERING DESIGN	Sem:	II	Category:	PC							
Aim:												
Course Outcom	ies:											
The Students will	be able to											
CO1. Determine	the various static loads of machine elements											
CO2. Analyze th	e thermal related mechanical systems											
CO3. Get knowl	edge on modal analysis of various elements											
CO4. Investigate	e the boilers by using axisymmetric problems											
CO5. Understand	ding the nature of machine elements under dynami	ic loads										
CO6. Acquire kr	nowledge on analysis of various non linear system	S:										

Analysis of Mechanical Components – Use of FEA Packages like ANSYS/ NASTRAN etc., Exercises shall include analysis of

- 1. Force and Stress analysis using link elements in Trusses, cables etc.
- 2. Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates and simple shells.
- 4. Stress analysis of axi symmetric components.
- 5. Thermal stress and heat transfer analysis of plates.
- 6. Thermal stress analysis of cylindrical shells.
- 7. Vibration analysis of spring-mass systems.
- 8. Model analysis of Beams.
- 9. Harmonic, transient and spectrum analysis of simple systems.

SYSTEM REQUIRMENTS (for a batch of 25 Students) Descriptionof Equipment	Quantity Required
HARDWARE	
Computer Server	1 No.
Computer	
System	
30 17" VGA Color Monitor Pentium IVProcessor 40GBHDD 512MBR A M	25 Nos.
Printer	1 No.
SOFTWARE Suitableanalysissoftware	25 licenses

TOTAL : 45PERIODS

Course			Progr	am Ou	itcomes		Program Specific Outcomes(PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	3		3					2	3	2	
CO2	3	3		3					2	3	2	2
CO3	3	3		3					2	3	2	2
CO4	3	3		3	2	2	2		2	3	2	2
CO5	3	2		3					2	3	2	
CO6	3	2		2								

192ED24	DYNAMICS AND VIBRATION LABO	RATOF	RY		L-T-P	С				
					0-0-4	2				
Programme:	M.E., Engineering Design	Ca	tegory:	PC						
Prerequisites:	Advanced Vibration and Acoustics									
Aim:	To educate the students to apply the kinetic solutions to various experiments									
Course Outcom	es:									
The students will	be able to									
CO1. Know the fu	inctions of kinematic links and its mechanisms									
CO2. Interpret the	fundamentals of the natural frequency of free vibr	ration of	fixed	beam	ı					
CO3. Find the gyr	oscopic effect									
CO4. Determine t	CO4. Determine the basic concepts of governor apparatus									
CO5. Identify the	CO5. Identify the different cam profile mechanisms									
CO6. Enumerate t	O6. Enumerate the critical speed of shaft									

LISTOFEXPERIMENTS

- 1. To study the forced vibration of the beam for different damping.
- 2. To determine the radius of gyration 'k' of a given compound pendulum.
- 3. To determine the radius of gyration of given bar using bi-filler suspension.
- 4. To verify the dunker lay's rule viz.
- 5. To determine the natural frequency of undamped torsional vibration of a single rotor shaft system.
- 6. To determine the natural frequency of undamped torsional vibration of two rotor shaft system.
- 7. To determine the frequency of undamped free vibration of an equivalent spring mass system.
- 8. To determine the frequency of damped force vibration of a spring mass system

TotalPeriods:45

LIST OF EQUIPMENTS

- 1. Frequency of undamped free vibration set-up of an equivalent spring mass system 1
- 2. Frequency of damped forced vibration set-up of an spring-mass system -1
- 3. Natural Frequency of undamped torsional vibration set-up of single rotor shaft system -1
- 4. Natural Frequency of undamped torsional vibration set-up of two rotor shaft system -1
- 5. Forced vibration set-up of a beam with different damping coefficients -1
- 6. Compound pendulum set-up for determination of its radius of gyration -1
- 7. Bar with bi-filar suspension set-up determination of its radius of gyration -1
- 8. Beam with point loads set-up under any support condition 1

Course			Prog	Program Specific Outcomes(PSOs)								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	3			2		2		3	3	2	
CO2	3	3			2		2		3	3	2	
CO3	3	3			2		2		3	3	2	
CO4	3	3			2		2		3	3	2	
CO5	3	3			2		2		3	3	2	
CO6	3	3			2		2					

Programme Elective Courses

192EDE	01 APPLIED MATHEMATICS FOR DESIGN ENGINEERS L-T-P C													
								~		3.	-0-0	3		
Programn	ne:	$\frac{\mathbf{M} \cdot \mathbf{E} \cdot \mathbf{E}}{\mathbf{N} \cdot \mathbf{E}}$	IGINE	RING D	ESIGN			Sem:	I	Catego	ory: Pl	<u>C</u>		
Prerequisi	ites:	N1l												
Aim:		To deve	lop the 1	nathema	atical ski	ill in the	area of	Applica	tions in	Engineer	ring Des	ign		
Course Ou	utcome	es:												
The Student	ts will b	e able to)											
CO1: Under	rstand J	oint dist	ribution	s and rar	ndom va	riables								
CO2: Solve	the Fin	ite diffe	rence me	ethods a	nd – Nu	merical	solution	of parti	al differ	ential eq	uations			
CO3: Famil	203: Familiarize with the tensor analysis 204: Understand the calculus of variation													
CO4: Under	CO4: Understand the calculus of variation													
CO5: Use fa	CO5: Use fast Fourier transform													
RANDOM	VARIA	ABLES										9		
Joint distrib	outions	- Marg	inal and	d Condi	tional d	istributi	ons – fi	unctions	of two	o – dime	nsional	random		
variables –	variables – Regression curve – Correlation.													
COMPUT	COMBUTATIONAL METHODS IN ENGINEEDING													
COMPUTA Boundary y	COMPUTATIONAL METHODS IN ENGINEERING 9													
Laplace's at	alue pro	son equi	of ODE	– Finne Liebman	n's itera	tion pro	1000s - 1	Solution	of heat	conduct	$\frac{1}{100} = \frac{1}{201}$	ation by		
Schmidt ext	Laplace's and Poisson equation – Liebmann's iteration process – Solution of heat conduction equation by Schmidt explicit formula and Crank-Nicolson implicit scheme – Solution of wave equation													
	Schmidt explicit formula and Crank-Nicolson implicit scheme – Solution of wave equation.													
TENSOR A	ΓENSOR ANALYSIS 9													
Summation	Summation convention - Contra variant and covariant vectors - contraction of tensors - inner product -													
quotient law	quotient law – metric tensor – Christoffel symbols – covariant differentiation – gradient, divergence and curl.													
CALCULUS OF VARIATION 9 Variation and its properties – Euler's equation – functionals dependent on first and higher order derivatives														
Variation and its properties – Euler's equation – functionals dependent on first and higher order derivatives – functionals dependent on functions of several independent variables – problems with moving boundaries														
- direct met	thods –	Ritz and	l Kantoi	ovich m	nethods.			Pi						
FAST FOU	JRIER	TRANS	FORM									9		
Discrete For	urier tra	nsform -	-lineari	ty and pe	eriodicit	y – invei	rse N-po	int DFT	- DFT a	approxin	nation of	Fourier		
coefficients	- samp	pled Fou	rier seri	es – Ap	proxima	ation of	Fourier	transfor	m by a	n N-poin	t DF [™] Γ –	- FFT –		
Computatio	nal erno	ciency o	IFFI.											
									,	TOTAL	= 45 PE	RIODS		
REFEREN	CE BC	OKS:									1011			
1. Andrew	s, L.C.	and Phil	ips, R. I	. "Math	ematical	l Techni	ques for	Engine	ers and	Scientists	s", Prent	ice Hall		
of India	, (2006))	1 /				1	U			,			
2. Grewal,	B.S., "	Higher I	Engineer	ring Mat	hematic	s", 40^{th}	edition, 1	Khanna	Publish	ers, (200	7)			
3. Grewal,	B.S., "	Numeric	al meth	ods in E	ngineeri	ng and S	Science"	$^{\prime}$, 7 th edit	ion, Kh	anna Pul	olishers,	(2005)		
4. Gupta, A	A.S., "C	alculus	of variat	tions wit	h applic	ations",	Prentice	e-Hall of	India,	New Del	h1, (1997)	/) >		
5. James, 0	J., "Ad	vanced	vioaern	Enginee	ring Ma	thematic	cs ¹ , 3 ¹⁴ e	dition, F	earson	Educatio	n, (2004)		
	[-	~ •			
C			D	0	4	(D)				Progran	n Specifi	ic		
Course		1	Prog	ram Ou	licomes	(POS)	1	1	PSO			S) DSO		
Sutcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	1 30	2	3	4		
<u> </u>	2	2	100	101	100	1.00		200	- 2	+-	-	2		
	2	2						2	2	1		2		
	3	2						2	3			2		
003	3	2						2	3			2		
CO4	3	2						2	3			2		
CO5	3	2						2	3			2		
CO6														

192EDE02	ADVANCED ENGINEERING MATERIALS		L-T-]	P	С
			3-0-()	3
Programme:	M.E ENGINERING DESIGN	(Category:	PE	
Aim:	To impart the knowledge on properties and the applicati	ons o	f materials		
Course Outcomes					
The Students will b	be able to				
CO1. Demonstarte	an understanding of mechanics, physical and chemical p	roper	ties of mate	erials i	ncluding
metals, ceramics, p	olymers and composites				
CO2:Understand ex	kistence of imperfections and their effects on mechanical p	roper	ties of mate	erials a	nd cause
of failure				0	
CO3: Demonstrate	understanding of phase diagrams and their use in predi	cting	phase trans	storma	tion and
microstructure			1		1 . 66
CO4: Understand a	nd predict various types of failures using concept of fract	ure m	lechanics, c	reep a	nd effect
CO5:Know Electri	ical Thermal Ontical and Magnetic Properties of m	atala	ooromios	nolum	ore and
composites	ical, Thermal, Optical and Wagnetic Troperties of Inc	ctais,	cerannes,	poryn	icis allu
CO6: Understand f	he economic considerations in usage and recycling of mat	erials	in humen i	ise	
	N	er iaib			9
Historical perspect	ive of Materials Science. Why study properties of materia	als? (lassificatio	on of n	naterials.
Advanced Material	ls, Future materials and modern materials. Atomicstruct	ure. A	Atomic bon	ding i	n solids,
Crystal structures,	Crystalline and noncrystalline materials. Miller indices.	Anis	sotropic ela	sticity	. Elastic
behaviour of compo	osites. Structure and properties of polymers. Structure and	l prop	erties of ce	ramics	
IMPERFECTION	NS AND STRENGTHENING MECHANISMS				9
Point defects. The	oretical yield point. Line defects and dislocations. Inter	facial	defects. B	ulk or	volume
defects. Atomic vi	brations; Elastic deformation. Plastic deformation. Interp	oretati	ion of tensi	ile stre	ss-strain
curves Yielding un	nder multiaxial stress. Yield criteria and macroscopic a	aspect	ts of plasti	c defo	rmation.
Property variability	and design factors, Diffusion mechanisms. Steady and no	n-stea	ndy state dif	fusion	. Factors
that influence diff	fusion. Non-equilibrium transformation and microstru	cture,	Dislocatio	on and	l plastic
deformation. Mecl	hanisms of strengthening in metals. Recovery, recrys	stallız	ation and	grain	growth.
Strengthening by se	econd phase particles. Optimum distribution of particles. I		e		0
FIASE DIAGKA	diagrama Dartiala strangthaning by provinitation Prov	initati	ion ropation		9 action of
	thagrams. Farticle strengthening by precipitation. Free	ipitati			
nucleation and grov	wth. The fron-carbon system. Phase transformations. Trans	storm	ation rate e	nects	and III
diagrams. Microstr	ucture and property changes in iron-carbon system				
FAILURE					9
Fracture. Ductile an	nd brittle fracture. Fracture mechanics. Impact fracture. D	uctile	brittle tran	sition.	Fatigue.
Crack initiation an	d propagation. Crack propagation rate. Creep. Generaliz	ed cr	eep behavi	our. St	ress and
temperature effects					
APPLICATIONS	AND PROCESSING				9
Types of metals and	l alloys. Fabrication of metals. Thermal processing of meta	ls. He	eat treatmer	nt. Prec	ipitation
hardening. Types	and applications of ceramics. Fabrication and proces	sing	of ceramic	s, Me	chanical
behaviour of polym	ners. Mechanisms of deformation and strengthening of po	lymer	s. Crystalli	zation,	melting
and glass transition	Polymer types. Polymer synthesis and processing, Partic	ele rei	nforced con	mposit	es. Fibre
reinforced composi	tes. Structural composites				
			TOTAL=	45 PH	RIODS
KEFERENCE BC	JUKS	2012			
1. Dieter, G. E., "	instriant Michael K Pudinstri "Engingering Material-"	2013) Dra	tion Unll -	fIndia	Drivet-
Limited (2012)	miski and Michael K. Dudniski Engineering Materials,	rren	ince mail 0	1 111018	i Frivate
3 Smallman R F	Bishon R. I. "Modern Physical Metallurov and Material	Fnoi	neering So	ience	Process
application" R	utterworth Heinemann Sixth Ed 1999	Lugi	neering, Se	ience,	1100033,
4. Sydnev H. Avn	er "Introduction to Physical Metallurøv" McGraw Hill Bo	ook C	ompany. (?	(010)	
5. William D. Cal	lister, Jr, "Materials Science and Engineering". John Wile	ey & s	sons, 07		
	, ,	,	, . .		

Course			Prog	Program Specific Outcomes(PSOs)								
Outcome s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2					2		3		2	
CO2	3	2					2		3		2	
CO3	3	2					2		3		2	
CO4	3	2					2		3		2	
CO5	3	2					2		3		2	
CO6	3	2					2		3		2	

192EDF	203	03 ADVANCED MACHINE DESIGN L-T-P										
										3-0-	0	3
Programn	ne:	M.E E	NGINE	RING I	DESIGN	I			C	ategory:	PE	
Aim:		To prov	vide an o	overviev	v of adva	ances in	machin	e design				
Course O	utcome	s:										
The Studen CO1: Reali important a and custom CO2: Demo of a product CO3: Gener of a product CO4: Under CO5: Know CO6: Desig	ts will be ze that spects o er center onstrate t t. rate diffe t for a pa rstand th various gn the co	e able to creativit f design red mark the abilit erent ide articular the princip s method mponen	ty, manu other the cet. cy to ider eas after purpose pals used ls of rap ts consid	ufactura han find htify nee identify d while o id proto dering st	bility, a ing dim ds of the ving the designin typing the trength b	ssembly ensions e custom need an g for ma ne produ pased rel	, mainta and stre er and c d deterr nufactur cts to te iability.	ninability sses in t onvert th nining th re, assen st and m	y, emot he high nem in to ne speci nbly, en nodify th	ions, reli ly compe o technica fications notions ar ne design	ability a etitive, d al specifi and con nd maint s.	are also ynamic ications astraints enance.
Developme	nt proce	sses and	organiz	ations, l	Product	Planning	5 ,					
CONCEPT Need Identi creativity m	GENE fication tethods,	RATIO - proble Concept	N AND m defini t testing	TESTI ition, pro	NG oduct sp	ecificati	on, conc	cept ge	neration	n&selecti	on, eva	9 luation,
DESIGN F	OR PR	OCESS	SES									9
Design for 1	manufac	ture, ass	sembly,	mainten	ance, ca	sting, fo	rging,					
RELIABII	JTY O	F DESI	GN									9
Design for I	Reliabili	ty, stren	gth base	ed reliab	ility, paı	allel and	l series	systems,	robust	design,		
INDUSTRI	AL DE	SIGN										9
Design for	Emotion	and exp	perience	, Introdu	ction to	retrofit	and Eco	design,	Human	behavior	r in desig	gn
		1							,	TOTAL=	= 45 PE	RIODS
REFEREN	CE BO	OKS										
1. Av Boo 2. Geo 3. Pah 199 4. Pra Edi	erill M. ok Com orge E l al, G.an 06. shant K ition, Pl	Law at pany, 1 Dieter, ' d W.Be tumar, ' HI New	nd W. E 991. "Engine itz, Eng 'Produc Delhi.	David K cering I gineerin et Desig	elton "S Design" Ig Desig In, Crea	Simulati , McGra gn–A Sy tivity, C	on, mo nw Hill /stemat Concept	delling Compa ic Appr s and U	and an ny oach – sability	alysis", I Springe y", Easte	McGrav r, 2nd E ern Ecor	v Hill Cd., nomy
J. WC	005011	1.1., 1		101110	Enginee	ang De	, sigii	wicora	w 11111		mpany,	1900
Course Outcome			Prog	ram Ou	tcomes	(Pos)			PSO	Program Outcome PSO	Specifi es(PSOs PSO	c) PSO
S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	1	2	3	4

CO1

CO2

CO3

CO4

CO5

CO6

192EDE	04	ADVANCED MACHINING PROCESSES		L-T-I)	С					
				3-0-0		3					
Programm	ne:	M.E ENGINERING DESIGN	0	Category:	PE						
Aim:		To understand the various advanced machining processes	s, adv	antages an	d appli	ications					
Course Ou	itcome	s:									
The Students	s will b	e able to									
CO1. Class	sify unc	onventional machining process and identify various proces	ss sel	ection para	meters	\$					
CO2. Learn	n variou	is mechanical energy based process									
CO3. Unde	erstand	the various unconventional machining process based on ele	ectric	al energy							
CO4. Study	y the va	rious chemical energy machining process, parameters affe	cting	it and appl	ication	18					
CO5. Know	v the m	achining process that fall under electro chemical energy, it	ts par	ameters an	d appl	ications					
CO6. Expla	ain the	various thermal energy based machining processes in detai	il alo	ng with the	ir appl	ications					
INTRODU	CTIO	N				9					
Introduction	to ad	vanced machining processes – Need – classification –	Brie	f overview	- Ul	trasonic					
machining(U	JSM)	- Ultrasonic Machining (USM) - Working Principles	– eq	uipment u	sed –	Process					
parameters -	- MRR	– Variation in techniques used – Applications									
MECHANI	CALE	NERGYBASEDPROCESSES				9					
Abrasive jet	t machi	ning (AJM) - Water jet cutting (WJC) and Abrasive wa	ater j	et machini	ng (A'	WJM) -					
Magnetic ab	orasive	finishing (MAF) - Abrasive flow finishing (AFF)- Magne	torhe	ological fin	nishing	g (MRF)					
- Magnetorl	heologi	cal abrasive flow finishing (MRAFF) - working Princ	ciple	- equipme	ents –	Process					
Parameters -	- Surfa	ce Finish and MRR – Applications									
ELECTRIC	ELECTRICALENERGYBASEDPROCESSES 9										
Electric Discharge Machining (EDM) – Electric Discharge Grinding (EDG) - Electric Discharge Diamond											
Grinding (E	DDG)	- Wire Electric Discharge Machining (W-EDM) - worl	king	Principle -	equip	ments –					
Process Para	meters	- Surface Finish and MRR - Applications	-	_							
ELECTRO	-CHEN	AICALENERGYBASED PROCESSES				9					
Electrochem	nical M	fachining (ECM) - Electrochemical Grinding (ECG) - El	lectro	ostream Dr	illing	(ESD) -					
Shaped Tub	e Elec	trolytic Machining (STEM) - working Principle - equip	ment	s –Process	Parar	neters –					
Surface finis	sh and	MRR – Applications									
THERMAL	LENER	GYBASEDPROCESSES				9					
Laser Beam	machi	ning and drilling (LBM), plasma Arc machining (PAM) a	and F	Electron Be	am M	achining					
(EBM) – Pri	nciples	– Equipment – Types – Beam control techniques – Applica	ations			a e i i i i i i i i i i i i i i i i i i					
	<u>r</u>			TOTAL=	45 PE	RIODS					
REFEREN	CE BC	OKS		-	-						
1. Ben	edict G	.F., "Nontraditional Manufacturing Processes", Marcel De	ekker	Inc., New	York,	(2014)					
2. Misl	hra P.K	., "Non-Conventional Machining", The Institution of Eng	ginee	ers,India, (2	2015)						
3. Pano	dey P.C	2. and Shan H.S., "Modern Machining Processes", Tata Mo	Grav	w-Hill, Nev	v Delh	i (2015)					
4. Paul	l De (Garmo, Black J.T. and Ronald A. Kohser., "Material and	l Proc	esses in M	anufa	turing",					
Pren	ntice Ha	all of India Pvt. Ltd., New Delhi, (2012)									
5. Vija	ıy K. Ja	in, "Advanced Machining Processes", Allied Publishers I	Pvt. 1	Ltd., New I	Delhi,	(2014)					
				Program	Specif	ic					
		Program Outcomes (Pos)		Outcome	s(PSO	s)					
Course			PSO	PSO	PSO	PSO					

			Prog	ram Ou	tcomes	(Pos)				Outcom	es(PSOs)	
Course									PSO	PSO	PSO	PSO	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	1	2	3	4	
CO1	3			2					3		2		
CO2	3		2	2					3		2		
CO3	3		2	2					3			2	
CO4	3	2	2	2					3			2	
CO5	3		2	2					3			2	
CO6	3	2	2	2					3			2	

192EDE05	ANALYSIS AND SYNTHESIS OF MECHANISMS		L-T-I		С
			3-0-0		3
Programme:	M.E. ENGINEERING DESIGN	0	Category:		PE
Aim:	To understand the analysis and synthesis of mechanisms				
Course Outcom	es:				
The Students will	be able to				
CO1. Develop	analytical equations describing the relative position, velocities	ity a	and accel	erati	on of all
moving link	S.				
CO2. Select, co	onfigure, and synthesize mechanical components into comp	lete	systems.		
CO3. Use kine	matic geometry to formulate and solve constraint equatio	ns 1	o design	link	tages for
specified tas	ks.				
CO4. Formulat	e and solve four position synthesis problems for planar and s	phe	rical four	:-bar	linkages
by graphical	and analytical methods.	1:1			
CO5. Analyze	and animate the movement of planar and spherical four-bar	1	tages.		1 • • •
CO6. Apply n	nodern computer-based techniques in the selection, and	arys	is, and	synt	nesis of
components	and their integration into complete mechanical systems.				0
INTRODUCTIC Degie Componenter	n Definitions and assumptions, planar and anotial machanism	a. 1.	inomotio	main	<u>9</u>
Basic Concepts;	Definitions and assumptions; planar and spatial mechanism	s; к		pair	s; degree
of freedom; equi	valent mechanisms; Kinematic Analysis of Planar Mechani	sms	5. Keview	/ 01 §	
and analytical m	tion analysis of kinematic	any	simple	mec	nanisms,
velocity-accelera	ation, analysis of complex mechanisms by the normal accele	rati	on and at	1X111	ary-point
CUDVATUDE TI	IEUDA				0
Eived and maxim	recontraded influction simple Euler Severy equation Deb	:11:	n aanstra	otio	9 na oubio
Fixed and movin	ig controdes, inflection circle, Euler-Savary equation, Bob	iiiie	er constru		ns, cubic
SVNTUESIS	E DI ANAD MECHANISMS				0
Vinomatia Synth	r r LANAR MECHANISMS	aha	avehov a	nooi	y na turnos
Amendatic Synth	esis of planar mechanisms, accuracy (precision) points, Ch		ith two t	paci broo	ing, types
of errors, Oraphi	using pala method, control and circle point survey. A polytical		illi two, t	fou	allu loui
accuracy points t	hanisma	l Syl		100	I-Dal allu
Shuer-crank mee					
SYNTHESIS U	SING COMPLEX NUMBERS.				9
Freudenstein's e	quation, synthesis for four and five accuracy points, compati	bili	tv conditi	ion.	synthesis
of four-bar for p	escribed angular velocities and accelerations using complex	c nu	mbers. th	iree	accuracy
point synthesis u	sing complex numbers.		,		
KINEMATIC A					0
Courles Curres	Equation of course and a part Chabyahay the area do	.h 1a	maintan	a.d. ar	<u>9</u>
Kinomatia Anal	Equation of coupler curve, Robert-Chebychev theorem, do	ator	points al	na sy	athed of
Analyzia of spatie	ysis of Spatial Mechanishis, Denavit-Hattenberg parani	elei	s, mauri	X III	ethod of
		7		15 D	FDIODS
REFERENCE B	OOKS		UTAL-	431	EKIODS
1. Erdman	A.G. and G.N. Sandor. "Mechanism Design – Analysis and	d S'	vnthesis"	. (V	ol. 1 and
2). Prenti	ce Hall India, 1988.		, 110110515	, ('	
2. Ghosh A	and A.K. Mallik. "Theory of Machines and Mechanisn	1 s".	Affiliate	ed E	ast-West
Press. Ne	w Delhi. 1988.	,	1 11111000		
3. Hartenbe	rg R.S. and J. Denavit, "Kinematic Synthesis of Linkages".	Mc	Graw-Hi	11. No	ew York.
1980.				-, - •	
4. Robert L	Nortan ."Design of Machinery' Tata McGraw Hill Edition				
5. Shipley I	E. and J.J. Uicker. "Theory of Machines and Mechanisms	". 2	nd Editio	on. N	AcGraw-
Hill. 199	5.	, -		, 1	
,					

Course			Prog	gram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	3		2					3	2		
CO2	3	3		2					3	2		
CO3	3	3		2					3	2		
CO4	3	2		2					3	2		
CO5	3	2		2					3	2		
CO6	3	2		2					3	2		

192EDE06	CONDITION BASED MONITORING	L-T-	P	С
		3-0-	0	3
Programme:	M.E. ENGINEERING DESIGN	Category	:	PE
Aim:	To understand the analysis and synthesis of mechanisms			
Course Outcom	les:			
The Students will	be able to			
CO1. Know an	d be able to explain the aim and the basics of CM			
CO2. Aware of	f some methods and procedures applied for general CM;			
CO3. Apprecia	te and understand the basic idea behind vibration-based stru	ctural hea	lth m	onitoring
and vibration	n-based condition monitoring, know the general stages of CN	/l;		
CO4. Apply so	me basic techniques for analysis of random and periodic sign	nals;		
CO5. Know the	e basics of Vibration of Linear Systems: time and frequency	response,	reson	ance;
CO6. Aware o	i some basic instrumentation used for machinery and sti	uctural v	ibrati	on-based
monitoring;				
INTRODUCTIC	NN			9
The basic idea of	f health monitoring and condition monitoring of structures an	d machine	es So	me basic
techniques.	i nearth monitoring and condition monitoring of structures an			The basic
BASICS OF SI	GNAL PROCESSING			0
Study of periodi	c and random signals, probability distribution, statistical pr	operties	uito s	9 and cross
correlation and r	ower spectral density functions of commonly found systems	spectral:	analv	sis
FOURIER TRA	ANSFORM	, speedar	andig	9
Fourier transform	n: the basic idea of Fourier transform, interpretation and ap	plication t	o rea	l signals.
Response of lin	ear systems to stationary random signals: FRFs, resonant	frequenc	ies. r	nodes of
vibration,	j j 8 ,	1	,	
VIBRATION-B	BASED MONITORING			9
Introduction to	vibration-based monitoring, Machinery condition monitorin	g by vibra	ation	analysis:
Use and selection	n of measurements, analysis procedures and instruments			•
APPLICATION	NS OF CONDITION MONITORING			9
Typical applicati	ons of condition monitoring using vibration analysis to rotatir	g machin	es, So	ome other
health monitorin	g techniques, acoustic emission, oil debris and temperature a	nalysis, A	pplic	ations
		TOTAL=	= 45 P	ERIODS
REFERENCE B	OOKS			
1. Adams, I	M., Rotating machinery analysis - from analysis to troublesh	looting, M	larcel	Dekker,
New Yor	k, 01, ISBN 0-8247-0258-1.			
2. Corneliu	s Scheffer Paresh Girdhar, Practical Machinery Vibration	Analysis a	and P	redictive
Maintena	nce, Newnes, 1st Edition, 04, Paperback ISBN: 9780750662	758		

Course			Prog	gram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2		2				3	2		
CO2	3	2	2		2				3	2		
CO3	3	3	2		3				3	2		2
CO4	3	3	2		3				3	2		2
CO5	3		2		3				3	2		
CO6	3	2	2		2				3	2		2

192EDE07	CONCEPTS OF ENGINEERING DESIGN	L-T-P	C
		3-0-0	3
Programme:	M.E ENGINERING DESIGN	ategory:	PE
Prerequisites:	Nil		
Aim:	To understand the basic steps involved in concept of engineering d	esign	
Course Outcom	les:		
The Students will	be able to		
CO1: Familiarize	the various steps involved in the design process and fundamentals		
CO2: Develop the	skills on ethical requirements and know about customer requiremen	ts	
CO3: Learn to know	ow the design methods and optimization		
CO4: Understand	the material selection process and design considerations		
CO5: Know the re	eliability in design		
DESIGN FUND A	AMENTALS		9
Importance of des	sign - The design process - Considerations of Good Design - Mo	rphology of	Design –
Organization for	design - Computer Aided Engineering - Designing to codes and st	andards – C	Concurrent
Engineering – Pro	duct and process cycles - Technological Forecasting - Market Identif	fication – Co	ompetition
Bench marking.			
CUSTOMER OF	RIENTED DESIGN & SOCIETAL CONSIDERATIONS		9
Identification of c	ustomer needs - customer requirements - Quality Function Deployn	nent – Produ	ict Design
Specifications – H	Iuman Factors in Design – Ergonomics and Aesthetics –Societal con	sideration -	Contracts
- Product liability	v - Protecting intellectual property - Legal and ethical domains - Co	des of ethics	s – Ethical
conflicts – Enviro	nment responsible design - future trends in interaction of engineerin	g with socie	ty.
DESIGN METH	ODS		9
Creativity and Pr	oblem Solving - Creativity methods - Theory of Inventive Proble	em Solving	(TRIZ) –
Conceptual decor	nposition – Generating design concepts – Axiomatic Design – E	Evaluation r	nethods –
Embodiment Desi	ign – Product Architecture – Configuration Design – Parametric Des	sign – Role	of models
in design – Mather	matical Modeling – Simulation – Geometric Modeling – Rapid prototy	ping – Finit	e Element
Analysis – Optim	ization – Search Methods.		1
MATERIAL SE	LECTION PROCESSING AND DESIGN		9
Material Selection	Process – Economics – Cost vs Performance – Weighted property Ir	ıdex – Value	e Analysis
– Role of Processi	ng in Design – Classification of Manufacturing Process – Design for	Manufacture	e – Design
for Assembly – De	esigning for castings, Forging, Metal Forming, Machining and Weldin	ng – Residua	al Stresses
– Fatigue, Fractur	e and Failure.		1
PROBABILITY	CONCEPTS IN DESIGN FOR RELIABILITY		9
Probability – Dist	ributions – Test of Hypothesis – Design of Experiments – Reliability	y Theory – I	Jesign for
Reliability – Relia	ability centered Maintenance – Robust Design – Failure mode Effect	Analysis.	
	T	<u>OTAL:45 P</u>	ERIODS
REFERENCE B	OOKS		·11 T 1'
I. Karl I. U	Irich and Steven D. Eppinger "Product Design and Development"	McGraw H	ill Edition
(2000)			
$\begin{array}{c c} 2. & \underline{\text{Mark N. I}} \\ 2 & \underline{\text{D-1-1}} \\ \end{array}$	Horenstein "Design concepts for engineers", Prentice Hall, (2010)		
3. Pani, G, a	"Elements of Engineering Design", Springer, Verlag, NY. (1984)		

Ray, M.S., "Elements of Engineering Design", Prentice Hall Inc. (1985)
 Suh, N.P., "The principles of Design", Oxford University Press, NY. (1990)

Course	Course Program Outcomes (Pos)										Program Specific Outcomes(PSOs)					
Outcome s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	PSO 3	PSO 4				
CO1	3	3							3		2	2				
CO2	3	3			3	2			3		2	2				
CO3	3	3		2					3		2	2				
CO4	3	2	2					2	3	2	2	2				
CO5	3	2	2					2	3		2	2				
CO6																

192EDE08	DESIGN FOR MANUFACTURE ASSEMBLY &	L-T-P	С							
	ENVIRONMENT									
Programme:	M.E ENGINERING DESIGN	egory:	PE							
Prerequisites:	Nil									
Aim: To study the various factors that enhances the designing of product regarding manufacturing, assembly and environment.										
Course Outcon	nes:									
The Students will be able to										
CO1: Describe the general design principles for manufacturability.										
CO2: Understand	the factors that influencing form design.									
CO3: Familiarize	the design features to facilitate machining.									
CO4: Describe th	e design factors that influencing the redesign of casting.									
CO5: Know the t	echniques to reduce environmental impact of a product.									
INTRODUCTIO)N			9						
General design p	rinciples for manufacturability - strength and mechanical factors,	mecha	nisms se	lection,						
evaluation metho	d, Process capability – Feature tolerances – Geometric tolerances – As	ssembl	ly limits -	-Datum						
features - Tolera	nce stacks.									
FACTORS INFLUENCING FORM DESIGN 9										
Working principle, Material, Manufacture, Design - Possible solutions - Materials choice - Influence of										
materials on form	n design – form design of welded members, forgings and castings.									
COMPONENT DESIGN – MACHINING CONSIDERATION 9										
Design features to facilitate machining – drills – milling cutters – keyways – Doweling procedures, counter										
sunk screws – Re	eduction of machined area – simplification by separation – simplification	ation b	y amalga	mation						
– Design for ma	chinability – Design for economy – Design for clampability – Des	ign fo	r accessi	bility –						
Design for assem	bly.	C		2						
0	5									
COMPONENT	DESIGN – CASTING CONSIDERATION			9						
Redesign of casti	ngs based on Parting line considerations - Minimizing core requiren	nents,	machined	l holes,						
redesign of cast r	nembers to obviate cores – Identification of uneconomical design – M	Modify	ring the d	esign –						
group technology	v – Computer Applications for DFMA.									
DESIGN FOR 1	THE ENVIRONMENT			9						
Introduction – Environmental objectives – Global issues – Regional and local issues – Basic DFE methods –										
Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally										
responsible product assessment – Weighted sum assessment method – Lifecycle assessment method –										
Techniques to reduce environmental impact – Design to minimize material usage – Design for disascembly										
Design for reavalability Design for remenufacture. Design for energy officiency. Design for resculations										
- Design for recyclatinity - Design for remanufacture - Design for energy efficiency - Design to regulations										
TOTAL + 45 PERIODS										
DEFEDENCE	ROOKS									
1 Dootherse	d C "Design for Assembly Automation and Draduct Design" New Y	Vorle	(1020)							
1. Boothroyd, G, Design for Assembly Automation and Product Design, New York, (1980)										

- Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", Marcel Dekker, (1994)
 Dekker. Marcel Bralla, "Design for Manufacture handbook", McGraw hill, (1999)
- Dickson, John. R, and Corroda Poly, "Engineering Design and Design for Manufacture and Structural Approach", Field Stone Publisher, USA, (1995)
- 5. Kevien Otto and Kristin Wood, "Product Design", Pearson Publication, (2004)

Course	Program Outcomes (Pos)									Program Specific Outcomes(PSOs)				
Outcome s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	PSO 3	PSO 4		
CO1	3	2							3	2				
CO2	3	2							3	2				
CO3	3	2	2		2				3	3		2		
CO4	3	3	3		2				3	2		2		
CO5	3		3		2				3	2		2		
CO6														

192EDE09	FRACTURE MECHANICS	L-T-P	С								
n	M E ENCINEEDING DESIGN	<u>3-0-0</u>	BE								
Programme:	MLE ENGINEERING DESIGN	Category:	PE								
Prerequisites:	111										
Aim: To Understand the fundamentals of fracture mechanics and to study the fatigue crack initiation, growth and applications of fracture mechanics.											
Course Outcomes:											
The Students will be able to											
crack tip for linear elastic cases.											
CO2: Identify and formulate the stress intensity factor ((K) for typical crack configurations											
CO3: Identify and	CO3: Identify and formulate J-integral and the stress and strain fields around a crack tip for different types										
of materials											
CO4: Define emp	irical relation describing crack growth law.										
CO5: Predict the	fatigue life of structures using fracture mechanics approaches.										
ELEMENTS OF	SOLID MECHANICS		9								
The geometry of stress and strain, elastic deformation, plastic and elasto-plastic deformation – limit analysis – Airy's function – field equation for stress intensity factor.											
STATIONARY O	CRACK UNDER STATIC LOADING		9								
Two dimensional	elastic fields – Analytical solutions yielding near a crack front –	Irwin's appro	ximation –								
plastic zone size	– Dugdaale model – determination of J integral and its re-	lation to crac	k opening								
displacement.											
ENERGY BALA	NCE AND CRACK GROWTH		9								
Griffith analysis - Klc test methods	- stable and unstable crack growth – Dynamic energy balance – c	crack arrest me	echanism –								
itte test memous	re cui ves accernination of contapse roud.										
FATIGUE CRAC	CK GROWTH CURVE		9								
Empirical relation changing the load analysis.	describing crack growth law – life calculations for a given loa spectrum – rain flow method – external factors affecting the K1c v	d amplitude – alues – leak bo	- effects of efore break								
APPLICATIONS	S OF FRACTURE MECHANICS		9								
Crack Initiation under large scale yielding – thickness as a design parameter – mixed mode fractures – crack instability in thermal and residual stress fields – numerical methods.											
	,	TOTAL : 45	PERIODS								
REFERENCE BOOKS											
 David Broek, "Elementary Engineering Fracture Mechanics", 4th edition, Kluwer Academic Publishers, (1982) 											
2. John M.Barson and Stanely T.Rolfe, "Fatigue and fracture control in structures", Prentice hall Inc. Englewood cliffs, (1977)											
 Kare Hellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, (1985) Preshant Kumar, "Flements of Fracture Mechanics", Wheeler Publishing, (1999) 											
	cumar, Elements of Fracture fricenames, whether rubitshilling, (1777									

	Program Outcomes (Pos)								Program Specific Outcomes(PSOs)			
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3	2							3	2		
CO2	3	2							3	2		
CO3	3	2							3	2		
CO4	3	2							3	2		
CO5	3	2							3	2		
CO6	3	2							3	2		

192EDE10	INDUSTRIAL ROBOTICS AND EXPERT SYSTEMS		L-T-P		С							
			3-0-0		3							
Programme:	M.E ENGINEERING DESIGN	С	ategory:	PE								
Prerequisites:	Nil											
Aim: To know the robot kinematics, control of various drives and programming concepts												
Course Outcomes:												
The Students will be able to												
CO1: Understand the kinematics and dynamics of robot control systems												
CO2: Know various drives and gripper functions												
CO3: Describe the principles and the functions of sensors and robot vision system												
CO4: Knows the v	CO4: Knows the work cell layouts and safety systems followed in the industrial applications											
CO5: Design the	program for robot motion and the problems obtained are solved	and	reduced b	y art	ificial							
intelligence and ex	apert systems											
INTRODUCTIO	N AND ROBOT KINEMATICS				9							
Definition need ar	d scope of Industrial robots – Robot anatomy – Work volume – P	recis	sion mover	nent	– End							
effectors – Sensor	rs – Robot Kinematics – Direct and inverse kinematics – Robot	: traj	ectories –	Cont	rol of							
robot manipulator	s – Robot dynamics – Methods for orientation and location of ob	jects										
ROBOT DRIVES	S AND CONTROL				9							
Controlling the Ro	bot motion – Position and velocity sensing devices – Design of o	lrive	systems –	Hyd	raulic							
and Pneumatic dr	ives – Linear and rotary actuators and control valves – Electro	o hy	draulic ser	vo v	alves,							
electric drives – M	lotors – Designing of end effectors – Vacuum, magnetic and air	oper	ated grippe	ers.								
ROBOT SENSO	RS				9							
Transducers and S	Sensors - Tactile sensor - Proximity and range sensors - Sensi	ng jo	oint forces	– Ro	obotic							
vision system –	Image Representation - Image Grabbing - Image processin	ng a	nd analysi	is –	Edge							
Enhancement – Co	ontrast Stretching – Band Rationing – Image segmentation – Patte	ern r	ecognition	– Tra	iining							
of vision system.												
ROBOT CELL I	DESIGN AND APPLICATION				9							
Robot work cell d	esign and control – Safety in Robotics – Robot cell layouts – Mul	tiple	Robots an	d ma	.chine							
interference – Rob	oot cycle time analysis – Industrial application of robots.											
ROBOT PROGRAMMING, ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS9												
Methods of Robot Programming – Characteristics of task level languages lead through programming methods												
- Motion interpolation - Artificial intelligence - Basics - Goals of artificial intelligence - AI techniques -												
problem represent	ation in AI – Problem reduction and solution techniques – Appli	catio	n of Al and	d KB	ES in							
Robots.		TO	TAT 481		ODG							
TOTAL : 45 PERIODS												
REFERENCE B		тт	11 (1004)									
1. Deb, S.K., "Robotics Technology and Flexible Automation", Tata Mc Graw-Hill, (1994)												
2. Fu, K.S., K.C. Gonzalez and U.S.G. Lee, "Robotics Control, Sensing, Vision and Intelligence", Mc												
Ulaw IIII, (1987) 3 Mikell D. Groover Mitchell Wais Dager N. Nagel Nicholas G. Odrov, "Industrial Debatics												
3. Mikell, P. Groover, Mitchell Weis, Roger, N. Nagel, Nicholas G. Odrey, "Industrial Robotics												
Technology, Programming and Applications", Mc Graw-Hill, Int. (1986).												
4. Richard. D, Klatter, Thomas, A, Chmielewski, Michael Negin, "Robotics Engineering – An Integrated Approach" Provide Hell of India Part 144 (1984)												
5. Yoram Koren, "Robotics for Engineers", Mc Graw-Hill, (1987)												
	(1707)											
			Prog	ram Ou		Program Outcom	Specific es(PSOs)					
--------------------	-----	-----	------	--------	-----	-------------------	----------------------	-----	----------	----------	----------	----------
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3		2						3			
CO2	3								3			
CO3	3	2							3	2	2	
CO4	3		3						3	2	2	2
CO5	3	2		3	2				3			2
CO6												

192EDE1	192EDE11 INTEGRATED MANUFACTURING SYSTEMS L-T-P C											
					DECIC	NT				3-	<u>0-0</u>	3
Programm	ie:	M.E EN	GINE	ERING	DESIG	N				Catego	ry: PE	I
Prerequisi	tes:	N1l										
Aim:	,	Го study	/ about t	the desig	gn conce	epts of v	arious m	naterial l	nandling	equipme	nts	
Course Ou	tcome	5:										
The Students	s will be	e able to				2						
CO1: Learn	the con	cepts of	comput	ter integ	rated m	anufacti	Iring and	l manag	ement sy	stem.		
CO2: Unders	stand in	e concep Indamen	ot of gro	comput	nology a	and com	puter al	and proc	rogram	ning.	1 progra	mmina
languages		muamen		comput	CI 45515	icu nun			Jogrann	ning and	i piogia	mining
CO4: Under	stand th	e guidel	ines and	d criteria	for imp	lementi	ng CAD	/CAM S	systems f	or inspec	tion and	testing
of compone	nts.	C			1		C		-	1		e
CO5:Discuss concept of Artificial Intelligence and Expert system in CIM.												
INTRODUCTION 9											9	
Objectives	ot a m	anufact	uring symp	ystem-10	lentifyir	ng busn	iess opp	portuniti	es and	problem	s classif	tication
production s	ystems-	miking	manura	cturing s	sualegy	and sys	cills alla	119515-01	manura	lunng of		
GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING 9												
Introduction	– part f	amilies	– parts o	classific	ation an	d coolin	g – grou	ıp techno	ology ma	chine ce	lls – ben	efits of
group techno	ology –	Process	plannin	g functi	on CAP	P - Con	nputer ge	enerated	time sta	ndards.		
COMPUTE	R AID	ED PLA		<u>G AND</u>	CONT	ROL	4 1	•				<u>9</u>
requirement	Plannin s plann	g and (ing (M	Control	$-\cos t$	planni	ng and	Eactory	– inve data c	ollection	anageme	m = Aut	aterial
identification	n systen	n - barco	ode tech	nology	– autom	ated dat	a collect	tion syst	em.	i system	- Aut	omatic
	2			05				5				
COMPUTE	R MO	NITOR	ING									9
COMPUTE Types of pro	CR MO	NITOR	ING oring sy	stems –	structu	re mode	l of mai	nufactur	ing proc	ess – pro	ocess coi	9 ntrol &
COMPUTE Types of pro strategies – methods non	CR MO oduction direct co n-contac	NITOR n monito ligital co t inspec	ING oring sy ontrol – tion met	stems – supervi thod – c	structur isory co omputer	re mode mputer r-aided t	l of mai control esting –	nufactur – comp integrat	ing proc uter in (ion of C.	ess – pro QC – cor AQC wit	ocess contact insp h CAD/0	9 ntrol & pection CAM.
COMPUTE Types of pro strategies – methods non	CR MOI oduction direct con- contac	NITOR n monito ligital co t inspect	ING oring sy ontrol – tion met	stems – supervi thod – co	structur isory co omputer	re mode omputer r-aided t	l of mar control esting –	nufactur – comp integrat	ing proc uter in (ion of C.	ess – pro QC – cor AQC wit	ocess con ntact ins h CAD/0	9 ntrol & pection CAM.
COMPUTE Types of pro strategies – methods non INTEGRAT Definition –	CR MO oduction direct c n-contac FED M applica	NITOR n monito ligital co t inspec ANUFA tion – fo	ING oring sy ontrol – tion met CTUR eatures	stems – supervi thod – co ING SY – types	structur isory co omputer STEM of manu	re mode omputer r-aided t	l of man control esting –	nufactur – comp integrat ms – ma	ing proc uter in (ion of C	ess – pro QC – cor AQC wit	ocess con ntact insj h CAD/(terials ha	9 ntrol & pection CAM. 9 andling
COMPUTE Types of pro strategies – methods non INTEGRAT Definition – system – co	CR MO oduction direct con- contact TED M applica mputer	NITOR n monito ligital co t inspec ANUFA tion – fo control	ING oring sy ontrol – tion met CTUR eatures system	stems – supervi thod – c ING SY – types – DNC	structur isory co omputer STEM of manu system	re mode omputer r-aided t ufacturir s manu:	l of man control esting – ng syster facturing	nufactur – comp integrat ms – ma g cell –	ing proc uter in C ion of C	ess – pro QC – cor AQC wit ols – ma manufac	bcess con ntact insp h CAD/0 terials ha cturing s	9 ntrol & pection CAM. 9 andling ystems
COMPUTE Types of prostrategies – methods non INTEGRA Definition – system – co (FMS) – FM	CR MOI oduction direct of -contac FED M applica mputer IS conce	NITOR in monito ligital co t inspect ANUFA tion – for control ept – tra	ING pring sy pontrol – tion met CTUR eatures system nsfer sy	stems – - supervi thod – co ING SY – types – DNC rstems –	structur isory co omputer STEM of manu system head ch	re mode omputer r-aided t ufacturin s manu anging	l of man control esting – ng syster facturing FMS – v	nufactur – comp integrat ms – ma g cell – variable	ing proc uter in C ion of C. chine to Flexible mission	ess – pro QC – cor AQC wit	bccess con tact ins h CAD/(terials has cturing sy	9 ntrol & pection CAM. 9 andling ystems vstem –
COMPUTE Types of prostrategies – methods norm INTEGRAT Definition – system – co (FMS) – FM CAD/CAM se	CR MO oduction direct of n-contace TED M applica mputer IS conce system -	NITOR in monito ligital co t inspec ANUFA tion – for control ept – tra - human	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour for a Artifi	stems – - supervit thod – c ING SY – types – DNC stems – in the ma ficial Int	structur isory co omputer STEM of manu system head ch anufactu	re mode omputer r-aided t ufacturir s manu: nanging uring sys	l of man control esting – ng syster facturing FMS – v stem – co	nufactur – comp integrat ms – ma g cell – variable omputer	ing proc uter in (ion of C. chine to Flexible mission integrate	ess – pro QC – cor AQC wit ols – ma manufac manufac ed manufac	bcess con ntact insp h CAD/0 terials ha cturing sy acturing	9 ntrol & pection CAM. 9 andling ystems vstem – system
COMPUTE Types of prostrategies – methods non INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra	CR MO oduction direct of a-contact TED M applica mputer IS conce system - apid pro	NITOR n monito ligital co t inspec ANUFA tion – for control ept – tra - human totyping	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif	stems – supervithod – co ING SY – types – DNC stems – in the ma ficial Int	structur isory co omputer STEM of manu system head ch anufactu elligenc	re mode omputer r-aided t ufacturin s manu anging uring sys re and E	l of man control esting – ng syster facturing FMS – v stem – co xpert sys	nufactur – comp integrat ms – ma g cell – variable omputer stem in (ing proc uter in C ion of C. chine to Flexible mission integrate CIM.	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufa	becess con tact ins h CAD/0 terials have terials have turing sy acturing	9 ntrol & pection CAM. 9 andling ystems rstem – system
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra	CR MO oduction direct of a-contac TED M applica mputer IS conce system - apid pro	NITOR in monito ligital co t inspec ANUFA tion – fa control ept – tra - human totyping	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour i g – Artif	stems – - supervit thod – co ING SY – types – DNC stems – in the ma ficial Int	structur isory co omputer STEM of manu system head ch anufactu elligenc	re mode omputer r-aided t ufacturin s manu: nanging uring system and E	l of man control esting – ng syster facturing FMS – v stem – co xpert sys	nufactur – comp integrat ms – ma g cell – variable omputer stem in (ing proc uter in (ion of C. chine to Flexible mission integrate CIM.	ess – pro QC – cor AQC wit ols – mai manufac manufac ad manufac	bcess con tact ins h CAD/0 terials ha cturing sy acturing tal : 45 p	9 ntrol & pection CAM. 9 andling ystems ystem – system oeriods
COMPUTE Types of pro strategies – methods non INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra	CR MO oduction direct of accontac TED M applica mputer IS conce system - apid pro	NITOR n monito ligital co t inspec ANUFA tion – fr control ept – tra - human totyping	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif	stems – supervit thod – co ING SY – types – DNC stems – in the ma ficial Int	structur isory co omputer of manu system head ch anufactu elligenc	re mode omputer r-aided t ufacturin s manu nanging uring sys re and E	l of man control esting – ng syster facturing FMS – v tem – co xpert sys	nufactur – comp integrat ms – ma g cell – variable omputer stem in (ing proc uter in C ion of C. chine to Flexible mission integrate CIM.	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufa	bcess con htact ins h CAD/0 terials ha cturing sy acturing tal : 45 p	9 ntrol & pection CAM. 9 andling ystems 'stem – system beriods
COMPUTE Types of pro strategies – methods non INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra REFEREN	CES	NITOR in monito ligital co t inspec ANUFA tion – fo control ept – tra - human totyping	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif	stems – - supervithod – co ING SY – types – DNC stems – in the ma ficial Int	structur isory co omputer STEM of manu system head ch anufactu elligenc	re mode omputer r-aided t ufacturin s manu: nanging uring system and E	l of man control esting – ng syster facturing FMS – v stem – co xpert sys	nufactur – comp integrat ms – ma g cell – variable omputer stem in (ing proc uter in (ion of C. chine too Flexible mission integrate CIM.	ess – pro QC – cor AQC wit ols – mau manufac manufac ed manufa	bccess con tact ins h CAD/0 terials ha cturing sy acturing tal : 45 p	9 ntrol & pection CAM. 9 andling ystems vstem – system beriods
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra REFEREN(1. Dav	CES	NITOR in monitor ligital co t inspect ANUFA tion – ft control ept – tra – human totyping	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Compute	rstems – - supervit thod – c - types – types – DNC rstems – in the ma ficial Int	structur isory co omputer STEM of manu system head ch anufactu elligenc	re mode omputer r-aided t ufacturir s manu: nanging uring sys re and E sign and	l of man control esting – ng syster facturing FMS – v tem – co xpert system	nufactur – comp integrat ms – ma g cell – variable omputer stem in (ing proc uter in (ion of C. chine too Flexible mission integrate CIM.	ess – pro QC – cor AQC wit ols – mat manufac manufac ad manufac Tot	bcess con tact ins h CAD/0 terials ha cturing sy acturing tal : 45 p [hi, (199	9 ntrol & pection CAM. 9 andling ystems ystem – system beriods 8)
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra REFEREN(1. Dav 2. Group	CES id Bedw over, M	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra - human totyping vorth, "C .P., "Au	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Compute tomation	rstems – supervit thod – co ING SY – types – DNC rstems – in the ma ficial Int er Integrander n, Produ	structur isory co omputer of manu system head ch anufactu elligenc ated Dea	re mode omputer r-aided t ufacturin s manu anging uring sys re and E sign and ystem an	l of man control esting – ng system facturing FMS – v tem – co xpert system Manufa nd CIM"	nufactur – comp integrat ms – ma g cell – variable omputer stem in (ing proc uter in C ion of C chine to Flexible mission integrate CIM. ', TMH, xe-Hall o	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufac d manufac Tot	bcess con htact ins h CAD/0 terials ha cturing sy acturing tal : 45 p (hi, (199) 1998)	9 ntrol & pection CAM. 9 andling ystems system system beriods 8)
COMPUTE Types of prostrategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra REFERENC 1. Dav 2. Groo 3. Rant	CES id Bedv over, M ky, Paul	NITOR in monitor ligital co t inspect ANUFA tion – fa control ept – tra - human totyping vorth, "C P., "Au G., "Co	ING pring sy pontrol — tion met CTUR eatures system nsfer sy labour i g — Artif Computer tomation	stems – - supervit thod – c - types – types – DNC stems – in the ma ficial Int er Integra n, Produ	structur isory co omputer STEM of manu system head ch anufactu elligenc ated Den ted Man	re mode omputer r-aided t ufacturin s manu: nanging uring system sign and ystem an uufacturi	l of man control esting – ag syster facturing FMS – v stem – co xpert system Manufa ad CIM" ng", Pre	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha	ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern	ess – pro QC – cor AQC wit ols – mau manufac manufac ed manufac d manufac Tot New Del f India, (ational (1	bccess con htact ins h CAD/0 terials ha cturing sy acturing tal : 45 p (hi, (199 1998) 1986) gustam"	9 ntrol & pection CAM. 9 andling ystems vstem – system beriods 8)
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra REFERENC 1. Dav 2. Groo 3. Ranl 4. Yeo Holl	CES id Bedw over, M ky, Paul	NITOR n monito ligital co t inspec ANUFA tion – fr control ept – tra – human totyping vorth, "C .P., "Au I G., "Co R.W., A psterdam	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Compute tomation puter A. Chou	rstems – - supervit thod – c - types – types – DNC rstems – in the ma ficial Int er Integra n, Produ Integrat	structur isory co omputer of manu system head ch anufactu elligenc ated Den ated Den ted Man	re mode omputer r-aided t ufacturir s manu nanging uring sys re and E sign and ystem an uufacturi Ten H	l of man control esting – ng syster facturing FMS – v tem – co xpert system Manufa nd CIM" ng", Pre agen, "I	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha Design 1	ing proc uter in (ion of C. chine to Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern ules for	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufac ed manufac to manufac to manufac to manufac to manufac to to to to to to to to to to to to to	becess connections htact ins h CAD/0 terials ha cturing sy acturing tal : 45 p (hi, (199 1998) 1998) 1986) system",	9 ntrol & pection CAM. 9 andling ystems 'stem – system beriods 8) North
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EEFEREN 1. Dav 2. Groo 3. Ran 4. Yeo Holl 5. Yore	CES id Bedv over, M ky, Paul and An em Kord	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra - human totyping vorth, "C .P., "Au l G., "Co R.W., A isterdam en, "Cor	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour i g – Artif Computer tomation pomputer A. Chou n, (1985) nputer I	rstems – - supervithod – co ING SY – types – DNC - bnC - stems – in the ma ficial Int ficial Int er Integrated dry and) integrate	structur isory co omputer STEM of manu system head ch anufactu elligenc ated Den ted Manu P.J.W.	re mode omputer r-aided t ufacturir s manu: nanging uring system aring system ar ufacturi Ten H	l of man control esting – ng syster facturing FMS – v stem – co xpert sys Manufa nd CIM" ng", Pre agen, "I	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha Design 1 ms", Mc(ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern rules for Graw Hil	ess – pro QC – cor AQC wit ols – mau manufac manufac d manufac d manufac d manufac f India, (a CIM ll, (1983)	terials ha cturing sy acturing tal : 45 p [hi, (199 1998) [986) system",	9 ntrol & pection CAM. 9 andling ystems vstem – system beriods 8)
COMPUTE Types of prostrategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFERENCE 1. Dav 2. Groot 3. Ranl 4. Yeot Holl 5. Yore	CES id Bedv over, M ky, Paul mamas, and An em Kore	NITOR n monito ligital co t inspec ANUFA tion – fr control ept – tra – human totyping vorth, "C R.W., A nsterdam en, "Cor	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour i g – Artif Computer tomation pomputer A. Chou h, (1985) mputer I	stems – supervit thod – c ING SY – types – DNC stems – in the ma ficial Int er Integra n, Produ Integrate	structur isory co omputer STEM of manu system head ch anufactu elligenc ated Den ted Manu P.J.W.	re mode omputer r-aided t ufacturir s manut nanging uring system and E sign and ystem an ufacturin Ten H	l of man control esting – ng syster facturing FMS – v tem – co xpert system d CIM" ng", Pre agen, "I g System	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing) g Prentic ntice Ha Design 1	ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern ules for Graw Hil	ess – pro QC – cor AQC wit ols – mai manufac manufac ad manufac d manufac Tot New Del f India, (a CIM a CIM	ccess con ntact ins h CAD/0 terials ha cturing sy acturing tal : 45 p (hi, (199) 1998) 1998) 1986) system",	9 ntrol & pection CAM. 9 andling ystems vstem – system 0eriods 8) North
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFEREN 1. Dav 2. Groo 3. Ranl 4. Yeo Holl 5. Yore	CES id Bedwover, M ky, Paul mamas, and Am	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra - human totyping vorth, "C .P., "Au I G., "Co R.W., A nsterdam en, "Cor	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer tomation omputer A. Chou h, (1985) nputer I	er Integrate () () () () () () () () () () () () ()	structur isory co omputer STEM of manu system head ch anufactu elligenc ated De ated De ted Manu	re mode omputer r-aided t ufacturin s manu: nanging uring system and E: sign and system an ufacturin Ten H facturin	l of man control esting – ng syster facturing FMS – v stem – co xpert sys Manufa nd CIM" ng", Pre agen, "I g Systen	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha Design 1 ms", Mc(ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern rules for Graw Hil	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufac ed manufac d manufac d manufac ed m	terials ha cturing sy acturing tal: 45 p (hi, (199) 1998) 1986) system", h	9 ntrol & pection CAM. 9 andling ystems vstem – system beriods 8) North ic
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFERENC 1. Dav 2. Groo 3. Ranl 4. Yeo Holl 5. Yore	CES id Bedv over, M ky, Paul mamas, and Am	NITOR n monito ligital co t inspec ANUFA tion – fr control ept – tra – human totyping vorth, "C R.W., A nsterdam en, "Cor	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour i g – Artif Computer tomation omputer I A. Chou h, (1985) nputer I Prog	rstems – supervithod – cu ind – types – types – DNC rstems – in the ma ficial Int ficial Int er Integrate dry and) integrate	structur isory co omputer of manu system head ch anufactu elligenc ated De ated De ted Manu P.J.W.	re mode omputer r-aided t ufacturir s manut nanging uring system and E sign and ystem an ufacturin Ten H facturin	l of man control esting – ag syster facturing FMS – v tem – co xpert sys l Manufa ad CIM" ng", Pre agen, "I g Systen	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha Design 1 ns", Mc(ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern ules for Graw Hil	ess – pro QC – cor AQC wit ols – mai manufac manufac ed manufac ed manufac d manufac f India, (a CIM a CIM ll, (1983) Program Outcom	becess connections tact insp h CAD/0 terials hacturing sy acturing sy acturing tal : 45 p (hi, (199 1998) 1986) system", b n Specifices(PSO	9 ntrol & pection CAM. 9 andling ystems vstem – system beriods 8) North ic s)
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra benefits – Ra REFEREN 1. Dav 2. Groo 3. Ran 4. Yeo Holl 5. Yore Course Outcomes	CES id Bedwover, M ky, Paul mamas, and An em Kore	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra – human totyping vorth, "C .P., "Au l G., "Co R.W., A nsterdam en, "Cor	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer tomation omputer I A. Chou h, (1985) nputer I Prog PO3	rstems – supervithod – co ind – co integrate ficial Int er Integrate integrate integrate integrate ram Ou PO4	structur isory co omputer of manu system head ch anufactu elligenc ated Den ted Manu P.J.W. d Manu tcomes PO5	re mode omputer r-aided t ufacturin s manu: nanging uring system and E sign and ystem an ufacturin Ten H facturin facturin (Pos)	l of man control esting – ing system facturing FMS – v item – co xpert system d CIM" ng", Pre agen, "I g System	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' Acturing' Acturing the stem in (acturing the stem in (act	ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern rules for Graw Hil	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufac ed manufac d manufac ed	becess con htact ins h CAD/0 terials ha cturing sy acturing tal : 45 p (hi, (199) 1998) 1998) 1986) system", n Specific n Specific pSO3	9 ntrol & pection CAM. 9 andling ystems system oeriods 8) North ic s) PSO4
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFERENO 1. Dav 2. Groo 3. Ran 4. Yeo Holl 5. Yord Course Outcomes CO1	CES id Bedwover, M ky, Paul mamas, and An em Kore PO1 3	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra - human totyping vorth, "C P., "Au l G., "Co R.W., A isterdam en, "Cor	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer tomation puter I Prog PO3	rstems – - supervithod – co ING SY – types – DNC - types – DNC rstems – in the ma ficial Int ficial Int er Integrate dry and) Integrate ram Ou PO4	structur isory co omputer STEM of manu system head ch anufactu elligenc ated Den ted Manu P.J.W. d Manu	re mode omputer r-aided t ufacturir is manu: nanging uring system aring system ar uufacturi Ten H facturin (Pos) PO6	l of man control esting – ag syster facturing FMS – v stem – co xpert system d CIM" ng", Pre agen, "I g Systen	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha Design 1 ms", Mc(PO8	ing proc uter in (ion of C. chine to Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern rules for Graw Hil PSO1 3	ess – pro QC – cor AQC wit ols – ma manufac manufac ed manufac ed manufac Tot India, (a CIM Il, (1983) Program Outcom PSO2	becess connections of the carbon tact inspected by the carbon tact inspected by the carbon tacturing synacturing synacturing synacturing synacturing synacturing synacturing synacturing synacturing system", acturing system syst	9 ntrol & pection CAM. 9 andling ystems vstem – system beriods 8) North ic s) PSO4
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFEREN 1. Dav 2. Grod 3. Ran 4. Yeo Holl 5. Yord Course Outcomes CO1 CO2	CES id Bedwover, M ky, Paul mamas, and An em Kore PO1 3 3	NITOR n monito ligital co t inspec ANUFA tion – fr control ept – tra – human totyping vorth, "C R.W., A nsterdam en, "Cor PO2 2	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer Computer A. Chou h, (1985) mputer I Prog PO3	rstems – supervit thod – co ING SY – types – DNC rstems – in the ma ficial Int er Integrate in the grate dry and ntegrate ram Ou PO4	structur isory co omputer of manu system head ch anufactu elligenc ated Den ted Manu P.J.W. d Manu tcomes PO5	re mode omputer r-aided t ufacturin s manu nanging uring system and E sign and ystem an uufacturin Ten H facturin (Pos) PO6	l of mai control esting – ng syster facturing FMS – v tem – co xpert system d CIM" ng", Pre agen, "I g Systen	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' prentic ntice Ha Design 1 ns", Mc(PO8	ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern ules for Graw Hil PSO1 3 3	ess – pro QC – cor AQC wit ols – mai manufac manufac ad manufac d manufac d manufac d manufac f India, (a CIM ll, (1983) Program Outcom PSO2	bocess con htact ins h CAD/0 terials ha cturing sy acturing tal : 45 p (hi, (199 1998) 1998) 1986) system", n Specific psocial psocia	9 ntrol & pection CAM. 9 andling ystems vstem – system 0eriods 8) North ic s) PSO4
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFERENO 1. Dav 2. Groo 3. Ran 4. Yeo Holl 5. Yord Course Outcomes CO1 CO2	CES id Bedwover, M ky, Paul mamas, and Am em Koro PO1 3 3	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra - human totyping vorth, "C .P., "Au I G., "Co R.W., A insterdam en, "Cor PO2 2	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer tomation puter I Prog PO3	rstems – supervithod – co ING SY – types – DNC stems – in the ma ficial Int er Integrate in the grate dry and ntegrate ram Ou PO4	structur isory co omputer STEM of manu system head ch anufactu elligenc ated De iction Sy ted Manu d Manu itcomes PO5	re mode omputer r-aided t ufacturin s manu: nanging uring system sign and E: sign and ystem at uufacturin Ten H facturin (Pos)	l of man control esting – ng syster facturing FMS – v stem – co xpert sys Manufa nd CIM" ng", Pre agen, "I g Systen	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha Design 1 ms", Mc(PO8	ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern rules for Graw Hil 3 3 3	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufac ed manufac ed manufac f India, (ational (1 a CIM ll, (1983) Program Outcom PSO2	becess connections of the carbon tract insight carbon tract insight carbon terrials has been been been been been been been bee	9 ntrol & pection CAM. 9 andling ystems vstem – system eriods 8) North ic s) PSO4
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFEREN 1. Dav 2. Grod 3. Ran 4. Yeo Holl 5. Yord Course Outcomes CO1 CO2 CO3	CES id Bedv over, M ky, Paul mamas, and Am em Kore PO1 3 3 3	NITOR n monito ligital co t inspec ANUFA tion – fr control ept – tra – human totyping vorth, "C R.W., A nsterdam en, "Cor PO2 2	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer tomation puter I Prog PO3	rstems – supervithod – co ind – co integrate in the matrix ficial Int in the grate in the grate in the grate in the grate in the grate in the grate	structur isory co omputer of manu system head ch anufactu elligenc ated Den ted Manu P.J.W. d Manu tcomes PO5	re mode omputer r-aided t ufacturir s manu: anging uring system sign and ystem ar uufacturi Ten H facturin (Pos) PO6	l of man control esting – ag syster facturing FMS – v tem – co xpert system d CIM" ng", Pre agen, "I g Systen	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' prentic ntice Ha Design 1 ns", Mc(PO8	ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern rules for Graw Hil PSO1 3 3 3	ess – pro QC – cor AQC wit ols – mai manufac manufac d manufac d manufac d manufac f India, (a CIM ll, (1983) Program Outcom PSO2 2 2	becess connections of the cade	9 ntrol & pection CAM. 9 andling ystems vstem – system eriods 8) North ic s) PSO4
COMPUTE Types of pro strategies – methods nor INTEGRA7 Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra benefits – Ra REFERENO 1. Dav 2. Groo 3. Ran 4. Yeo Holl 5. Yord COURSE Outcomes CO1 CO2 CO3 CO4	CES id Bedwover, M ky, Paul mamas, and An em Kord PO1 3 3 3 3	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra – human totyping vorth, "C .P., "Au l G., "Co R.W., A nsterdam en, "Cor PO2 2	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer tomation omputer I Prog PO3 2	rstems – supervithod – co ING SY – types – DNC stems – in the ma ficial Int er Integrate in the grate dry and ntegrate ram Ou PO4	structur isory co omputer of manu system head ch anufactu elligenc ated Den ted Manu P.J.W. d Manu tcomes PO5	re mode omputer r-aided t ufacturin s manu: nanging uring system and E sign and ystem an ufacturin Ten H facturin (Pos) PO6	l of man control esting – ing system facturing FMS – v item – co xpert system d CIM" ng", Pre agen, "I g System PO7	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' Acturing' Acturing' PO8 PO8	ing proc uter in (ion of C. chine too Flexible mission integrate CIM. ', TMH, ce-Hall o all Intern rules for Graw Hil 3 3 3 3 3	ess – pro QC – cor AQC wit ols – mat manufac manufac ed manufac ed manufac d manufac ed e	ccess con ntact ins h CAD/0 terials ha cturing sy acturing tal : 45 p (hi, (199) 1998) 1998) 1986) system", n Specific n Specific pSO3 2 2	9 ntrol & pection CAM. 9 andling ystems rstem – system eriods 8) North ic s) PSO4 2
COMPUTE Types of pro strategies – methods nor INTEGRAT Definition – system – co (FMS) – FM CAD/CAM s benefits – Ra EREFERENO 1. Dav 2. Grod 3. Ran 4. Yeo Holl 5. Yord Course Outcomes CO1 CO2 CO3 CO4 CO5	CES id Bedwover, M ky, Paul mamas, and Am em Koro PO1 3 3 3 3 3	NITOR n monito ligital co t inspec: ANUFA tion – fe control ept – tra - human totyping vorth, "C P., "Au I G., "Co R.W., A insterdam en, "Cor PO2 2	ING pring sy pontrol – tion met CTUR eatures system nsfer sy labour g – Artif Computer tomation puter I Prog PO3 2 2 2	rstems – supervithod – co ING SY – types – DNC stems – in the ma ficial Int er Integrate dry and) integrate ram Ou PO4	structur isory co omputer STEM of manu system head ch anufactu elligenc ated Den ted Manu P.J.W. d Manu tcomes PO5	re mode omputer r-aided t ufacturir is manu: nanging uring system ar iufacturi Ten H facturin (Pos) PO6	l of man control esting – ag system facturing FMS – v stem – co xpert system d CIM" ng", Pre agen, "I g System PO7	nufactur – comp integrat ms – ma g cell – variable omputer stem in (acturing' , Prentic ntice Ha Design 1 ms", Mc(PO8	ing proc uter in (ion of C. chine to Flexible mission integrate CIM. ', TMH, ve-Hall o all Intern ules for Graw Hil 3 3 3 3 3 3 3	ess – pro QC – cor AQC wit ols – ma manufac manufac d manufac d manufac d manufac f India, (a CIM ll, (1983) Program Outcom PSO2 2 2	ccess connections had inside the carbon of t	9 ntrol & pection CAM. 9 andling ystems vstem – system 0 0 0 0 0 0 0 0 0 0 0 0 0

192EDE12	MECHANICAL BEHAVIOUR OF MATERIALS	Ι	- T-P		С
			8-0-0		3
Programme:	M.E ENGINERING DESIGN	Categ	gory 1	PE	
Prerequisites:	Engineering Materials and Metallurgy				
Aim:	To impart the knowledge about production techniques and app	lications	of mate	erial	s
Course Outcom	es:				
The Students will	be able to				
CO1: Understand	the basic concepts of material behavior.				
CO2: Know the m	aterial behavior under dynamic loads.				
CO3: Select the m	aterials for various applications				
CO4: Study the pr	operties and applications of modern metallic materials.				
CO5: Understand	the production techniques and applications of non-metallic mater	ial.			
BASIC CONCEI	PTS OF MATERIAL BEHAVIOR				9
Elasticity in meta	ls and polymers – Strengthening mechanisms, work hardening	. solid s	olution	ing.	grain
boundary strength	ening, poly phase mixture, precipitation, particle, fibre and dispers	ion strer	gthenir	ng_]	Effect
of temperature, st	rain and strain rate on plastic behaviour – Super plasticity –. G	riffith's	theory -	- Dı	uctile,
brittle transition in	n steel – High temperature fracture, creep – Larson Miller para	meter –	Deform	atio	n and
fracture mechanis	m maps.				
BEHAVIOUR U	NDER DYNAMIC LOADS AND DESIGN APPROACHES				9
Stress intensity fa	ctor and fracture toughness - Fatigue, low and high cycle fatigue	e test, cra	ack initi	atio	n and
propagation mech	anisms and Paris law Safe life, Stress-life, strain-life and fail -	safe des	ign app	roac	ches -
Effect of surface	and metallurgical parameters on fatigue - Fracture on non me	tallic ma	aterials	– Fa	ailure
analysis, sources o	of failure, procedure of failure analysis.				
SELECTION OF	MATERIALS				9
Motivation for sel	ection, cost basis and service requirements – Selection for mecha	nical pro	perties,	stre	ngth,
toughness, fatigue	and creep – Selection for surface durability corrosion and wear	resistanc	e - Rel	atio	nship
between materials	selection and processing – Case studies in materials selection with	th relevation	nce to a	ero,	auto,
marine, machinery	and nuclear applications – Computer aided materials selection.				0
MODERN MET	ALLIC MATERIALS	1 1	·/ (TD)		9 Ct 1
Dual phase steels	, High strength low alloy (HSLA) steel, I ransformation induced	1 plastic	ity (TR	IP) S	Steel,
Matallia alaga a	ad none switchling materials	ais, snap	be memo	ory a	moys
- Metallic glass a					0
Polymeric materia	C MAIENIALS	ers foor	ns adha	cive	y s and
coating - structure	ns – Formation of polymer structure – Froduction techniques not	amics V	NC SiC	51VC	5 anu i3N4
CBN and diamon	t – properties indengineering polymens – Advanced structural eer	annes, v	ve, sie	<i>'</i> , 0	15117,
	TOTAL · 45 PERIODS				
REFERENCE B	OOKS				
1. Charles, J.A	., Crane, F.A.A. and Fumess, J.A.G., "Selection and use of er	gineerin	g mate	rials	", 3 rd
edition, But	terworth-Heiremann, (1997)	0	0		
2. Flinn, R.A.,	and Trojan, P.K., "Engineering Materials and their Applications".	4 th Editi	ion, Jaic	: 0, (1999)
3. George E. D	vieter, "Mechanical Metallurgy", McGraw Hill, (1988)		-		,
4. Metals Hand	l book, Vol.10, "Failure Analysis and Prevention", 10th Edition, J	aico, (19	999)		

5. Thomas H. Courtney, "Mechanical Behavior of Materials", 2nd edition, McGraw Hill, (2000)

			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO 1	PSO 2	PSO 3	PSO 4
CO1	3								3	2		
CO2	3	2							3	2		
CO3	3	2	2				2		3	2		
CO4	3								3	2		
CO5	3		2		2				3	2		2
CO6												

192EDE13	MECHANICAL TESTING OF MATERIALS	L-T-P	С
		3-0-0	3
Programme:	M.E ENGINERING DESIGN	Category:	PE
Aim:	To study the various testing of materials and its necessity		
Course Outcom	es:		
The Students will	be able to		
CO1: Conduct me	chanical properties testing		
CO2: Study the fa	tigue analysis		
CO3: Understand	the creep concepts		
CO4: Test the pol	ymers		
CO5: Know the fa	ilure analysis		-
BASIC MECHA	NICAL TESTING		9
Tension - Engine	ering & true stress-strain curves, evaluation of tensile prope	erties tensile i	nstability,
effect of strain-r	ate & temperature on flow properties - Compression - Con	mparison wit	h tension,
buckling & barre	ling. Bending - Pure bending & flexure formula. Torsion -	- Stresses for	elastic &
plastic strain, To	rsion vs. Tension - Impact - Notched bar impact tests, trai	nsition Temp	erature &
metallurgical fac	tors affecting it.		
FATIGUE			9
Fatigue - Stress	cycles & S-N curve, effect of variables like mean stress	s, stress conc	entration,
surface, size, me	allurgical factors etc.		
CREEP			9
Creep - Creep,	stress rupture & stress relaxation tests, development of	creep resista	nt alloys,
prediction of lon	g time properties.		
POLYMER TE	STING		9
Polymer testing	(sample preparation, testing standards and methods, and	alysis of pol	ymer and
additives) - prol	blems of polymer (thermoxidative degradation, fire haze	ards, toxicity	, effluent
disposal, feedsto	ck scarcity).	•	, ,
FAILURE ANA	LYSIS		9
Modes of failure	es, corrosion failure, high temperature failure, Case studi	ies in failure	analysis.
Prevention of fai	lures		-
		TOTAL:45 I	PERIODS
REFERENCE B	DOKS		
1. Dowling,	Norman E (2006), Mechanical Behavior of Materials, Prentice Ha	all, 3rd Editior	1.
2. Jacek J. S	krzypek and Richard B. Hetnarski (1993), Plasticity and Creep:	: Theory, Exa	nples, and
Problems,	CRC Press		
3. Marc And	re Meyers, Krishan Kumar Chawla, Mechanical Behavior of Mate	erials, Prentice	Hall, 1998
4. Norman	E. Dowling (1998), Mechanical Behavior of Materials: En	ngineering Me	ethods for
Deformati	on, Fracture, and Fatigue, Prentice Hall; 2nd edition.		
5. Yung-Li I	Lee, Jwo Pan, Richard Hathaway, Mark Barkey (2004), Fatigu	e Testing and	Analysis:
Theory an	d Practice, Butterworth-Heinemann.		

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	3							3	2		
CO2	3			2					3	2		
CO3	3								3	2		
CO4	3	2	2	2					3	2		
CO5	3	2							3	2		
CO6												

192EDE14

MULTI-BODY DYNAMICS

9

9

9

9

Programme: M.E ENGINERING DESIGN

Category: PE

Aim: Course Outcomes:

The students will be able to:

- CO1. Derive equations of motion for interconnected bodies in multi-body systems with threedimensional motion.
- CO2. Implement and analyze methods of formulating equations of motion for interconnected bodies.
- CO3. Write programs to solve constrained differential equations for analyzing multi-body systems.
- CO4. Simulate and analyze all types of static and dynamic behaviors of the multi-body systems including the kineto-static analysis.
- CO5. Lead team projects in academic research or the industry that require modeling and simulation of multi-body systems.
- CO6. Demonstrate an improved technical writing and presentation skills.

INTRODUCTION

The method of constraints for planar kinematic analysis. Revolute, prismatic, gear and cam pairs are considered together with other 2 degrees-of-freedom types of constraints.

BASIC PRINCIPLES FOR ANALYSIS OF MULYI-BODY SYSTEMS

The automatic assembly of the systems of equations for position, velocity and acceleration analysis. Iterative solution of systems of non linear equations. Geometry of masses. The principle of virtual work and Lagrange's equations.

DYNAMICS OF PLANAR SYSTEMS

Dynamics of planar systems. Systematic computation and assembly of mass matrix. Computation of planar generalized forces for external forces and for actuator-spring-damper element. Simple applications of inverse and forward dynamic analysis. Numerical integration of first-order initial-value problems. The method of Baumgarte for the solution of mixed differential-algebraic equations of motion. The use of coordinates partitioning, QR and SVD decomposition for the orthogonalization of constraints.

KINEMATICS OF RIGID BODIES IN SPACE

Reference frames for the location of a body in space. Euler angles and Euler parameters. The formula of Rodrigues. Screw motion in space. Velocity, acceleration and angular velocity. Relationship between the angular velocity vector and the time derivatives of Euler parameters.

KINEMATIC ANALYSIS OF SPATIAL SYSTEMS AND COMPUTATION OF FORCES

Basic kinematic constraints. Joint definition frames. The constraints required for the description in space of common kinematic pairs (revolute, prismatic, cylindrical, spherical). Equations of motion of constrained spatial systems. Computation of spatial generalized forces for external forces and for actuator-spring-damper element. Computation of reaction forces from Lagrange's multi- pliers.

TOTAL:45 PERIODS

REFERENCE BOOKS

- 1. Haug, E.J., Computer-Aided Kinematics and Dynamics of Mechanical Systems-Basic Methods, Allyn and Bacon, 1989.
- 2. Huston, R.L., Multibody Dynamics, Butterworth-Heinemann, 1990.
- 3. Kane, T.R, Levinson, D.A., Dynamics: Theory and Applications, McGraw-Hill Book Co., 1985.
- 4. Nikravesh, P.E., Computer Aided Analysis of Mechanical Systems, Prentice-Hall Inc., Englewood Cliffs, NJ, 1988.
- 5. Roberson, R.E., Schwertassek, R., Dynamics of Multibody Systems, Springer-Verlag, Berlin, 1988.
- 6. Schielen, W. ed., Multibody Systems Handbook, Springer-Verlag, Berlin, 1990.

Course			Prog	ram Ou	itcomes	(Pos)				Program Outcom	n Specifi ies(PSOs	Specific s(PSOs) PSO3 PSO4	
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	3	2							3				
CO2	3	3		2					3	3			
CO3	3			3					3	3			
CO4	3		2	2					3	3			
CO5	3	2				3	2		3	2	2	2	
CO6	3					2	3	2	3	2	3	2	

192EDE15	OPTIMIZATION TECHNIQUES IN DESIGN	L-T-P	C
		3-0-0	3
Programme:	M.E ENGINERING DESIGN	Category:	PE
Prerequisites:	Nil		
Aim:	To describe the concept and principles of optimization techniqu	es in design.	
Course Outcom	es:		
The Students will	be able to		
CO1: Understand	the techniques and application of optimization design.		
CO2: Know the co	onstrained techniques in optimization.		
CO3: Develop the	knowledge of Neural network & Fuzzy logic principles in optim	ization.	
CO4: Understand	the design of shaft and structural applications.		
CO5: Apply the d	esign of simple linkage mechanisms.		
UNCONSTRAIN	ED OPTIMIZATION TECHNIQUES		9
Introduction to o	ptimum design - General principles of optimization - Probl	em formulati	on & thei
classifications – S	ingle variable and multivariable optimization, Techniques of und	constrained m	inimizatioi
– Golden section,	Random, pattern and gradient search methods – interpolation me	thods.	
CONSTRAINED	OPTIMIZATION TECHNIOUES		9
Optimization with	equality and inequality constraints – Direct methods – Indirect	et methods us	ing penalty
functions, Lagran	ge multipliers – Geometric programming.		
ADVANCED OF	IIMIZATION TECHNIQUES	ti abiantiva ar	<u> </u>
Genetic algorithm	ization – dynamic programming, stochastic programming, Mutt	I objective op	inciples it
ontimization	is and Simulated Annealing techniques, Neural network & P	uzzy logic pi	incipies ii
optimization.			
STATIC APPLI	CATIONS		9
Structural applica	tions – Design of simple truss members – Design applications –	- Design of si	mple axial
transverse loaded	members for minimum cost, weight - Design of shafts and torsid	onally loaded	members -
Design of springs.			
DVNAMIC ADD			0
Dynamic Applica	LICATIONS tions – Ontimum design of single, two degree of freedom system	ns vibration	bsorbers -
Application in Me	chanisms – Optimum design of simple linkage mechanisms.	ins, violation a	103010013
11			
	TOTAL: 45 PERIODS		
REFERENCE B	OOKS		
1. Garret N.	Vanderplaats, "Numerical Optimization techniques for en	ngineering de	esign with
application	us", McGraw Hill Ryerson ltd., (1984)		XX 7 1
2. Goldberg, New York	(1989) D.E., "Genetic algorithms in search, optimization and machine", E	3arnen, Addis	on-wesley
3. Johnson R	ay, C., "Optimum design of mechanical elements", Wiley, John &	& Sons, (1990))
4. Kalyanam	by Deb, "Optimization for Engineering design algorithms and Example.	amples", Pren	tice Hall of
India Pvt.	(1995) Surger S. "Engineering Optimization Theory & Duration" No.		ational (D
5. Kao, Sing Limited N	lew Delhi (2000)	w Age Intern	iational (P
Linnea, i			

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2							3			
CO2	3			2					3	2		
CO3	3			3	2				3	2		
CO4	3	3							3		2	2
CO5	3	3		2					3	2		
CO6												

192EDE 1	16	PRODUCT DESIGN AND DEVELOPMENT	NT L-T-P C							
				3-0-0	3					
Programm	ne:	M.E ENGINERING DESIGN	C	ategory: F	РЕ					
Prerequisi	tes:	Nil								
Aim:										
Course Ou	itcom	es:								
The Student	s will	be able to								
CO1. Und	lerstan	d the product planning and process flow								
CO2. Mak	ce dec	isions in concept development								
CO3. Kno	w the	various design processes								
CO4. Real	lize th	e selection of materials and processes								
CO5. Fam	niliariz	e the IPR and economics								
	CTIO	NT			0					
INIRODU Draduat Day		N mant Chamatanistics Dynation Challenges Organization	ma Dar	valammant D	9					
Product De	rocos	Elow Product Planning Identifying Opportunities Prior	itization	Peroprise P	llocation					
and Pre-Proi	iectPl	nning Customer Needs – Data gathering Organizing Needs		, Resource a	mocation					
CONCEPT	DEV	FLOPMENT			9					
Product and	Targe	t specification, various steps in concept generation, Brainsto	rming, N	Aorphologica	al					
analysis, Sel	lection	of Concepts – Subjective decision-making, Criteria ranking	, Criteri	a weighting.	Datum					
method, EVA	AD (D	esign Evaluation) method, Principles of Computer aided dec	ision ma	ıking.						
DESIGN PI	ROĈI	CSS .			9					
Concept Tes	sting –	Survey, Response and Interpretation. Product Architecture,	Platforn	n planning, S	ystem					
leveldesign	issues	Embodiment design - Introduction, Size and strength, Scher	me draw	ing, Form de	esign,					
Provisionaln	nateria	al and process determination, Design for assembly and manu	facture,	Industrial de	sign.					
Modeling -In	ntrodu	ction, Mathematical modeling, Optimization, Scale models,	Simulat	ion.						
PLANNING	G FOI	R MANUFACTURE AND MANAGEMENT			9					
Detail Desig	gn - Fa	ctor of safety, Selection procedure for bought out componen	ts, Mate	rial Selection	ı,					
Robust										
design, Expe	erimer	ital Plan. Design Management - Management of design for q	uality, P	roject planni	ing and					
control, Proc	ductio	n design specification (PDS), Quality function deployment (QFD)-pi	rocess, Desig	'n					
review,	ais/an	ringaring								
		L PROPERTV RIGHTS AND PROJECT ECONOMICS	2		9					
Intellectual	Proper	ty Rights – Introduction Study prior inventions Write the d	, escriptic	on of the inve	ention					
RefineClaim	ns. Pur	sue application. Economics and Management – Financial M	odel. Pro	oiect Trade –	Off.					
Accelerating	Proie	cts. Proiect Execution.	,	.j	<i></i> ,					
	<u> J -</u>	TOTAL : 45 PERIODS								
REFEREN	CE B	OOKS								
1. Del	borah	E.and Bouchoux, Intellectual Property Rights, Cengage Lear	ning Ind	lia Pvt., 2008	3					
2. Die	eter G.	E., Engineering Design, McGraw - Hill International, 2009								
3. Kar	rl T., U	Jlrich and D. Steven, and Eppinger, Product Design and Dev	elopmen	nt, McGraw	Hill					
200	2009.									
4. Kei	n Hurs	t, Engineering Design Principles, Elsevier Science and Tech	nology l	Books, 2006.						
			D.	rogram Sna	vifia					
		Program Autoomas (Pas)		utcome(DC						
Course			0	uccomes(1 S	<u> </u>					

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3		2						3	2		
CO2	3		2		2				3	2	2	
CO3	3		2						3	2		
CO4	3	2	2						3	2		
CO5	3	2			2		2		3			2
CO6												

192EDE17	PRODUCTIVITY MANAGEMENT AND RE-ENGINEERING L-T-P									
			3-0-0		3					
Programme:	M.E ENGINEERING DESIGN	Cat	egory:	PE						
Prerequisites:	Nil									
Aim:	To study the various factors that enhances the productivity applications of re-engineering concept.	⁷ mar	nagement	and	d the					
Course Outco	mes:									
The Students wi	ll be able to									
CO1: Know the	role productivity concepts									
CO2: Understan	d the systems approach to productivity measurement									
CO3: Study the organizational transformation models										
CO4: Discuss th	e reengineering tools									
CO5: Understan	d the re-engineering process improvement models									
PRODUCTIVI	ГҮ				9					
Productivity Co	ncepts – Macro and Micro factors of productivity – Dynamics of Pro	oducti	vity – Pro	oduc	tivity					
Cycle Producti	vity Measurement at International, National and Organization	lev	el – Pro	oduc	tivity					
measurement m	odels.									
SYSTEMS AP	PROACH TO PRODUCTIVITY MEASUREMENT				9					
Conceptual fran	e work, Management by Objectives (MBO), Performance Objectiv	ated I	Productiv	ity (POP)					
- Methodology	and application to manufacturing and service sector.			•						
ORGANISATI	ONAL TRANSFORMATION				9					
Elements of Org	anisational Transformation and Reengineering – Principles of organ	izatio	nal trans	form	ation					
and re-engineer	ng, fundamentals of process re-engineering, preparing the workforc	e for	transform	atio	n and					
re-engineering,	nethodology, guidelines, LMI CIP Model - DSMC Q & PMP mode	el.								
RE-ENGINEE	RING TOOLS AND IMPLEMENTATION				9					
PMI models, PA	SIM Model, Moen and Nolan Strategy for process improvement, L	MIC	P Model	, NP	RDC					
Model.				-						
RE-ENGINEE	RING PROCESS IMPROVEMENT MODELS				9					
Analytical and p	rocess tools and techniques – Information and Communication Techr	nology	/ – Implei	ment	ation					
of Reengineerin	g Projects – Success Factors and common implementation Problem	– Cas	es.							
]	ΓΟΤΑ	L : 45 P	ERI	ODS					
REFERENCE	BOOKS									
1. Donald	Shandler, "Reengineering the training function: How to align training	g with	the new	corp	orate					
agenda"	, St.Lucie press, (1996)	0		•						
2. Edosom	wan, J.A., "Organisational Transformation and Process Re-engineer	ing", 1	Library C	atal	oging					
in Pub.	Data. (1996)	0)	5		00					
3. Premvra	t, Sardana, G.D. and Sahay, B.S., "Productivity Management –	A Sv	stems A	ppro	ach".					
Narosa	Publishing House. New Delhi, (1998)	-)	•	11-5	. ,					
4. Rastogi	P.N., "Re-engineering and Re-inventing the Enterprise". Wheeler F	ub. N	lew Delh	i. (19	995)					
5. Sumant	D. D.J., "Productivity Engineering and Management". TMH. New D	elhi. (1990)	, (- -	·-,					
	, , ,, <u></u>	, (

Course			Prog	ram Ou	itcomes	(Pos)			Program Specific Outcomes(PSOs)				
Outcomes	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8							PSO1	PSO2	PSO3	PSO4		
CO1	3								3				
CO2	3	2	2						3		2		
CO3	3				2		2		3		2		
CO4	3				2	2	2		3	2			
CO5	3	2		3	2				3	2	2		
CO6													

192EDE18	QUALITY CONCEPTS IN DESIGN	L-T-I	L-T-P					
		3-0-0		3				
Programme:	M.E ENGINEERING DESIGN	Category:	PE					
Prerequisites:								
Aim:	To study all the concepts coming under the quality for designing	g purpose						
Course Outcom	es:							
The Students will	be able to							
CO1: Study about	the QFD and house of quality							
CO2: Know about	the advancements of FMEA							
CO3: Familiarize	the product testing methods in DOE							
CO4· Describe the	statistical consideration of quality concents							
CO5: Study the de	tails about SIX SIGMA							
DESIGN FOR O				0				
Quality Eurotion	Deployment House of Quality Objectives and functions 7	Forgets Sta	kaholda	7 arc				
Quality Function	beployment – nouse of Quanty – Objectives and functions –	rargers - Sta	Kenolde	- 18 -				
Measures and Ma	trices – Design of Experiments – design process – identification	of control I	ictors, n	ioise				
factors, and perior	rmance metrics – developing the experimental plan – experimen	ital design –	esting n	ioise				
factors – Running	the experiments – Conducting the analysis – Selecting and confo	rming factor	– Set po	oints				
- reflecting and re	peating.							
FAILURE MOD	E EFFECT ANALYSIS			9				
Basic methods: R	etining geometry and layout, general process of product emb	odiment – I	mbodir	nent				
checklist – Advan	ced methods: systems modeling, mechanical embodiment princ	iples – FME	A meth	od –				
linking fault states	to systems modeling – Case study – computer monitor stand for	a docking st	ation.					
DESIGN OF EXI	PERIMENTS			9				
Design of experim	ents – Basic methods – Two factorial experiments – Extended me	ethod – redu	ed tests	and				
fractional experim	ents, orthogonality, base design method, higher dimensional fra-	ctional factor	ial desi	gn –				
Statistical analysis	of experiments: Degree of freedom, correlation coefficient, stan	dard error of	the resi	dual				
t-test, ANOVA –	ratio test, other indicators - residual plots, Advanced DOE meth	hod for prod	ict testi	ng –				
Product application	ons of physical modeling and DOE, Blender panel display ev	valuation, co	ffee grin	nder				
experimental optim	nization – Taguchi method.							
STATISTICAL (CONSIDERATION AND RELIABILITY			9				
Frequency distribution	utions and Histograms - Run charts - stem and leaf plots - Pare	to diagrams	- Cause	and				
Effect diagrams -	- Box plots- Probability distribution - Statistical Process contr	rol – Scatter	diagran	ns –				
Multivariable char	ts – Matrix plots and 3-D plots – Reliability – Survival and Fail	lure – Series	and par	allel				
systems – Mean ti	me between failure – Weibull distribution.							
DESIGN FOR SI	X SIGMA			9				
Basis of SIX SIG	MA – Project selection for SIX SIGMA – SIX SIGMA problem s	solving $-$ SD	SIGM	A in				
service and small	organizations – SIX SIGMA and lean production – Lean SIX SIC	GMA and ser	vices.					
		TOTAL:45	PERIC	ODS				
REFERENCE B	DOKS							
1. Amitava N	Aitra, "Fundamentals of Quality control and improvement", 2 nd ec	lition, Pearso	n Educa	ation				
Asia, (200	$\frac{12}{2}$	1	т.					
2. Dhillon, E (1998)	S.S., "Advanced Design Concepts for Engineers", Technomic Put	olication con	pany, U	JSA,				
3. James R. I	Evens, William M Lindsay, "The Management and control of Qua	lity", 6 th edit	on- Pub	son:				
4. Karl t. Ul	rich, steven d. Eppinger, "Product Design And Development",	, Tata McG1	aw Hill	, 3 rd				
Edition, (2			P	1 .				
5. Kevin Otto Developm	o & Kristin Wood, "Product Design Techniques in Reverse Engin ent", Pearson Education (LPE), (2001)	eering and N	ew Pro	duct				
1								

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								PSO2	PSO3	PSO4
CO1	3	2	2		2	2			3		2	
CO2	3	2		2					3			
CO3	3	3		2			2		3	2	2	
CO4	3	2		2					3		2	2
CO5	3				2	2		2	3		2	3
CO6												

192EDE19	RAPID PROTOTYPING AND TOOLING	L-T-P	С							
	<u> </u>	3-0-0	3							
Programme:	M.E ENGINEERING DESIGN	Category:	PE							
Prerequisites:	Nil									
	To help local enterprises enhance their global competitiveness	by creating val	ues for							
Aim:	their discerning customers									
Course Outcom	es:									
The Students will	be able to									
CO1: Familiarize the model making steps involved in product design										
CO2: Understand the various prototyping systems and its working principles										
CO3: Learn the applications and limitations of the prototyping systems.										
CO4: Know the ge	cometric modeling technique and its application in reverse engine	ering.								
CO5: Study the rapid tooling technique used in various field of engineering.										
INTRODUCTION 9										
Need – Developm	nent of RP systems - RP process chain - Impact of Rapid Pro-	totyping and T	Fooling on							
Product Developm	nent – Benefits – Applications – Digital prototyping – Virtual pro	totyping.								
LIOUID BASED	AND SOLID BASED RAPID PROTOTYPING SYSTEMS		9							
Stereolithography	Apparatus, Fused deposition Modeling, Laminated object	manufacturi	ng, Three							
dimensional printi	ng: Working Principles, details of processes, products, materials	, advantages, I	limitations							
and applications -	Case studies.	-								
POWDER BASE	D RAPID PROTOTYPING SYSTEMS		9							
Selective Laser Si	ntering, Direct Metal Laser Sintering, Three Dimensional Printir	ng, Laser Engin	neered Net							
Shaping, Selectiv	e Laser Melting, Electron Beam Melting: Processes, material	s, products, a	dvantages,							
applications and li	mitations – Case Studies.									
REVERSE ENG	INEERING AND CAD MODELING		9							
Basic concept – E	Digitization techniques – Model Reconstruction – Data Processin	g for Rapid Pr	ototyping:							
CAD model prepa	ration, Data Requirements – geometric modeling techniques: Wire	e Irame, surfac	e and solid							
Model Slicing and	contour data organization direct and adaptive slicing Tool path	generation	lie design,							
RAPID TOOLIN	G	Seneration	9							
Classification: So	ft tooling, Production tooling, Bridge tooling; direct and indirect	- Fabrication	processes,							
Applications. Case	e studies – automotive, aerospace and electronic industries.		1							
		TOTAL :45	PERIODS							
REFERENCE B	DOKS									
1. Ali K. Ka	mrani, Emad Abouel Nasr, "Rapid Prototyping: Theory and pract	ice", Springer,	(2006)							
2. Andreas C	bebhardt, "Rapid prototyping", Hanser Gardener Publications, (20)03)	and 1.4.							
3. Chua C.K. World Soi	., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and a antific Publishers. (2003)	applications", 2	^{2nd} edition,							
4 Liou W I	iou Frank W Liou "Rapid Prototyping and Engineering appli	cations · A to	ol box for							
nrototype	development". CRC Press. (2007)		01 00A 101							
5. Peter D.F	Hilton, Hilton/Jacobs, Paul F.Jacobs, "Rapid Tooling: Tech	nologies and	Industrial							
Applicatio	ons", CRC press, (2000)	C								

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8							PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2					3		2	
CO2	3	2		2					3		2	
CO3	3		2					2	3	2		
CO4	3	2	2	3	2				3		2	3
CO5	3	2		2				2	3		2	2
CO6												

192EDE20	SUPPLY CHAIN MANAGEMENT	L-T-P	С
		3-0-0	3
Programme:	M.E ENGINEERING DESIGN	Category:	PE
Aim:	To provide an overview of the current scenario of Supply Chain M	lanagement	
Course Outcom	es:		
The Students will	be able to		
CO1: Understand	the role of supply chain management		
CO2: Know the va	arious inventory management models in SCM		
CO3: Practice the	supply chain sourcing decisions		
CO4: Apply vario	us distribution network models		
CO5: Discuss the	SCM logistics decisions		
			0
SUFFLICH Supply chain netw	AIN MANAGEMENT	in network	husiness
processes in supp	by chains types of supply chains and examples supply chain	drivers sup	nly choin
processes in supp	ry chains - types of suppry chains and examples – suppry chain (urivers - sup	pry cham
performance meas			
SUPPLY CHAIN	INVENIORY MANAGEMENI		<u> </u>
Strategic, tactical,	and operational decisions in supply chains - supply chain inventory	management	- EUQ -
EPQ - demand for	recasting – impact of uncertainty of supply in safety inventory – man	laging safety	inventory
in multi echelon si	upply chains - bullwhip effect.		
SOURCING AN	D DISTRIBUTION MANAGEMENT.		9
Role of sourcing	- in-house sourcing and outsourcing – supplier relation – procure	ement process	ses – risk
management in so	urcing - distribution management – types of distribution		
LOGISTICS IN S	SUPPLY CHAIN MANAGEMENT		9
Logistics – conce	pts, definitions, approaches, factors affecting logistics – modes	– design opt	tion for a
transportation network	vork		
SUPPLY CHAIN	AUTOMATION		9
Factors affecting c	coordination - impact of E business in supply chain performance - IT	enabled supp	oly chains
– role of IT in fo	precasting, inventory management, procurement, transportation -	customer re	lationship
management - ER	P and supply chains - supply chain automation and supply chain inte	egration.	
	TO	DTAL : 45 P	ERIODS
REFERENCE B	OOKS		
1. Ayers, J.E	B., "Hand book of Supply Chain Management", The St. Lencie press	s, (2000)	
2. Handfield	R.B. and E.L. Nochols, "Introduction to Supply Chain Managemen	it", Prentice I	Hall, New
Delhi (199	99)	• (2001)	
3. John T. M	entzer, "Supply Chain Management", Sage Publications, New Delh	n (2001)	• •• • •
4. Larsen T. Books, Ne	S., Schary P.B., Mikkola J.H. and Kotzab H., "Managing the globa ew Delhi, (2007)	al supply cha	in'', Viva
5. Sunil Cho Pearson E	pra and Peter Meindl, "Supply Chain Management: Strategy, Plan ducation, New Delhi (2015)	nning, and O	peration",

Course			Progr	am Ou	tcomes		Program Specific Outcomes(PSOs)					
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3								3			2
CO2	3								3			2
CO3	3	2	2		2				3	2	2	2
CO4	3		2	2	2	2	2		3	2		2
CO5	3		2		2		2	2	3		2	
CO6	3			3	2	2	2		3		2	3

192EDE 2	21			TRIB	OLOG	DLOGY IN DESIGN L-T-P C							
				DING	DEGLO	Ť				3-	0-0	3	
Programm	le:	M.E EN	GINE		DESIG	N		1 1		Catego	ry: PE		
Aim:		To study	about t	he fricti	on and v	various t	ypes of	lubricat	ion betw	een diffe	erent mat	erials	
Course Ou	tcome	s:											
The Student	s will b	e able to	- f f i : : :		f								
CO1: Under	stand th	le types	of frictio	on and si	urface if	iteractio	n aurfaaa	traatma	ata				
CO2: Under	the typ	es of lub	rication	nrocess	pes of w	ear and	surface	ireatinei	118				
CO4: Famili	iarize th	e variou	s lubric	ant stand	lards.								
CO5: Descri	ibe the l	high pres	sure co	ntacts an	nd the th	eory of	elasto hy	drodyn	amic lubi	rication			
SURFACE	INTEF	RACTIC	N AND	FRICT	ΓΙΟΝ							9	
Topography of Surfaces – Surface features – Properties and measurement – Surface interaction – Adhesive													
Theory of Sliding Friction – Rolling Friction – Friction properties of metallic and non-metallic materials –													
friction in extreme conditions –Thermal considerations in sliding contact.													
WEAR AN	WEAR AND SURFACE TREATMENT9												
Types of we	ar - M	echanisn	n of var	ious type	es of we	ar – Lav	ws of we	ear – The	eoretical	wear mo	dels - W	/ear of	
Metals and	Non me	tals - St	urface ti	eatment	s – Surf	ace mod	lificatioi	ns - surt	ace coat	ings met	thods $-S$	urface	
Topography	measu	rements	– Laser	methods	s - instru	imentati	on - Int	ernation	ai standa	ras in ir	iction an	d wear	
	ILS. NTS AN		DICAT	ION DI	FCIME	S						0	
Lubricants a	ind their	r physics	al prope	-V	iscositv	and oth	er prope	rties of	oils – Ad	ditives	and selec	tion of	
Lubricants	– Lubi	ricants	standard	s ISO.S	SAE.AG	MA.BIS	S standa	ards –	Lubricat	ion Res	gimes –	Solid	
Lubrication	– Dry a	nd marg	inally lu	bricated	l contact	s – Bou	ndary Li	ubricatio	n – Hydr	odynam	ic lubric	ation –	
Elasto and	plasto ł	nydrodyr	namic –	Magnet	to hydro	odynami	c lubric	ation –	Hydro s	tatic lub	orication	– Gas	
lubrication.	_			-	-	-			-				
THEORY	OF HY	DRODY	'NAMI	C AND	HYDRO	DSTAT	IC LUB	RICAT	ION			9	
Reynolds Ed	quation	– Assum	ptions a	nd limit	ations –	one and	two din	nensiona	l Reynol	ds Equat	tion – Re	ynolds	
and Somme	erfeld b	oundary	conditi	ons – P	ressure	wave, f	low, loa	id capac	ity and	friction	calculati	ons in	
Hydrodynar	nic bear	rangs - L	ong and	short be	arings –	Pad bea	rings an	d Journa	l bearing	s – Sque	eze film	effects	
- Inermal	conside	rations	– Hydro Jidamatia	ostatic li	ubricatio	on of Pa	ad beari	ng – Pi	bydrogto	10W, 10	ad and I	riction	
				$\frac{1}{1}$ $\frac{1}$							ings.	0	
Rolling con	tacts of	Elastic	ACIS.	Contact	stresse	<u>n i DK</u> z _ Hert	vian stre		$\frac{\mathbf{UDKICA}}{\mathrm{tion} - \mathrm{St}}$	herical	and cylin	9 ndrical	
contacts - C	ontact	Fatione 1	ife _ Oi	l film ef	fects – F	S – Herr Elasto H	vdrodvn	amic lul	rication	Theory	– Soft ar	d hard	
EHL – Revr	olds ea	uation for	or elasto	hvdrody	vnamic l	ubricati	on – Filr	n shane	within an	d outsid	le contact	zones	
– Film thick	ness an	d friction	n calcula	ation – R	Rolling b	earings	– Stress	es and d	eflection	s – Trac	tion driv	es.	
		ТО	TAL= 4	45 PERI	IODS	0							
REFEREN	CE BO	OKS											
1. Bas	u K., S.	N.Sengu	ıpta & I	B.B.Ahu	ja ., "Fu	ındamer	tals of 7	Tribolog	y", Pren	tice –Ha	ıll of Ind	ia Pvt.	
Ltd	, New I	Delhi, (2	005)										
2. Can	neron, A	A. "Basic	Lubric	ation Th	eory", E	llis Her	ward Lto	d., UK, ((1981)				
3. Hall	ling, J.	(Editor)	"Princip	ples of T	ribology	y", Mac	millian,	(1984)	/4				
4. Rab	1now1cz	z.E, "Frio	ction and	d Wear of T	of mater	ials", Jo	hn Wille	ey & Son	s ,UK,(1	995)			
5. Will	liams J.	A. "Eng	ineering	l ribolo	gy", Ox	ford Un	iv. Press	5, (1994)					
										D	. Crosif		
			Prog	ram Au	teomos	(Pos)				Prograi	n specn	ic s)	
Course	DO1	DOT			DOF		DO7	DUO	DCO1	DECA			
Gutcomes	rui	r02	rus	rU4	r05	rU0	rU/	rUð	r 501	r 502	r 503	r 504	
	3		2		2				3	2			
CO2	3		2					2	3	2			
CO3	3		2						3				
CO4	3		2		2				3	2			
CO5	3	2		2					3			2	
CO6													

OPEN ELECTIVES

192OE01	BUSINESS ANALYTICS	L-T-P	С
		3-0-0	3
Programme:	M.E. Engineering Design	Category:	OE
Aim·	To demonstrate the ability to use technical skills in predicative and	prescriptive	
4 \$1111.	modeling to support business decision-making.		
Course Outcom	es:		
The Students will	be able to		
CO1. Understan	d the role of business analytics within an organization.		
CO2. Analyze d	ata using statistical and data mining techniques and understand relat	tionships betw	een the
CO3 To gain a	numbers processes of an organization.	te and solve b	usiness
problems an	d to support managerial decision making.		usmess
CO4. To becom	e familiar with processes needed to develop, report, and analyze busi	ness data.	
CO5. Use decisi	on-making tools/Operations research techniques.		
CO6. Mange bu	siness process using analytical and management tools		
BUSINESS AN	ALYTICS		9
Overview of B	usiness analytics, Scope of Business analytics, Business	Analytics P	rocess,
Relationship of	Business Analytics Process and organisation, competitive adva	antages of Bu	usiness
Analytics. Statis	stical Tools: Statistical Notation, Descriptive Statistical m	ethods, Revi	iew of
probability distri	bution and data modelling, sampling and estimation methods o	verview.	0
I RENDINESS	AND REGRESSION ANALYSIS	De la	9
Dusing A noluti	as Dersonnal Data and models for Pusiness analytics, problem	portant Keso	ources,
Business Analyti	cs Personnel, Data and models for Business analytics, problems	solving, visu	anzing
	ata, Business Analytics Technology.		
ORGANIZATI	ON STRUCTURES & DESCRIPTIVE ANALYTICS		9
Organization Str	uctures of Business analytics. Team management, Managemer	t Issues Des	ioning
Information Pol	icy Outsourcing Ensuring Data Quality Measuring contril	bution of Bi	isiness
analytics. Manag	ring Changes. Descriptive Analytics, predictive analytics, pre-	dicative Mod	lelling.
Predictive analyt	ics analysis, Data Mining, Data Mining Methodologies, Presci	iptive analyt	ics and
its step in the bus	siness analytics Process, Prescriptive Modelling, nonlinear Opt	imization	
FORECASTIN	G TECHNIQUES		9
Qualitative and	Judgmental Forecasting, Statistical Forecasting Models, Fore	casting Mod	lels for
Stationary Time	Series, Forecasting Models for Time Series with a Linear Trend	d, Forecasting	g Time
Series with Seas	sonality, Regression, Forecasting with Casual Variables, Sel	ecting Appr	opriate
Forecasting Mod	lels, Monte Carlo Simulation and Risk Analysis: Monte Carl	e Simulation	Using
Analytic Solver	Platform, New-Product Development Model, Newsvendor M	lodel, Overb	ooking
Model, Cash Bud	lget Model.		
NR 0777777			~
DECISION AN	ALYSIS	1 11 10	9
Decision Analys	is: Formulating Decision Problems, Decision Strategies with ar	id without Oi	utcome
Probabilities, De	cision Trees, The Value of Information, Utility and Decision N	laking.	
	ТО	TAL : 45 PE	RIODS
REFERENCE B	OOKS		
1. James H	Evans "Business Analytics" persons Education		
2. Marc J.	Schniederjans, Dara G. Schniederjans, Christopher M. Starkey	"Business	
analytic	s Principles, Concepts, and Applications", Pearson FT Press.		

Course			Prog	ram Ou		Program Outcon	m Specif nes(PSO	iic s)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3		3		2	2			3	2		
CO2	3	2			3	2			3	2		
CO3	3		2			2	2		3	2		
CO4	3			3	2				3	2	3	
CO5	3		2	3	2				3	2		2
CO6	3			3	2	2	2		3	2		2

192OE02	COMPOSITE MATERIALS	L-T-P		С					
		3-0-0		3					
Programme:	M.E ENGINEERING DESIGN	Category:	OE	-					
Aim:	To understand the fundamentals of composite material and diff Laminated flat plate composites.	erent types of	analys	sis of					
Course Outcom	es:								
The Students will	be able to								
CO1: Understand	the fundamentals of composite material strength and its mechani	cal behavior.							
CO2: Use the fibe	r reinforced Laminate design for different Combinations of plies	with different							
orientations	of the fiber.								
CO3: Study the th	ermo-mechanical behavior and study of residual stresses in Lam	inates during n	roces	sing.					
CO4: Understand	the vibration and buckling analysis of Laminated Flat Plates	inaces daring p	100000	sing.					
CO4: Understand the Vioration and buckling analysis of Laminated Flat Plates.									
	the Classical Laminate Theory (CLT) to study and analysis for re	sidual suesses	III all						
Isotropic layered structure such as electronic chips.									
LAMINA CONS	ITTUTIVE RELATIONS	· ·	1.4	9					
Definition – Need	– General Characteristics, Applications – Fibers – Glass, Cart	$\frac{1}{2}$ on, Ceramic a	ind Ai	ramid					
fibers – Matrices –	- Polymer, Graphite, Ceramic and Metal Matrices – Characterist	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	d mat	rices.					
Lamina Constituti	ve Equations: Lamina Assumptions – Macroscopic Viewpoint – (Jeneralized Ho	ooke s	(Ω)					
- Reduction to HC	interesting and the second s	Lomino Tror	atom	(Qij),					
Motrix Transform	ad Stiffness – Manufacturing: Bag Moulding – Compression	Lamma – Ital Moulding D	ultrug	ion					
Matrix, Transformed Stiffness – Manufacturing: Bag Moulding – Compression Moulding – Pultrusion –									
	A MINATE CONSTITUTIVE DELATIONS			0					
Definition of stre	ss and Moment Resultants – Strain Displacement relations	- Basic Assu	mntio	ns of					
Laminated anisot	ropic plates – Laminate Constitutive Equations – Coupling	Jusic Assu	Bal	anced					
Laminates Symm	etric Laminates Angle Ply Laminates Cross Ply Laminates – La	minate Struct	ıral M	loduli					
– Evaluation of L	amina Properties from Laminate Tests – Quasi-Isotropic Lami	nates – Deterr	ninati	on of					
Lamina stresses w	ithin Laminates.								
LAMINA STREN	NGTH ANALYSIS			9					
Introduction – Ma	ximum Stress and Strain Criteria – Von-Misses Yield criterion	for Isotropic	Mater	ials –					
Generalized Hill's	Criterion for Anisotropic materials – Tsai-Hill's Failure Criterion	1 for Composit	es – T	ensor					
Polynomial (Tsai-	Wu) Failure criterion – Prediction of laminate Failure.	1							
ANALYSIS OF I	AMINATED FLAT PLATES			9					
Equilibrium Equat	tions of Motion – Energy Formulations – Static Bending Analys	sis – Buckling	Analy	ysis –					
Free Vibrations –	Natural Frequencies.	C							
EFFECT OF TH	ERMAL PROPERTIES			9					
Modification of H	ooke's Law due to thermal properties - Modification of Lamina	te Constitutive	e Equa	ations					
- Orthotropic Lan	nina - special Laminate Configurations - Unidirectional, Off-a	xis, Symmetri	c Bala	anced					
Laminates – Zero	C.T.E laminates, Thermally Quasi-Isotropic Laminates.								
		TOTAL : 45	PERI	ODS					
REFERENCE B	DOKS								
1. Gibson, R	.F., "Principles of Composite Material Mechanics", McGraw-Hi	ll, (1994)							
2. Hyer, M.V	V., "Stress Analysis of Fiber – Reinforced Composite Materials"	, McGraw-Hill	l, (199	98)					
3. Issac M. E	Daniel and Ori Ishai, "Engineering Mechanics of Composite Mate	erials", Oxford	Univ	ersity					
Press-2000	b, First Indian Edition $-(2007)$	1 1 5							
4. Mallick,	P.K. and Newman, S., (edition), "Composite Materials Tec	hnology: Pro	cesses	and ;					
Properties	, Hansen Publisher, Munish, (1990)	a and Davis	.), או	[1					

5. Mallick, P.K., "Fiber-Reinforced Composites: Materials, Manufacturing and Design", Maneel Dekker Inc, (1993)

Course		-	Prog	gram Ou	itcomes	(Pos)	-	-		Program Specific Outcomes(PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4		
CO1	3								3	2				
CO2	3	2							3					
CO3	3		2						3			2		
CO4	3	2	2						3	2		2		
CO5	3	2	2						3			2		
CO6														

192OE03	COST MANAGEMENT OF ENGINEERING PROJECT	S L-T-F	C C
		3-0-0	3
Programme:	M.E ENGINEERING DESIGN	Category:	OE
Aim:	To understand the fundamentals of cost management of engine	ering projects	
Course Outcom	es:		
The Students will	be able to		
CO1: Understand	the cost management processes.		
CO2: Know the co	ost concepts in decision making.		
CO3: Study the va	urious types of projects.		
CO4: Understand	the types of costs and their behavior.		
CO5: Practice the	quantitative techniques used in cost management		
INTRODUCTI	ON		9
Introduction and	Overview of the Strategic Cost Management Process		
COST CONCE	PTS IN DECISION-MAKING		9
Cost concepts	in decision-making; Relevant cost, Differential cost,	Incremental	cost and
Opportunity cost	t. Objectives of a Costing System; Inventory valuation; Cre	ation of a D	atabase for
operational contr	ol; Provision of data for Decision-Making.		
PROJECT			9
Project: meaning	g, Different types, why to manage, cost overruns centres, v	arious stages	s of project
execution: conce	ption to commissioning. Project execution as conglomeration	on of technic	al and non-
technical activit	ies. Detailed Engineering activities. Pre project execution	n main clea	rances and
documents Proj	ect team: Role of each member. Importance Project sit	e: Data req	uired with
significance. Pro	ject contracts. Types and contents. Project execution Project	cost control	Bar charts
and Network dia	gram. Project commissioning: mechanical and process		
COST DELLAV	IOD AND DDOFTT DI ANNUNC		0
COST BEHAV	IOR AND PROFIL PLANNING	Manainal C	y Section and
Cost Benavior a	nd Profit Planning Marginal Costing; Distinction between	Marginal C	osting and
Absorption Cost	ing; Break-even Analysis, Cost-volume-Profit Analysis. v	arious decisi	on-making
problems. Stand	ard Costing and Variance Analysis. Pricing strategies: P	areto Analy	sis. Target
Diagning, Life Cyc	bie Costing. Costing of service sector. Just-in-time approach	Theory of	squirement
A ativity Deced	Cost Management Densh Marking, Polanged Soore (Theory of C	onstraints.
Activity-Dased	Cost Management, Bench Marking, Balanced Score C	Jaru anu v	alue-Chain
Analysis. Budg	Divisional profitability prior designs including topof	; Zero-base	1 budgets.
Measurement of	Divisional profitability pricing decisions including transfer	pricing.	
	VETECHNIQUES		0
Quantitative tech	niques for cost management Linear Programming DED'	T/CPM Tro	nsportation
problems Assign	among the cost management, Elicar Flogramming, FER	1/CI WI, 11a	isportation
provienis, Assig	minent problems, Simulation, Learning Curve Theory	TOTAL · 45	PERIODS
REFERENCE B	OOKS	101/11.43	I LINODS
1. Ashish	K. Bhattacharya, Principles & Practices of Cost Accountin	ig A. H. Who	eeler
publis	ner	0	
2 Charle	s T. Horngren and George Foster. Advanced Management	Accounting	

- Charles T. Horngren and George Foster, Advanced Management Accounting
 Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
 Vohra N.D, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								PSO2	PSO3	PSO4
CO1	3		2						3	2		
CO2	3				2				3	2		
CO3	3			2	2				3			2
CO4	3	2		2		2			3	2		
CO5	3	3							3			2
CO6												

192OE	04	DESIGN OF EXPERIMENTS L-T-P C											
										3	-0-0	3	
Programm	ne:	M.E. E	ngineeri	ing Desi	gn					Ca	tegory:	OE	
Aim:		To des	ign the e	experime	ents and	analyze	data col	lected fr	om expe	riments			
Course O	utcom	es:											
The Studen	ts will	be able t	0										
CO1: F	amiliar	ize the F	Fundame	entals of	design o	of exper	iments						
CO 2: I	Practice	the vari	ious tool	ls used i	n DOE								
CO 3: 0	Conduc	t experii	nents ba	used on f	factorial	design							
CO 4: I	lmpart t	the conc	epts of T	Taguchi	techniqu	ie							
CO 5: A	Apply f	or produ	ict/proce	ess optin	nization								
FUNDAM	ENTA	LS OF I	DESIGN	OF EX	XPERIN	IENTS						9	
Basic principles of design of experiment – randomization – replication – interactions - simple													
comparative experiments - applications of experimental design - barriers in DOE - practical													
methodology													
ANALYTICAL TOOLS OF DOE 9													
Main effec	Main effects plot - Interactions plots - Cube plots - Pareto plot of factor effects - Normal Probability											ability	
Plot of factor effects - Response surface plots and regression models - Model building – Analysis of													
variance													
FACTORIAL DESIGNS9													
Single fact	Single factor experiments - Latin square designs and extensions –Introduction to factorial designs,												
two levels, 2 ^k factorial designs - Fractional factorial designs , two-level, three-level and mixed-level													
factorials													
TAGUCHI APPROACH9													
Overview	of Tag	uchi ap	proach	- comm	non exp	eriment	s and n	nethods	of analy	sis. Ort	hogonal	array-	
properties	- Degr	rees of f	reedom	-confid	ence lev	vel and	interva	l – case	study ex	xercises			
PARAME	TER O	PTIMI	ZATIO	N								9	
Regression	n mode	els - par	ameter	optimiz	zation –	- single	and mu	ılti obje	ective op	otimizati	on - Re	sponse	
surface me	ethodo	logy – g	grey rel	ational	analysi	s - con	nplex p	roportio	onal asse	essment	of alter	natives	
(COPRAS) - case	e study	exercise	es									
									7	ΓΟΤΑL	: 45 PE	RIODS	
REFEREN	NCE BO	OOKS					0.5	•	, a th	1	****	2001	
I. Do	uglas (C. Mont	tgomery	, "Desi	gnand A	Analysi	s of Ex_{j}	perimen	ts'', 5'''	edition.,	Wiley.	2001	
2. Jiji	1 Anto	ny, " D	esign o	f Expe	riments	for Eng	gineers	and Sci	entists"	$, 2^{nd} Ed$	ition, El	sevier,	
	ndan, 2	2014.	" D		C F			• 1	1 4	1	•• • • •	<i>,</i> .	
3. Lei	nnart	Eriksso	n, "D	esign	of Exp	eriment	ts: Prin	ciples	and Ap	plicatio	ns", Ui	netrics	
Ac	ademy	, Sweed	ian, 200)8 , .	р .	1.4	1 .	CT	• ,	" Г	D 11	• 1	
4. Ue	hlert, C	Jaryw.	^{••} First C	Jourse 1	n Desig	n and A	nalysis	ofExpe	eriments	, Freen	han Publ	ishers,	
Ne ²	W Y Or	K, 2000) · c	· .	,	• 4	т	1 * 4	1 т	1 337.1	0	т	
\mathbf{J} . Kat	njit K I	koy, De	esign of	Experi	ments u	sing the	e Taguc	ni Appr	oacn, Jo	onn wile	ey & son	s, Inc.,	
200	01												
									[D	a •e	,	
G			Droc	rom A.	toomas	(Dog)				rrogran	n Specifi	ic D	
Course	DO1	DOI			DOF		D07	DOP	DCO1				
COL	rui	r02	rus	rU4	r05	rU0	r0/	ruð	rsui	r502	r503	r504	
COI	3	3		_					3				
CO2	3			3					3				
CO3	3	3		2					3		2	2	
CO4	3	3		3					3			2	
CO5	3	2		2	2				3		2		
CO6													
		1	1	1	1	1	I	1	1	I	1		

192OE05	INDUSTRIAL SAFETY	L-T-P	С
		3-0-0	3
Programme:	M.E. ENGINEERING DESIGN	Category:	OE
Aim:	To study and practice the safety concepts in industry		
Course Outcom	es:		
The Students will	be able to		
CO1: Familia	rize the Fundamentals of safety procedures		
CO 2: Know t	he fundamentals of maintenance		
CO 3: Unders	tand the wear and corrosion prevention methods		
CO 4: Trace t	he various faults		
CO 5: Apply f	for periodic and preventive maintenance in industries		
FUNDAMENTA	LS OF INDUSTRIAL SAFETY		9
Accident, causes	s, types, results and control, mechanical and electrical hazards	s, types, caus	es and
preventive steps/	procedure, describe salient points of factories act 1948 for heal	lth and safety	, wash
rooms, drinking	water layouts, light, cleanliness, fire, guarding, pressure vesse	ls, etc, Safety	y color
codes. Fire preve	ention and firefighting, equipment and methods		
FUNDAMENT	ALS OF MAINTENANCE ENGINEERING		9
Definition and ai	m of maintenance engineering, Primary and secondary function	is and respons	sibility
of maintenance	department, Types of maintenance, Types and applications	of tools us	ed for
maintenance, Ma	aintenance cost & its relation with replacement economy, Servio	ce life of equi	ipment
WEAR AND C	ORROSION AND THEIR PREVENTION	1	9
Wear- types, cau	ses, effects, wear reduction methods, lubricants-types and appli	cations. Lubr	ication
methods, genera	l sketch, working and applications, i. Screw down grease cup.	ii. Pressure	grease
gun, iii. Splash lu	ubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. S	ide feed lubri	cation,
vii. Ring lubrica	tion, Definition, principle and factors affecting the corrosion.	Types of cor	rosion,
corrosion preven	tion methods.	• •	
FAULT TRAC	ING		9
Fault tracing-cor	cept and importance, decision treeconcept, need and application	ns, sequence o	of fault
finding activities	, show as decision tree, draw decision tree for problems in mach	ine tools, hyd	lraulic,
pneumatic.auton	notive, thermal and electrical equipment's like, I. Any one made	chine tool. ii.	Pump
iii. Air compress	or, iv. Internal combustion engine, v. Boiler, vi. Electrical mot	ors. Types of	f faults
in machine tools	and their general causes	, i jpes of	100105
	D DDEVENTIVE MAINTENANCE		0
PERIODIC AN	D FREVENTIVE MAINTENANCE	mas averbau	J ling of
mechanical com	concept and need, degreasing, cleaning and repairing scher	remedies of e	ling OI
motor repair com	omplexities and its use definition need steps and advant	ages of prev	rentive
maintenance St	ens/procedure for periodic and preventive maintenance of I	Machine to	ols ii
Pumps, iii, Air c	compressors, iv. Diesel generating (DG) sets. Program and sch	edule of prev	ventive
maintenance of r	nechanical and electrical equipment, advantages of preventive r	naintenance.	Repair
cvcle concept an	d importance		
	ТО	TAL : 45 PE	RIODS
REFERENCE B	OOKS		
1. Higgins	& Morrow, Maintenance Engineering Handbook, Da Informat	tion Services.	,
2. Garg H	. P. Maintenance Engineering, , S. Chand and Company.		
3. Audels	Pump-hydraulic Compressors, . Mcgrew Hill Publication.		
4 Winterl	korn Hans Foundation Engineering Handbook Chapman & H	all London	
	torn, runs, roundation Engineering trandotok, Chapillan & H		

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								PSO2	PSO3	PSO4
CO1	3		2		2				3	2		2
CO2	3		2						3		2	
CO3	3		2		2				3			
CO4	3		2						3		2	2
CO5	3		3		2	2		2	3		2	3
CO6												

192EDE15	NANOMATERIALS AND NANOTECHNOLOGY	L-T-P	С								
		3-0-0	3								
Programme:	M.E ENGINEERING DESIGN	Category:	PE								
Prerequisites:	Nil										
Aim:	To understand the basics of nano materials and its technology										
Course Outcom	es:										
The Students will be able to CO1. Acquire the knowledge of the representatives of Nano particles and Characteristic techniques of nano materials. CO2. Familiar with new trends in engineering, namely nanotechnology and nanofabrication and with their applications in modern industries. CO3. Get the knowledge in the field of nanotechnology and nano materials. CO4: Practice the nano electronics CO5: Familiarize nano heat transfer											
ZERO – DIMEN	SIONAL NANOSTRUCTURES		9								
Nanoparticles through homogenous nucleation, nanoparticles through the heterogeneous nucleation, kineticallyconfined synthesis of nanoparticles, epitaxial core – shell nanoparticles. One Dimensional Nanostructure-Nanowires And Nanorods: Spontaneous growth, template based synthesis, electro spinning, and lithography											
TWO-DIMENSI	TWO-DIMENSIONAL NANOSTRUCTURES-THIN FILMS 9										
Fundamentals of VaporDeposition(film growth, vacuum science, physical vapor deposi CVD), Atomic Laver Deposition (ALD), Electrochemical Depos	tion (PVD), ition. Sol-Gel fi	Chemical lms.								
NANOSTRUCT	JRES FABRICAITON		9								
Lithography, nar andnanowires, oth speed review of m faint forces.	o manipulation and nanolithography, soft lithography, ass er methods of micro fabrication, Scanning Electron Microscope. otion: Displacement, velocity, acceleration and force, nano mech	embly of nan Nanomechanic anical oscillatic	oparticels es: A high on, feeling								
NANO ELECTR	ONICS: ELECTRON ENERGY BANDS, ELECTRONS IN	SOLIDS	9								
Conductors, insu quantumconfinem Photonics propert	lation and semi conductors, fermi energy, the density ent, tunneling, single electron phenomenon, molecular elec es of nanomaterials, near-field light, optical tweezers, photonic c	of states fo etronics. Nanop erystals.	or solids, photonics:								
Nanoscale heat, of major concepts fl	onduction, convection, radiation. Nanoscale Fluid Mechanics:	Fluids at the r	nanoscale:								
	ow needs now at the nanoscale, applications of nanonuulos	TOTAL : 45 P	ERIODS								
REFERENCE B	OOKS										
 Ben Rogers, Pennathur and Adams, Nanotechnology: Understanding Small System, CRC Press, 2008. Bhushan, Bharat (Ed.) Handbook of Nanotechnology, Springer 2006. Guozhong Cao, Nanostructures and Nanomaterials, Imperial College Press, 2006. Lundstrom, Mark, Guo, Jing, Nanoscale transistors, Device physics, modeling and simulation, Springer, 2006. 											
5. Yury 2006.	Gogotsi, Nanomaterials Handbook, Drexel University, Philadelp	hia, Pennsylvan	ia, USA,								

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2							3	2		
CO2	3	2	2		2				3			2
CO3	3		2						3	2		
CO4	3	2	2	2					3	2		2
CO5	3		2						3			2
CO6												

192OE07	92OE07 OPERATIONS RESEARCH							
			3-0-0	3				
Programme:	M.E ENGINEERING DESIGN	Category:						
Aim:	To understand the various techniques of optimization in utilizat research techniques for industrial real world problems	zation of resources, operat						
Course Outcom	les:							
The students will	be able to							
CO1. Gain knowl	edge on Operations Research for industrial solutions							
CO2. Apply L.P.H	P. in industrial optimization problems							

CO3. Solve transportation problems using various OR methods

- CO4. Solve assignment problems using various algorithms
- CO5. Analyze the shortest route and critical path in a network

CO6. Apply OR methods in replacement strategy

LINEAR MODELS9Origin of Operations Research – The phases of O.R – Applications – Linear Programming: Formulation –
Graphical method – Simplex method – Artificial Variable techniques: Big M Method–TRANSPORTATION MODELS9Transportation Problems: Optimal solution by North West corner method – Vogel's Approximation method –
Least cost method – MODI method9ASSIGNMENT MODELS9Assignment Problems: Formulation – Unbalanced Assignment Problem – Hungarian algorithm – Traveling
Salesman Problem9NETWORK MODELS9Network models – Shortest route – Minimal spanning tree – Maximum flow models – Project network – CPM

and PERT networks – Critical path scheduling

REPLACEMENT MODELS

Replacement Models: Replacement of items that deteriorate with time – Value of money changing with time & not changing with time – Optimum replacement policy: Individual & Group replacement

Total = 45 Periods:

References

- 1. Hamdy A. Taha, "Operation Research An Introduction", Pearson Publications., New Delhi, (2009)
- 2. Frederick S. Hiller, Gerald J. Liberman, "Operations Research–Concepts and Cases", Tata McGraw-Hill Publishing Company Pvt. Ltd., New Delhi, (2010)
- 3. Panneerselvam R., "Operations Research", Prentice Hall of India., New Delhi, (2010)
- 4. Prem Kumar Gupta and Hira D.S., "Introduction to Operations Research", S. Chand and Co., New Delhi, (2004)
- 5. Ravindran A., Phillips Don T., Solberg James J., "Operations Research: Principles and Practice", John Wiley & Sons, New Delhi, (2011)

Course			Prog		Program Specific Outcomes(PSOs)							
Outcomes	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								PSO2	PSO3	PSO4
CO1	3			3	2				3		2	
CO2	3	2		2	2				3	2		2
CO3	3	2		2	2				3		2	
CO4	3	3		2					3		2	
CO5	3		2	2	2				3		2	2
CO6	3		2		2				3			2

1020508	WASTE TO ENERCY	ΙΤΡ	C
19201200	WASTE TO ENERGY	3_0_0	3
Programme:	M.E ENGINEERING DESIGN	Category:	OE
Aim.	To provide an overview of bio waste to energy	eurogerje	01
Course Outcom			
The Students will	be able to		
CO1: Understand	the need of energy production from waste		
CO2: Know the b	iomass pyrolysis processes		
CO3: Study the ga	usification techniques		
CO4: Apply the c	oncepts of combustion		
CO5: Generate en	ergy from bio gas		
INTRODUCTIO	N TO ENERGY FROM WASTE		9
Classification of v	vaste as fuel – Agro based, Forest residue, Industrial waste - MS	W – Conversi	on devices
– Incinerators, gas	sifiers, digestors		
BIOMASS PYR	DLYSIS		9
Pyrolysis – Types	, slow fast - Manufacture of charcoal - Methods - Yields and ap	plication – M	anufacture
of pyrolytic oils a	nd gases, yields and applications.		
			-
BIOMASS GAS	FICATION		9
Gasifiers – Fixed	bed system – Downdraft and updraft gasifiers – Fluidized	bed gasifiers	– Design,
construction and	operation - Gasifier burner arrangement for thermal heat	ing – Gasif	ier engine
arrangement and	electrical power – Equilibrium and kinetic consideration in gasif	ier operation	
BIOMASS COM	BUSTION		9
Biomass stoves -	Improved chullahs, types, some exotic designs, Fixed bed com	bustors, Type	s, inclined
grate combustors	Fluidized bed combustors, Design, construction and operation	n - Operation	of all the
above biomass co	mbustors.		
BIOGAS			9
Properties of biog	as (Calorific value and composition) - Biogas plant technology	and status - I	Bio energy
system - Design	and constructional features - Biomass resources and their c	lassification	- Biomass
conversion proces	ses - Thermo chemical conversion - Direct combustion - biomass	s gasification	- pyrolysis
and liquefaction -	biochemical conversion - anaerobic digestion - Types of biogas	Plants – Apr	olications -
Alcohol production	on from biomass - Bio diesel production - Urban waste to energy	v conversion	- Biomass
energy programm	e in India	, 	
Field Problemm		FOTAL : 45	PERIODS

REFERENCE BOOKS

- 1. Challal, D. S., Food, Feed and Fuel from Biomass, IBH Publishing Co. Pvt. Ltd., 1991.
- 2. Desai, Ashok V., Non Conventional Energy, Wiley Eastern Ltd., 1990.
- 3. Khandelwal, K. C. and Mahdi, S. S., Biogas Technology A Practical Hand Book Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 4. WereKo-Brobby C. Y. and E. B. Hagan Biomass Conversion and Technology, , John Wiley & Sons, 1996.

Course			Prog	ram Ou		Program Specific Outcomes(PSOs)						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2		2				3	2		2
CO2	3	2	2		2				3	2		3
CO3	3	2	2		2				3			2
CO4	3	2	2		2				3			2
CO5	3	2	2		2				3	2		3
CO6												

AUDIT COURSES

192AC01	ENGLISH FOR RESEARCH PAPER WRITING	L-T-P	С						
		2-0-0	0						
Programme:	M.E ENGINEERING DESIGN	Category:	AC						
Course Outcom	es:								
Students will be	able to:								
CO1. Understand	that how to improve your writing skills and level of readability								
CO2. Learn about	what to write in each section								
CO3. Understand	the skills needed when writing a Title								
CO4. Ensure the g	ood quality of paper at very first-time submission								
	UNITI		6						
Planning and Pr	eparation, Word Order, Breaking up long sentences, Struc	cturing Parag	raphs and						
Sentences, Being	Concise and Removing Redundancy, Avoiding Ambiguity	and Vaguen	ess						
	UNITII		6						
Clarifying Who	Did What, Highlighting Your Findings, Hedging and Crit	icising, 4 Par	aphrasing						
and Plagiarism, Sections of a Paper, Abstracts. Introduction									
UNITIII									
Review of the Li	terature, Methods, Results, Discussion, Conclusions, The F	inal Check							
UNITIV									
key skills are nee	ded when writing a Title, key skills are needed when writing	g an Abstract,	key skills						
are needed when	writing an Introduction, skills needed when writing a Review	ew of the Lite	erature						
UNITV									
skills are needed when writing the Methods, skills needed when writing the Results, skills are needed									
when writing the Discussion, skills are needed when writing the Conclusions									
TOTAL : 30 PERIODS									
REFERENCE BO		11 0	1 D 1)						
1. Goldbort K (2006) Writing for Science, Yale University Press (available on Google Books)									
2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press									
3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM.									
Highman'sbook .									
4. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht									
Heidelberg Lond	on, 2011								

G	Program Outcomes (Pos)									Program Specific Outcomes(PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO1	2			2	2		3	2	2		3		
CO2	2			2	2		3	2	2		3		
CO3	2			2	2		3	2	2		3	2	
CO4	2			2	2		3	2	2		2	2	
CO5													
CO6													

192AC02	DISASTER MANAGEMENT	L-T-P		С						
		2-0-0		0						
Programme:	gramme: M.E ENGINEERING DESIGN (
Course Outcomes:										
Students will be	able to:									
CO1. learn to dem	onstrate a critical understanding of key concepts in disaster risk red	uction and								
humanitarian	response.	prostico fro		ultipla						
perspectives.	and and and multiantarian response policy and	practice no.	111 11	lutupie						
CO3. develop an u	understanding of standards of humanitarian response and practical re	elevance in	spee	cific						
types of disast	ers and conflict situations.									
CO4. critically un	derstand the strengths and weaknesses of disaster management appr	oaches, plai	nnin	ig and						
programming	in different countries, particularly their home country of the country	ies they w	ork	111						
	UNITI			6						
Disaster: Definit	ion, Factors And Significance; Difference Between Hazard Ar	nd Disaste	er;N	Jatural						
And Manmade D	Disasters: Difference, Nature, Types And Magnitude									
	UNITII			6						
Repercussions (Of Disasters And Hazards: Economic Damage, Loss Of Huma	in And An	ima	al Life,						
Destruction Of	Destruction Of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis,									
Floods, Drough	ts And Famines, Landslides And Avalanches, Man-made disas	ster: Nucles	ar F	Reactor						
Meltdown, Indu	strial Accidents, Oil Slicks And Spills, Outbreaks Of Disease	And								
Epidemics, War	And Conflicts.									
	UNITIII			6						
Preparedness: N	Ionitoring Of Phenomena Triggering A Disaster Or Hazard;	Evaluatior	ı O	f Risk:						
Application Of	Remote Sensing, Data From Meteorological And Other Agen	cies, Medi	a R	eports:						
Governmental A	And Community Preparedness.									
	UNITIV			6						
Disaster Risk: C	oncept And Elements, Disaster Risk Reduction, Global And N	ational Dis	aste	er Risk						
Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment And										
Warning, Peopl	e's Participation In Risk Assessment. Strategies for Survival.									
	UNITV			6						
Disaster Mitigat	ion Meaning, Concept And Strategies Of Disaster Mitigation,	Emerging	Tre	ends In						
Mitigation. Structural Mitigation And Non-Structural Mitigation, Programs Of										
DisasterMitigation In India.										
	T)TAL:30	PEI	RIODS						
REFERENCE B	JOKS 6. Sinch AV. "Digastar Managamant in India: Daranaatiyas, is	avec and at	roto	ning						
1. K. INISIIII.	n, Singh AK, Disaster Management in India. Perspectives, is	sues and st	Tale	gles						
2 Cohei Do	rdaanEt Al (Edg.) "Disaatan Mitigatian Everanianaan Ard Dat	lactions"	Dua	ntica						
2. Samin, Pa	Incept.A. (Eds.), Disaster wittigation Experiences And Rei		r rei	nuce						
$\begin{bmatrix} \text{nall OI india, N} \\ 2 & \text{October I} \end{bmatrix}$	Disaston Administration And Management Toot And Const	Ctu 1: T)							
5. Goel S. L	., Disaster Administration And Management Text And Case	Studies",L	Jeej	þ						
& Deep Publication Pvt. Ltd., New Delni.										

Course	Program Outcomes (Pos)								Program Specific Outcomes(PSOs)			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3		2		3		2	2	3		2	2
CO2	3		2		3		2	2	3		2	2
CO3	3		2		3		2	2	3		2	2
CO4	3		2		3		2	2	3		2	2
CO5												
CO6												
192AC03	VALUE EDUCATION	L-T-P	С									
---	---	------------------	--------------	--	--	--	--	--	--			
		0										
Programme:	M.E ENGINEERING DESIGN	Category:	AC									
Course Outcom	es:											
Students will be al	ple to											
CO1. Understand	value of education and self- development											
CO2. Imbibe good	values in students											
CO3. Let the shou	ld know about the importance of character											
UNITI												
Values and self-o	levelopment -Social values and individual attitudes. Work e	ethics, Indian	vision of									
humanism. Moral and non- moral valuation. Standards and principles. Value judgements												
UNITII 6												
Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration.												
Truthfulness, Clea	nliness. Honesty, Humanity. Power of faith, National Unity. Pa	atriotism.Love	for nature									
,Discipline												
	UNITIII		6									
Personality and E	behavior Development - Soul and Scientific attitude. Positive	Thinking. Int	egrity and									
discipline. Punctu	ality, Love and Kindness. Avoid fault Thinking. Free from a	nger, Dignity	of labour.									
Universal brotherh	ood and religious tolerance. True friendship. Happiness Vs suffer	ing, love for tr	uth. Aware									
of self-destructive	habits. Association and Cooperation. Doing best for savin	ng nature										
	UNITIV		6									
Character and Competence -Holy books vs Blind faith. Self-management and Good health. Science of												
reincarnation.												
	UNITV		6									
Equality, Nonviol	ence ,Humility, Role of Women. All religions and same message	e. Mind your N	/lind, Self-									
control. Honesty, S	Studying effectively											
TOTAL : 30 PERIODS												
REFERENCE BO		<u> </u>										

1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi

Course			Prog	ram Ou	Program Specific Outcomes(PSOs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3			2	3		3		3		3	
CO2	3			2	2		3		3		3	
CO3	3			2	2		3		3		3	
CO4												
CO5												
CO6												

192AC04	CONSTITUTION OF INDIA	L-T-P	С						
		2_0_0	0						
Programme:	M.E ENGINEERING DESIGN	Category:	AC						
Course Outcom	es:								
Students will be al	ble to:								
CO1. Understand	the premises informing the twin themes of liberty and freedom fro	om a civil right	S						
perspective.		e							
CO2. To address t	he growth of Indian opinion regarding modern Indian intellectual	s' constitutiona	ıl role						
and entitlemen	t to civil and economic rights as well as the emergence of nation	nood in the ear	ly years						
of Indian natio	nalism.								
CO3. To address t	he role of socialism in India after the commencement of the Bolsl	nevik Revolutio	on in						
191^{7} and its in	npact on the initial drafting of the Indian Constitution.								
UNITI 6									
History of Makin	g of the Indian Constitution, Philosophy of the Indian Consti	tution, Salient	Features,						
Contours of Constitutional Rights & Duties, Fundamental Rights. Right to Equality. Right to Freedom.									
Right against Exploitation, Right to Freedom of Religion. Cultural and Educational Rights. Right to									
Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.									
UNITII 6									
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and									
Functions, Executive, President Governor, Council of Ministers, Judiciary, Appointment and Transfer of									
Judges, Qualificati	ons Powers and Functions								
	UNITIII		6						
Local Administrat	ion: District's Administration head: Role and Importance, Mun	icipalities: Int	oduction,						
Mayor and role of	Elected Representative, CEO, Municipal Corporation.								
	UNITIV		6						
Pachayati raj: Intr	oduction, Elected officials and their roles, CEO ZilaPachayat: F	osition and ro	le., Block						
level: Organization	nal Hierarchy (Different departments), Village level: Role of	Elected and	Appointed						
officials, Importance of grass root democracy									
	UNITV		6						
Election Commiss	ion: Role and Functioning, Chief Election Commissioner and I	Election Comm	issioners,						
State Election Cor	nmission: Role and Functioning, Institute and Bodies for the we	lfare of SC/ST	OBC and						
women									
TOTAL : 30 PERIODS									
REFERENCE BO	DOKS								
1. The Const	itution of India, 1950 (Bare Act), Government Publication.								
2. Dr. S. N. I	Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edit	tion, 2015.							
3. M. P. Jain	, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014.								

4. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

Course			Prog	ram Ou	Program Specific Outcomes(PSOs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3			2	3	2	3		3		2	
CO2	3			2	3	2	3		3		2	
CO3	3			2	3	2	3		3		2	
CO4												
CO5												
CO6												

AC05 PEDAGOGY STUDIES									
	2-0-0	0							
ogramme: M.E ENGINEERING DESIGN									
es:									
ble to: ting evidence on the review topic to inform programme design a the DfID, other agencies and researchers. ical evidence gaps to guide the development.	nd policy makin	ıg							
UNITI		6							
eories of learning, Curriculum, Teacher education, Conceptu	ual framework,	Resear							
ew of methodology and Searching.									
UNITII		6							
w: Pedagogical practices are being used by teachers in formal, and	nd informal clas	srooms							
ies, Curriculum, Teacher education.									
UNITIII		6							
effectiveness of pedagogical practices, Methodology for the	e in depth stag	e: quali							
luded studies, How can teacher education (curriculum and pr	racticum) and t	he scho							
idance materials best support effective pedagogy? Theory of ch	ange, Strength	and natu							
dence for effective pedagogical practices. Pedagogic theory and	l pedagogical a	proache							
s and beliefs and Pedagogic strategies.	. [8 - 8]	I							
UNITIV		6							
opment: alignment with classroom practices and follow- up supp	ort, Peer suppor	t, Suppo							
her and the community, Curriculum and assessment, Barriers to l	earning: limited	resourc							
es									
UNITV		6							
d future directions, Research design, Contexts, Pedagogy, Teach	ner education, C	urriculu							
issemination and research impact.									
	TOTAL : 30 I	PERIO							
Hardman F (2001) Classroom interaction in Kenyan primary s M (2004) Curricular reform in schools: The importance of evalua es, 36 (3): 361-379. ong K (2003) Teacher training in Ghana - does it count? Mu MUSTER) country report 1. London: DFID. ong K, Lussier K, Pryor J, Westbrook J (2013) Improving teach in Africa: Does teacher preparation count? International Journal F	chools, Compa ation, Journal of alti-site teacher ning and learnin Educational Dev	education g of baselopmer							
	M.E ENGINEERING DESIGN tes: ble to: sting evidence on the review topic to inform programme design at the DfID, other agencies and researchers. ical evidence gaps to guide the development. UNITI eories of learning, Curriculum, Teacher education, Conceptuew of methodology and Searching. UNITI eories of learning, Curriculum, Teacher education, Conceptuew of methodology and Searching. UNITII w: Pedagogical practices are being used by teachers in formal, at ies, Curriculum, Teacher education. UNITII effectiveness of pedagogical practices, Methodology for the chuded studies, How can teacher education (curriculum and p tidance materials best support effective pedagogy? Theory of ch dence for effective pedagogic strategies. UNITIV lopment: alignment with classroom practices and follow- up suppether and the community, Curriculum and assessment, Barriers to less UNITV d future directions, Research design, Contexts, Pedagogy, Teach bissemination and research impact. OOKS Hardman F (2001) Classroom interaction in Kenyan primary s M (2004) Curricular reform in schools: The importance of evalua zs, 36 (3): 361-379. ong K (2003) Teacher training in Ghana - does it count? Mt MUSTER) country report 1. London: DFID. ong K, Lussier K, Pryor J, Westbrook J (2013) Improving teach in Africa	Imported if strengthere Q-00 M.E ENGINEERING DESIGN Category: tes: ble to: ting evidence on the review topic to inform programme design and policy making the DfID, other agencies and researchers. ical evidence gaps to guide the development. UNITI eories of learning, Curriculum, Teacher education, Conceptual framework, ew of methodology and Searching. UNITII w: Pedagogical practices are being used by teachers in formal, and informal class ies, Curriculum, Teacher education. UNITII effectiveness of pedagogical practices, Methodology for the in depth stage thidded studies, How can teacher education (curriculum and practicum) and the data trials best support effective pedagogic theory and pedagogical ages and beliefs and Pedagogic strategies. UNITIV lopment: alignment with classroom practices and follow- up support, Peer support ther and the community, Curriculum and assessment, Barriers to learning: limited tess UNITV d future directions, Research design, Contexts, Pedagogy, Teacher education, Cohsemination and research impact. TOTAL : 30 FOOKS Hardman F (2001) Classroom interaction in Kenyan primary schools, Compare M (2004) Curricular reform in schools: The importance of evaluation, Journal of es, 36 (3): 361-379. ong K (2003) Teacher training in Ghana - does it count? Multi-site teacher MUSTER) country report 1. L							

Course			Prog	ram Ou	Program Specific Outcomes(PSOs)							
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	2		3	2		3		3		3	
CO2	3	2		2	2		3		3		3	
CO3	3	2		3	2		3		3		3	
CO4												
CO5												
CO6												

192AC06	L-T-P	С	
		2-0-0	0
Programme:	M.E ENGINEERING DESIGN	Category:	AC
Course Outcom	es:		
Students will be a CO1. Achieve ove CO2. Overcome s	ble to: erall health of body and mind tress		
	UNITI		6
Definitions of Eig	ht parts of yoga. (Ashtanga)		
	UNITII		6
Yam and Niyam,	Do's and Don't's in life.		
	UNITIII		6
Asan and Pranaya	m	nyay, isnwarpra	manan,
	UNITIV		6
Various yog poses	and their benefits for mind & body		
	UNITV		6
Regularization of	breathing techniques and its effects-Types of pranayam		
		TOTAL : 30 P	ERIODS
REFERENCE B	OOKS	r 11.57	
$\begin{bmatrix} 1. & Y \text{ ogic As} \\ 2 & y \text{ ogic As} \end{bmatrix}$	sanas for Group Tarining-Part-1" :Janardan Swami Yogabhyasi M	landal, Nagpur	
2. "Kajayoga	a or conquering the Internal Nature" by Swami Vivekananda, Adv	vaitaAshrama	
(Publication Depa	rtment), Kolkata		

Course		Program Outcomes (Pos)									Program Specific Outcomes(PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4			
CO1	3		2		3	2	2	2	3	2	2				
CO2	3		2		3	2	2	2	3	2					
CO3															
CO4															
CO5															
CO6															