

First meeting of class committee for Second year (B.E ECE) students are arranged on 09.07.2018 (Monday) at 12.30 p.m in VLSI lab. The students and faculties are requested to attend the meeting without fail.

Agenda of meeting:

1. Syllabus coverage
2. Discipline
3. General Queries
4. Preparation for Internal Assessment test I

Course code	Course title	Faculty In-Charges	
		Section I	M Section II
161MA31	Transforms and Partial Differential Equations	Ms.B.Suganya	Br.V.Ramamoorthy
161EC31	Analog Electronic Circuits	Dr.P.Marichamy/ Ms.T.Vaishubiah	Ms.M.Vimala
161EC3?	Digital Electronics	Mr.G.Lingasamy	Mr.S.Athimoolam
161EC33	Electromagnetic Fields	Dr.P.Ranjith Kumar	Ms.P.Krishnaleela ito-
161 EC 34	Electronic Measurements and. Instrumentation	Ms.V.Rohini	Mr.N.S.Yoga Ananth
161EC35	Data Structures and C++	Ms.K.R.Indira	Ms.K.R.Indira
161 EC37	Analog Electronic Circuits Laboratory	Ms.P.A.Mathina Ms.M.Vimala	Ms.P.A.Mathina Ms.M.Vimala
161 EC38	Data Structures and C++ Laboratory	Ms.K.R.Indira Ms.V.Rohini	Ms.K.R.Indira Ms.V.Rohini
161HS39	Functional English I	Mr.G.Ganesh Kumar	Ms.J.Blessing Kiruba 69

Student Members:

S.No	Section -I	Section -II
1.	Archana P P.Avechana	Sivaranjani G GT. Siveramant
2.	Chitra J J. Clitra	Saranyas s. Souanya.
3.	Kanagalakshmi M M Kangralak Shmi	Suguna R RSegana
4.	Mari Shanker Raja A A d M w	Surya Prakash LS L-8, -
5.	Marimuthu M M. Merd Fowlm.	Vijay Prakash R R1C\%
6.	Gnana Prakashraj A A.Cinanes:	Vignesh K K.wyumd

P.S.R. ENGINEERING COLLEGE

SIVAKASI-626140

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ONVGL
 EVALUATION OF STAFF BY STUDENTS
 somini

(ACADEMIC YEAR 2017-2018)EVEN SEM
YEAR/SEM: II/IV
SEC: I

P.S.R ENGINEERING COLLEGE, SIVAKASI-626 140
DEPARTMENT OF ECE

FEEDBACK - ANALYSIS (EVEN SEM 2017-18)

FACULTYNAME: Mrs.P.KRISHNALEELA,AP/ECE YEAR: II SECTION: I SEMESTER: IV
COURSE NANE: 161EC44/TRANSMISSION LINES AND WAVEGUIDES

1-Punctuality	2 -Regularity In Taking Classes	3-Completes Syllabus Of The Course In Time	4-Makes Alternate Arrangement Of Class In His/hcr Absence	5 - Focus On Syllabi
6-Self Confidence	7 -Communication Skills	8 - Teaching The Subject Matter	9 Skill Of Linking Subject To Life Experience \& Creating Interest In The Subject	10-Refers To Latest Development In The Field
11-Usage of Teaching Aids(OHP,Blackboard,PPTs)	12-Clarify In Usage of Blackboard/White Board	13-Uses Of Innovative Teaching Methods	14-Helping Approach Towards Varied Academic Interests Of Student	15-Approach Towards Developing Professional Skills Among Students
16-Help students In Rėalizing Career Goals	17-Regular Checking Of Lab Log Books Note Books	18-Availability Of Teacher In The Lab For Whole Duration Of Lab Hours	19-Takes Interests In Conduct of lab/Seminars/GD/Develop Programme Coding/Circuit Design/Applying Lab Concept In Real Life Problems	$\begin{aligned} & \text { 20-Motivation To Applying } \\ & \text { Patents/Proposals } \end{aligned}$
21-Control Mechanism In Effectively Conducting The Class	22-Skills Of Addressing In Appropriate Behavior Of Student	23-Tendency Of Inviting Opinion \& Question On Subject Matter From Student	24-Inspires Students Of Ethical Conduct	25-Act As A Role Model

MRS.P.KRISHNA LEELA,AP/ECE
MS.M.INDHUMATHI,AP/ECE

APPROVED BX
HOD/ECE

P.S.R ENGINEERING COLLEGE, SIVAKASI-626 140

 DEPARTMENT OF ESE

FACULTY NAME: Dr.K.VALARMATHI,HOD/ECE YEAR: II SECTION: I SEMESTER: IV COURSE NAME: 161EC43/SIGNALS AND SYSTEMS

PREPARED BY
mRS.P.KRISHNA LEELA,AP/ECE MS.M.INDHUMATHI,AP/ECE

APPROVED BY HOD/ECE
P.S.R ENGINEERING; COLLEGE, SIVAKASI-626 140 DEPARTMENT OF ECE
FEEDBACK - ANALYSIS (EVEN SEM 2017-18)

FACULTY NAME: MR.S.balasubramanian,ap/ECE year: if SECTION: I SEMESTER: IV
COURSE NAME: 16IEC42/LINEAR INTEGRATED CIRCUITS

PREPARED BY
MRS.P.KRISHNA LEELA,AP/ECE

APPROVED BY HOD/ECE
MS.M.INDHUMATHI,AP/ECE

FACULTY NAME: Mr.VENKATESWARA,AP/MATIIS YEAR: II SECTION: I SEMESTER: IV COURSE NAME: I61MA41/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATION

Bral \qquad
APPROVED BY HOD/ECE

P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution - Affliated to Anna University, Chennai)

SIVAKASI - 626140

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

STAFF MEET-01

STAFF ATTENDED:

DATE: 22.08.14

STAFF ABSENT: Mr. R. Arunkumar
DISCUSSION DETAILS:

1. Discussions regarding syllabus coverage of all subjects and its effectiveness.
2. Had a review about the results of internal assessment test- 1 .
3. Got feedback from final year students as, more soft skill trainings are needed rather than aptitude training.
4. ISO Surveillance auditing will be scheduled on August $26 \& 27,2014$.
5. Students are instructed to wear proper dress code (i.e. Shirt inserted with pant, black shoes and belt). Girls should not wear leggings.
6. Students were suggested to increase more no of department association activities.
7. Motivation must be given to the students of III year for attending internship programs.
8. Department profile for placements must be prepared by Mrs.D.Venkateshwari.
9. Had an enquiry explanation from staff regarding results of internal assessment test, who scored less than 50%
10. Advised to improve the minimum results of internal assessment test II to be atleast 75%.
11. Overall pass percentage of the department for internal assessment test-Il should be atleast 50% to 55%
12. Student database for placement like pass percentage, history of arrears must be upgraded by class advisor and placement coordinator.
13. Tech Mahendra placement will be scheduled in the month of October 2014
14. Planned to issue provisional certificate for ME students on $25^{\text {th }}$ Aug, 2014.
15. Internal Assessment test -II will starts from $27^{\text {th }}$ Aug, 2014.
16. One week placement training for III year students will be scheduled from $8^{\text {th }}$ September, 2014.
17. Third year students is planned to undergo an industrial visit to Vickram Sarabhai space centre, Trivandrum on $23^{\text {rd }}$ Aug, 2014.

Prepared by,

S. Ahreaya
(S.ABINAYA, AP/ECE)

P.S.R ENGINEERING COLLEGE

DEPARTMENT OF ECE

Minutes of staff meeting held on 25.11.15 at 12:40 pm in VLSI Laboratory

POINTS DISCUSSED:

1. Model question paper for each subject has to be submitted on or before 4 th December, 2015.
2. Unit wise Question bank has to be submitted on or before $4^{\text {th }}$ December, 2015
3. All faculties are requested to speed up their syllabus.
4. Every faculty is requested to send their course plan to our Department Assistant (DA) through mail.
5. Prepare course file and tutorial sheet in each subject for current semester.
6. Project supervisors are asked to follow their batch students and ask them to submit their project work for every week.
7. Faculties must get signature on \log book from HOD for every week.
8. Academic audit is going to be held on 30.11 .15 , so all staff members are asked to be ready with their course file and log book for previous semester.
9. Class advisors are requested to collect the student participation (workshop, seminar, association etc...) certificates and submit to Mr.R.Balakumar AP/ECE
10. Faculties are asked to give their participation (workshop, seminar, FDP etc..) certificates to Mr.R.Balakumar AP/ECE
11. Class advisors are requested to submit student absentee's statement for every month, if the student was in a long leave, must inform their parents through letter.
12. Concerned NBA incharges are requested to be updated on their criteria's.

Prepared by,

P.S.R ENGINEERING COLLEGE

(An Autonomous Institution \& Affiliated to Anna University, Chennai)

DEPARTMENT OF ECE

Minutes of Department staff meeting held on 07.09.2016 at 12:40pm in VLSI Laboratory

DISCUSSION:

1. The faculties are asked to prepare Unit wise Question bank and it has to be submitted on or before $15^{\text {th }}$ Sep 2016.
2. Commencement of Internal Assessment-II will be held from $26^{\text {th }}$ Sep 2016.
3. Second Class Committee Meeting was instructed to conduct next week. The Students are motivated to get great score in next IAT.
4. Placement classes are conduct based on GD, stage presence, and verbal.
5. The faculty advisors are asked to collect the softcopy and hardcopy of the student's passport size photo, signature, resume and all other needed information.
6. It was announced to the faculty members, for Staff Performance Appraisal. The faculties are motivated to attend FDP/STTP/QIP in various NITs and IITs.It was motivated to submit/publish paper in conference per reviewed journals.
7. It was instructed to the faculty advisors, the industrial visit is restricted for one day only.
8. Mrs.K.Ramalakshmi had allot for academic council of 2016 to 2017 (both UG \& PG) as a new member.

P.S.R.ENGINEERING COLLEGE

(An Autonomous Institution \& ISO 9001:2008 certified Institution)
Sivakasi-626 140, Virudhunagar Dt., Tamil Nadu

DEPARTMENT OF EC

Minutes of placement meeting held on 11.04 .2018 at 12.30 pm in VLSI Laboratory.

POINTS DISCUSSED:

1. Staffs were instructed to prepare their respective course material and submit it to the HOD on or before 25.05.2018.
2. Staff members must motivate their students to attend inplant training and internship programs during semester holidays.
3. Students are asked to register the NPTEL courses for forthcoming semester.
4. Various placement incharges are allotted to II,III and IV year students.
5. Placement classes to be conducted in different sessions like GD, mock interview, online test and technical languages.
6. Faculties are instructed to conduct GATE chases for final year students.
7. Faculties are instructed to prepare the students in programming languages like $\mathrm{C}, \mathrm{C}++$ and JAVA.
(8)N

HOD/ECE
(Mrs.S.MAHALAKSHMI,AP/ECE)

P.S.R.ENGINEERING COLLEGE
 (An Autonomous Institution \& ISO 9001:2008 certified Institution)
 Sivakasi-626 140, Virudhunagar Dt., Tamil Nadu
 DEPARTMENT OF ECE
 MINUTES OF MEETING

DATE: 01.03.2019
TIME: $\mathbf{1 2 . 3 0} \mathbf{P M}$
VENUE: VLSI LAB

POINTS DISCUSSED:

1. Faculty members are instructed to prepare the Progress Report for Model Exams.
2. All the staff members are asked to update their Log book, Course File, Course Material.
3. The Lab Incharges are asked to prepare their Lab Reqirements.
4. College day will be deliberated on Last Week of March.
5. Class Advisors should prepare academic prize winners list for their Classes.
6. HoD instructed the Faculty members to identify the Slow learners in their Subjects and advised to take a special care on them.
7. Staff members are asked to fill the count of printout sheets in that concerned note book.
8. The faculties are asked to prepare Question Bank and it has to be submitted on or before 01.04.2019.

Prepared by
(Ms.M.Indhu Mathi,AP/ECE)

HOD/ECE

P.S.R ENGINEERING COLLEGE

(An Autonomous Institution \& Affiliated to Anna University, Chennai)

DEPARTMENT OF ECE

Minutes of placement meeting held on 06.12.2017 at 12:40pm in VLSI Laboratory

POINTS DISCUSSED:

1. Staffs were instructed to prepare their respective course material and submit it to the head of the department on or before 12, Dec 2017.

11
2. Course files must be updated frequently to make it effective.
3. BOS meeting, syllabus and curriculum revision for UG and PG program must be revised. Revision should include innovation in lab exercise, new open source hardware and software and downsize the syllabus to our environment by comparing with Anna university syllabus and other premier/autonomous institution.
4. Suggest the prescribed textbooks to students and recommend new textbooks to II both central and department library.
5. Students are asked to get signature in their observation and record notebooks periodically.

Prepared by

$$
\text { (B) } \mathrm{nc}
$$

リ

HOD/ECE
P.S.R. ENGINEERING COLLEGE SIVAKASI-626 140
(An Autonomous Institution, Affiliated to Anna University, Chennai)

DEPARTMENT OF ECE

PREFACE

COURSE NAME	: SIGNALS AND SYSTEMS
COURSE CODE	$: 161 E C 43$
YEAR/SEMESTER/SECTION	$:$ II/IV/II
PROGRAMME	$:$ B.E.,ECE
NAME OF THE FACULTY	$:$ Mrs.P.LINGESWARI, AP/ECE
ACADEMIC YEAR	$: 2017-2018$
DURATION	$: 2016$
REGULATION	

Mrs. P.LINGESWARI, AP/ECE
APPROVED BY
SYal
HOD/ECE

CLASSIFICATION OF SIGNALS AND SYSTEMS

Basic signals, Classification of signals - Continuous and Discrete signals, Periodic and Aperiodic Signals, Deterministic and Random signals, Energy and Power signals - Classification of systems Continuous and Discrete systems, Static and Dynamic, Linear and Nonlinear, Time-variant and Time-invariant, Causal and Non causal, Stable and Unstable.

ANALYSIS OF CONTINUOUS TIME SIGNALS

12
Fourier series analysis-spectrum of Continuous Time signals- Fourier and Laplace Transforms in Continuous Time Signal Analysis - Properties of Fourier and Laplace Transforms.
LINEAR TIME INVARIANT- CONTINUOUS TIME SYSTEMS
Differential Equation-Block diagram representation-impulse response, convolution integrals-
Fourier and Laplace transforms in Analysis of CT systems.
ANALYSIS OF DISCRETE TIME SIGNALS
Baseband Sampling - Aliasing, Reconstruction of CT signal from DT signal- DTFT - Properties of DTFT - Z Transform - Properties of Z Transform.
LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS
Difference Equations-Block diagram representation-Impulse response - Convolution sum- Discrete Fourier and Z Transform Analysis of Recursive \& Non-Recursive systems.
TOTAL PERIODS

TEXT BOOKS

1. Simon Haykins and Barry Van Veen, "Signals and Systems", Second Edition, John Wiley and Sons, Reprint 2012.

REFERENCES

1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.
2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals \& Systems - Continuous and Discrete". Pearson, 2007.
3. M.J.Roberts, "Signals \& Systems Analysis using Transform Methods \& MATLAB" Tata McGraw Hill, 2007.
4. Allan V. Oppenheim, S.Wilsky and S.H.Nawab, "Signals and Systems"; Pearson, 2007.

Course Outcomes	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
	not	ron	nos	No4	tos	nors	-0)	ros	rot	pora	noil	10013:	mous	mos	usos	esod
COI	3	3											3	1	2	1
CO 2	3	3	2	2		1	1	1				1	3		2	1
CO3	3	3	3	3									3		2	
CO 4	3	3	3	3									3.		2	1
cos	3	3	3	3									3		2	1
CO6	3	3	3	2									2	1	2	1

[^0]Substantial (High)
P.S.R ENGINEERING COLLEGE
(An Autonomous Institution \& Affiliated to Anna Uniyersity, Chennai) DEPARTMENT OF ECE

COURSE PLAN
COURSE CODE \& NAME: $161 E C 43$ \& SIGNALS AND SYSTEMS \quad SECTION: II
SEMESTER: IV
FACULTY NAME: Mrs.P.Lingeswari,AP/ECE

TEXT BOOKS

1. Simon Haykins and Barry Van Veen, "Signals and Systems", Second Edition, John Wiley and Sons, Reprint 2012.

REFERENCES:

1. B. P. Lathi, "Principles of Linear Systems and Signals", Second Edition, Oxford, 2009.
2. R.E.Zeimer, W.H.Tranter and R.D.Fannin, "Signals \& Systems - Continuous and Discrete", Pearson, 2007.
3. M.J.Roberts, "Signals \& Systems Analysis using Transform Methods \& MATLAB", Tata McGraw Hill, 2007.
4. Allan V.Oppenheim, S. Wilsky and S.H.Nawab, "Signals and Systems", Pearson, 2007.
5. P.Ramesh Babu and R.Anandanatarajan, "Signais and Systems", Scitech publication, Fourth edition, 2011.
P.S.R. ENGINEERING COLLEGE SIVAKASI-626 140
(An Autonomous Institution, Affiliated to Anna University, Chennai)
INTERNAL ASSESSMENT TEST - I

Programme:	B.E.	Branch	Electronics and Communication Engineering		
Acad. Year:	$2017-2018$	Year/Semester	II Yr/IV Serm		
Course Code:	161 EC43	Course Name	Signals and Systems		
Maximum Marks:	60 Marks	Date ofTest	19.01.2018 (AN)	Duration	1.30 hrs
Course Tutor(s):	Section-1: Dr.K.Valarmathi/ECE	Section-2: Mrs.P.Lingeswari/ECE			

Answer All Ouestions

PART - A

1. Distinguish between symmetric and Asymmetric signal.
2. What is the fundamental period of $e^{/ \omega d}$?
3. Find the power and RMS value of signal $x(t)=20 \cos 2 \pi t$.
4. Define I. TI system.
5. Compare Fourier series and Fourier transform,
6. Define the Dirichlet's conditions for continuous time Fourier series.

PART - B

3×16 Marks $=48$ Marks

7.a) Distinguish between the following:
(i) Continuous time signal and discrete time signal
(ii) Unit step and unit ramp function
(iii) Periodic and aperiodic signal
(iv) Deterministic and random signal
or
b) i) Prove the signal $x(t)=e^{-3 r} u(t)$ is an energy signal not the power signal.
ii) Solve the fundamental period of the signal $e^{\left(\frac{2 \pi}{3}\right) \pi}+e^{x\left(\frac{3 \pi}{4}\right) \pi}$.
iii) Outline the signal $g(t)-u(2-t)$.
iv) Find the even and odd components of the signal $x(t)=\cos t+\sin t+\cos t \sin t$. 4
8.a) Classify the following systems under their linearity, time imvariance, casual, stability.
(1) $y(n)=x(n) \cos \omega n$
(2) $y(n)=0.25 x(n-1)$
or
b) Elaborate the classification of system with examples.
9.a) Construct the Trigonometric Fourier series representation of the half wave rectifier output as shown in figure.

or
b) i) Determine the Fourier transform and sketch the magnitude and phase spectrum for the 8 signal $x(t)=e^{-0.5 t} u(t)$.
ii) Summarize the properties of Fourier transform.
P.S.R. ENGINEERING COLLEGE SIVAKASI-626 140 (An Autonomous Institution, Affiliated to Anna University, Chennai) department or electronics and communication enginetring
 MODERATION OF QUESTION PAPER

Internal Assessment I					
Programme:	B.E	Branch	Electronics a	tion Eng	ring
Acad.Year:	2016.2017	Year/Sermester	WYr/VSSem		
Course Codes	161 EC 43	Course Named	Sigmals and		
Maximum Marks:	60	Date of Test	19-01-2018	Duratiou	
Course Tutor(s):	Lingeswars Pomnusamy/Electronics and Communication Engineering				

$\begin{aligned} & \text { Qo: } \\ & \text { No, } \end{aligned}$	Competence Category						- Qn Level			cos
	Remembering(RM)	Undarstanding(US)	Applying(A)	AnalysisiA\%	Evaluating(EV)	Creatisp(CR)	Easy	Medium	Challenge	
1				2				\checkmark		$\mathrm{CO1}$
2	2						\checkmark			COI
3	2						\checkmark			C02
4	2						\checkmark			COL
5		2					\checkmark			CO3
6	2						\checkmark			CO 3
7 a .1				16			\checkmark			COI
7.b.			8						\checkmark	CO 2
7b.if		8					\checkmark			COL
$8.8 . i$				16				\checkmark		COI
		16					\checkmark			COL
9.a. 1						16			\checkmark	cos
9.b.i					8			\checkmark		C0. 3
Total		8					\checkmark			C03
\%	\% 7.41	34	8	34	8	16	58	26	24	
irable	$\mathrm{b}=30 \%$ to	$\frac{31.48}{+6+f}=60 \%$ to	7.41	31.48	7.41	14.81	537	24.07	22.22	

E-Easy(50.00%).M-Medium(25.00\%), C-CbalLenge225.00\%)

Remarks

Head of the Department

SSVd	IE				tI				21	7		1		1	I	HSJWVd	6903591	81	
SSVd	$0 \mathcal{L}$			8		8			8	2			Z		c	INTHSEVHCIVXIXd	L903391	LI	
SSVd	90			E1		21			§1	7			2	1	1		9903391	91	
SSVd	$L E$			L		21	δ	8		1			2	1	1	GVXVGVdd	5905391	¢I	
SSVd	$\varepsilon\rangle$			8		7 I	9	8		χ	I		2	1	1	NIMXVG VUHILAVd	7909391	t1	
SSVd	ES			Cl	8				L		1		7	2	1	VKİd VWHLVd	c900391	E1	
SSVd	25			91		$\dagger \mathrm{I}$	9	8		2	1		$\%$	2	I	IHLVXVSVHLXVd	7909591	己1	
TVEd	12			2	\dagger				II	7				1	1	NV2VMS3IGNVd	[90, 191	11	
SSVd	08			5		$0[$	5	9					Z	2			0900391	0 I	
SSVd	SE			L	6		\oint	L		2			2	I	2	fVdVsVN	6509991	6	
TVid	CI								El				2			INVWAHEOW	9505791	8	
SSVd	εt			71		DI	L	6		I			I		I	¢VWกX	\$509591	L	
TIVd	61			9	OI				\mathcal{E}		-	\checkmark				NVOค®	ES03091	9	
SSVd	E $£$			01	8				Z1				η		I	VYINOW	250.7591	5	
SSVd	2 2			EI	01				8	1						INVWNのAVW	IS0039I	7	
TIVs	12				01				6	I			1			IVCICVW	0500391	ε	
SSVd	LE			21	II				8	2	I		2		1	TVINWVTEN	6703391	7	
SSVd	07			EI		ग1			9	2		1	χ	1	I	IVTVDAWINVW	8703991	I	
Hinsa>	Y.18W	II'4'6	1'9'6	I'B'6 $^{\prime}$	1'9'8	${ }^{1} \mathrm{I}^{\prime} \mathrm{C} 8$	$\Psi^{\prime} 9^{\circ}$	$1^{*} 99^{\circ}$	$I^{+} \mathrm{B}^{\prime} L$	9	§	t	ξ	2	I	วسยN	${ }^{\circ} \mathrm{ON} \\| 0 \mathrm{C} 0 \mathrm{~N}^{\prime} \mathrm{TS}$		
	$1 \mathrm{E} 10 \mathrm{~L}$	g - LXVd								$V-J \ V d$									

 Course Code : 161EC43 Course Name : Signals and Systems II: : IBD

mail Mats N		1			
Compenece Categry	RM	RM US RM	${ }_{\text {av Ap }}$		
隹					
(eow					
	${ }^{\text {P0, }}$	pos ${ }^{\text {P }}$			
	${ }^{1066}$		6		Rof
	${ }^{\text {Por }}$				
	$\stackrel{\text { P10] }}{\text { P0, }}$		10,		

19	16EC070	SAKTHI PANDI			2				5					4		11	FAIL
20	16 ECO 72	SANTHINE	1	1	2			2	14			10		10		40	PASS
21	16 EC 073	SANTHIYA	1	2	1		1	2		6	6	10		7		36	PASS
22	16 EC 074	SARAVANA KUMAR			2				4				6	7		19	FAIL
23	16 EC 075	SATHYA	1	1	2			2		8	5	16		8		43	PASS
24	16 ECO 078	SELVA KUMAR			2								1	2		5	FAIL
25	16 ECO 076	SELVAKUMAR									6			4		10	FAII.
26	16EC077	SELVA KUMAR		1	2					7	6		13	10		39	PASS
27	$16 \mathrm{EC080}$	SOUNDHARA KUMAR	1	1						6	6	6		2		22	FAIL
28	16EC081	SRIDHARAN							4				10	2		16	FAII.
29	16EC082	SUBITSHA	1	1	2	1		2	12				13	4		36	PASS
30	16EC083	SUNDARA LAKSHMI	2	2	2		1	2		8	6	16		14		53	PASS
31	16EC084	SURESH KANNAN							10		.		8			18	FAIL
32	16EC085	SURIYA PRIYA	2	1	2		1	2	14				10	5		37	PASS
33	16EC087	SURYA	1	1	1		1	2		7	6	14		12		45	PASS
34	16 EC 086	SURYA PRAKASH							2							2	FAIL
35	16 EC 088	SWETHA	1	1	2			1	10				12	8		35	PASS
36	16EC089	THIRUMALAIMURUGAN	1	1				2	8				12	7		31	PASS
37	16EC090	THIRUMALAIMURUGAN			2		1			5	3		3	7		21	FAIL
38	16EC091	UMAMAHESWARI			2			2		3	6		10	10		33	PASS
39	16EC092	VAIRALAKSHMI		2	2	1		2		6	4	12			3	32	PASS
40	16EC094	VIDHYA	1		2			1	8			10		10		32	PASS
41	16 EC 095	YATHEENDIRARAJAN		2	2					5	6		8	7		30	PASS
42	17LECO1	BHUVANESHWARIK	I		2	1		1	8			2		6		21	FAIL
43	17LEC03	ESAKKIAMMAL@RACHA						2	8			4		7		21	FAIL
44	171.EC06	MUTHUKANI S							6			8				14	FAIL
45	17LEC07	MUTHUMANIPANDIM	1						10				1	2		14	FAIL
46	17LEC08	PADMA PRIYA B	1		2			2	8				9	9		31	PASS
47	17 LECl 11	PREETHI K	1		2				12				8			23	FAIL
48	17LEC13	RATHIKA R			2					4			2	8		16	FAIL
49	17LEC14	RUPADEVIP							8				4	4		16	FAIL
50	17TEC01	PUSHPAPRIYA N	1	2	2		1	2		8	8	12		10		46	PASS
51	17ECR01	MATHIMITHRA	1					2		7	6	4		16		36	PASS

$=$
3.

I2

NPTEL QUESTIDNS

Assignment 1

1. The image captured by a cellphone is an example of a
\uparrow Discrete Time Signal ${ }^{\wedge}$ 2D Signal ${ }^{\wedge}$ Energy Signal ${ }^{\curvearrowright}$ All of the Above
2. Consider the Signal $\sin (4 t)$. Which of the following is true
c The given Signal is aperiodic
r The given Signal is finite Energy Signal
$\stackrel{c}{ }$ The given Signal is Even
c The given Signal is periodic
3. Consider the Signal $\sin (4 \pi t)+\sin (6 \pi t)$. The Signal is
\bigcirc Aperiodic ${ }^{\wedge}$ Periodic with period $2 \pi^{\curvearrowright}$ Periodic with period $1 \curvearrowright$ Periodic with period 2
4.The Signal $\exp \left(\left.-\frac{1}{2} \right\rvert\, t\right)$
\curvearrowright Power Signal with power-2 \uparrow Power Signal with power=1
\curvearrowright Energy Signal with power=2 \uparrow Energy Signal with power=1
5.The unit step signal is an
${ }^{\wedge}$ Energy Signal \curvearrowright Power Signal \curvearrowright Neither Energy Nor Power \curvearrowright Periodic Signal
4. Current $i(t)=e^{-\sigma \pi} u(t), \alpha>0$ is given as input to capacitor with capacitance C . The resulting voltage across the capacitor is
$\bigcirc \frac{1}{c \alpha}\left(1-e^{-\omega}\right) u(t)^{\Gamma} \quad \frac{1}{c}\left(\alpha e^{-\omega}\right) u(t)^{\zeta}-c\left(\alpha e^{-\omega t}\right) u(t)^{\complement} \quad \frac{1}{c}\left(e^{-\omega}\right) u(t)$
7.The Signal $\delta(-2 t)$ equals

ऽ $\delta(t / 2)^{\Upsilon}(1 / 2) \delta(t)^{\complement} \quad-(1 / 2) \delta(t) \Upsilon \quad-2 \delta(t)$
8 . The sifting property of the impulse function states that

$$
\begin{aligned}
& \subset \quad \int_{-\infty}^{\infty} x(t) \delta(t) d t=x(0) \quad \subset \quad x(t) \delta(t)=x(0) \delta(0) \\
& \subset \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau=x(t) \quad \subset \quad \int_{-\infty}^{\infty} x(t) \delta\left(t-t_{0}\right) d t=x\left(t_{0}\right)
\end{aligned}
$$

9.Given the general signal $\mathrm{x}(\mathrm{t})$, the even and odd components of signal $x_{e}(t)$, $x_{0}(t)$, such that $x(t)=x_{e}(t)+x_{0}(t)$, are

10.Consider the Signal $x(t)=\sin (t) u(t)$ given as input to integrator $\int_{-\infty}^{t} x(\tau) d \tau$. What is the power of resulting output signal

Programme: B.E. Electronics and Communcation Engineering Year \& Sem: II \& IV
Course Code \& Name: 161 EC43 \& Signals and Systems
Course Tutor: Mrs.P.Lingeswari, AP/ECE

Internal Assessment Test :1 Section:II
Date of Test: 19.01.2018

SLOW LEARNERS LIST

S.No	Roll No	Name of the Student	Marks
1	16EC050	MARIRAJ	21
2	16EC053	MURUGAN	19
3	16EC056	MUTHUMANI	15
4	16EC061	PANDEESWARAN	21
5	16EC070	SAKTHI PANDI	11
6	16 ECO 74	SARAVANA KUMAR	19
7	16 EC 078	SELVA KUMAR	5
8	16 EC 076	SELVA KUMAR	10
9	16EC080	SOUNDHARA KUMAR	22
10	16 EC 081	SRIDHARAN	16
11	16 EC 084	SURESH KANNAN	18
12	16EC086	SURYA PRAKASH	2
13	16EC090	THIRUMALAIMURUGAN	21
14	17LEC01	BHUVANESHWARI K	21
15	17LEC03	ESAKKIAMMAL@ RACHANADEVIR	21
16	17LEC06	MUTHUKANI S	14
17	17LEC07	MUTHUMANIPANDI M	14
18.	17 LEC 11	PREETHI K	23
19	$17 \mathrm{LEC13}$	RATHIKAR	16
20	$17 \mathrm{LEC14}$	RUPADEVI P	16

Assignments given to the students.

ADVANCE LEARNERS LIST

S.No	Roll No	Name of the Student	Marks
1	16 EC 062	PARTHASARATHI	52
2	$16 E C 066$	PREMAKARTHIKA	46
3	$16 E C 083$	SUNDARA LAKSHMI	53
4	$16 \mathrm{EC087}$	SURYA	45
5	$17 \mathrm{TEC01}$	PUSHPAPRIYAN	46

Asked to solve NPTEL questions.
orn -

Assignment I
 Solution

1. The image captured by a cellphone is a Discrete time signal, 2 D signal as well as n energy Energy signal (since it is of finite size and each pixel has finite amplitude).
Ans d
2. The given signal $\sin (4 t)$ is periodic. In fact, its period is $\pi / 2$.

Ans d
3. Consider the signal $\sin (4 \pi t)+\sin (6 \pi t)$. Period of first component is $1 / 2$. Period of second component is $1 / 3$. The lowest common multiple of both is 1 . Hence, period of sum signal is 1 .
Ans c
4. The given signal $e^{\left.-\frac{1}{2} \right\rvert\, x}$ is an energy signal. Its energy is
$\int_{-\infty}^{\infty}\left(e^{-\frac{1}{2}|t|}\right)^{2} d t=2 \int_{0}^{\infty} e^{-t} d t=2$
Ans c
5. The unit step signal is a Power signal. This can be seen as follows
$\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|u(t)|^{2} d t=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T / 2} 1 \times d t=\lim _{T \rightarrow \infty} \frac{T / 2}{T}=\frac{1}{2}$
Ans b
6. Given current $i(t)=e^{-\omega} u(t), \alpha>0$ is given as input to capacitor with capacitance C. The voltage across the capacitor is given as

$$
\begin{aligned}
& \frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau=\frac{1}{C} \int_{-\infty}^{t} e^{-\alpha \tau} u(\tau) d \tau=\left(\frac{1}{C} \int_{0}^{t} e^{-\alpha \tau} d \tau\right) u(t)=-\left.\frac{1}{C \alpha} e^{-\alpha \tau}\right|_{0} ^{t} u(t) \\
& \quad=\frac{1}{C \alpha}\left(1-e^{-\alpha \tau}\right) u(t)
\end{aligned}
$$

Ans a
7. From the property $\delta(a t)=1 /|a| \times \delta(t)$. Hence, $\delta(-2 t)=1 / 2 \times \delta(t)$

Ans b
8. The sifting property of the impulse function is $\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau=x(t)$.

Ans c
9. The even and odd components of the signal $x_{c}(t), x_{0}(t)$ are respectively $1 / 2(x(t)+x(-t)), 1 / 2$ $(x(t)-x(-t))$.
Ans b
10. Given the signal $x(t)=\sin (t) u(t)$ given as input to the integrator $\int x(\tau) d \tau$. The output of the integrator is $(1-\cos (t)) u(t)$. Power of $1-\cos (t)$ is $1+1 / 2=3 / 2$. The power of $(1-\cos (t)) u(t)$ is $1 / 2 \times 3 / 2=3 / 4$.
Ans d
P.S.R. ENGINEERING COLLEGE SIVAKASI-626 140 (An Autonomous Institution, Affiliated to Anna University, Chennai) department of electronics and communication engineering MODERATION OF QUESTION PAPER

Qn.No.	Competence Category						Qin Level			cos
	Remembering ${ }^{\text {a }}$ (RM ${ }^{\text {a }}$	Understanding(US)	ApplyingtAP)	Analysis AY $^{\text {Y }}$)	Evaluating (EV)	Creating(CR)	Easy	Mediom	Chalienige	
1	2						\checkmark			CO3
2	2						\checkmark			co3
3		2					\checkmark			CO 4
4	2						\checkmark			CO3
5	2						\checkmark			CO 4
6	2						\checkmark			CO3
7.81					16			\checkmark		CO3
7.5is					8				\checkmark	CO3
7.b.if			8					\checkmark		CO 3
8.a.8			8				\checkmark			CO3
8.a.b				8			\checkmark			CO4:
8.b.i					8.		\checkmark			D04
8.b.il	8						\checkmark			CO4
9.al	16		,				\checkmark			CO4
9.b-i						8			\checkmark	CO 4
9.bil						8			\checkmark	$\mathrm{CO4}$
Total	34	2	16	8	32	16	64	24	24	
\%	31.48	1.85	14.81	7.41	29.63	14,81	55.50	22.22	22.22	

Desirable: $\mathrm{a}+\mathrm{b}=30 \%$ to $40 \%, \mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}=60 \%$ to 70%

Bemarks
 Thal Coordinator/Moderator

Brad + -1
Head of the Department

INTERNAL. ASSESSMENT TEST - II

Programme:	B.E.	Branch	Electronies and Communication EngineeringII Yr/V Sem		
Acad. Year:	2017-2018	Year/Semester			
Course Code:	161EC43	Course Name.	Signals and Systems		
Maximum Marks:	60 Marks	Date of Test	$\begin{gathered} 02.03 .2018 \\ (\mathrm{AN}) \\ \hline \end{gathered}$	Duration	1.30 hrs
Course Tutor(s);	Section-1: Dr.K. Valarmathi/ECE		Seetion-2; Mrs.P.Lingeswari/ECE		

Answer All Ouestions

PART - A
6×2 Mark $=12$ Marks

1. Define initial and final value theorem of Laplace transform.
2. Find the Laplace transform of unit step function.
3. Compare natural response and forced response.
4. Define ROC.
5. List the properties of convolution integral.
6. Find the final value $x(\infty)$, given that $X(s)=\frac{s+5}{s+3}$.

PART - B

$3 \times 16 \mathrm{Mark}=48 \mathrm{Marks}$
7.a) Evaluate the Laplace transform for the following signals:
(i) $x(t)=e^{-2 x} \sin t u(t)$
(ii) $x(t)=\left\{\begin{array}{l}\sin \pi t ; 0 \leq t \leq 1 \\ 0 ; \text { otherwise }\end{array}\right.$
(iii) $x(t)=t^{2} e^{-t} u(t)$
(iv) $x(t)=\delta(t)-\frac{1}{5} e^{-S t} u(t)$
or
b) i) Prove any two properties of Laplace Transform.
ii) Develop the inverse Laplace Transform of $X(s)=\frac{(s+2)}{s^{3}+7 s^{2}+15 s+9}$,
8.a) i) Solve the inverse Laplace Transform of $X(s)=\frac{2(s+2)}{s^{2}+7 s+12} ;$ Re(s) >-3.
ii) Analyze the output of the system which having the impulse response and the input to the system 8 is given as $x(t)=u(t+1)$ and $h(t)=u(t-2)$.
or
b) i) Determine the impulse response of the continuous time system described by the 8 differential equation $\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+3 y(t)=\frac{d x(t)}{d t}+2 x(t)$.
ii) Find the impulse response of causal system described by $H(s)=\frac{(s+3)}{s^{2}+4 s+3}$.
9.a) Consider the system by the differential 16 equation $x(t)=\frac{d^{3} y(t)}{d t^{3}}+6 \frac{d^{2} y(t)}{d t^{2}}+11 \frac{d y(t)}{d t}+6 y(t)$.
(i) Find the zero state response of the system for the input $x(t)=e^{-4} u(t)$.
(ii) Determine the zero input response of the system given that $y(0)=1$; $\left.\frac{d y(t)}{d t}\right|_{t=0}=-1 ;\left.\frac{d^{2} y(t)}{d t^{2}}\right|_{t=0}=1$.
or
b) i) Construct direet form I and II for the given LTI system $\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+4 y(t)=\frac{d x(t)}{d t}$.
ii) Construct cascade and parallel form of $H(s)=\frac{1}{(s+1)(s+2)}$.
$+3$
P.S.R.ENGINEERING COLLEGE, SIVAKASI-626140
[An Autonomous Institution, Affiliated to Anna University, Chennai]

Evaluation Analysis

Programme : B.E Electronics and Communication Enginecring (ECE)
Year: II
Course Code: 161EC43
Course Tutor: :Lingeswari Ponnusamy, Assistant Professor/Electronics and
Date of Test: 02-03-2018

21	16 CEC072	SANTHINE	2	2		2	2	2	13					8	8	10			49

53 17ECR01	MATHIMITHRA	2	2				2	3				7	8				4	4	32 PASS	
	Total Marks Questionwise	64	56	18	35	36	52	228	83	58		142	85	104	100	161	11	103		
	No of Students Attended	36	29	15	23	26	30	23	23	316	6	22	16	19	20	17	26	25		
	Total Marks/ No.of Students	1.78	1.93	1.2	1.5	1.38	1.73	9.9	3.6	63.	66.	. 45	5.3	5.5	5	9.5	4.3	4.12		
	Competence Category	RM	RM	US	RM	RM	RM	EV	EV	\checkmark A	P	AP	AY	EV	RM	RM	CR	CR		
	Course Outcome	C03	C03	CO4	C03	CO4	CO3	co		33 CO		03	CO4	CO	CO4	CO	CO	CO4		
	Programme Outcome	PO1	P01	P01	P01	POI	P01	PO	PO	IIPO		01	P01	PO	PO1	PO1	PO1	P01		
		P02	P02	PO2	P02	P02	P02	PO	PO	22 PO		02	P02	PO2	P02	P02	P02	P02		
		P03	P03	P03	P03	P03	P03	P		03 P0		03	P03	P03	P03	P03	P03	P03		
		P04	P04	P04	PO4	P04	PO4	0	0	04 PO	24 PO	04	P04	PO4	P04	PO4	PO4	P04		

six

$$
\underset{\text { Head of the Depart }}{\text { QNaL }}
$$

Competence Category		Average Maxks	
Memembering(RM)	34	22.81	67
Understanding(US)	2	1.2	60
Evaluating(EV)	32	18.99	59
Applying(AP)	16	10.08	63
Analysis(AY)	8	5.31	66
Creating(CR)	16	8.39	52

Assigment II
 Solution

1. The property $T\left(x_{1}(t)+x_{2}(t)\right)=y_{1}(t)+y_{2}(t)$ is termed Additivity

Ans a
2. Given the system $y(t)=2 \frac{d x(t)}{d t}+3 \frac{d^{2} x(t)}{d t^{2}}$. The system is LTI since the differentiator is an LTI system.
Ans c
3. Given $y(t)=2 \frac{d x(t)}{d t}+3 \frac{d^{2} x(t)}{d t^{2}}$. Consider the input $x(t)=u(t)$, the unit-step signal. The input is bounded since $|x(t)| \leq 1$. However, the output is unbounded at $t=0$. Hence system is NOT BIBO stable
Ans b
4. Given the signal $x(t)=-t$ for $-1 \leq t \leq 0$ and 0 otherwise. The signal $-x(2-t)=-(-(2-t))$ $=2-t$ for $-1 \leq 2-t \leq 0 \Rightarrow 2 \leq t \leq 3$. Hence, it is non-zero in the interval $(2,3]$. In this interval it can be seen to take -ve values and have a -ve slope
Ans d
5. Using the property $\int_{-\infty}^{\infty} \phi(t) \delta^{\prime}(t) d t=-\phi^{\prime}(0)$, it follows that
$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}} \delta^{\prime}(t) d t=\left.\frac{d}{d t} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}}\right|_{t=0}=-\frac{t}{\sigma^{2}} \times\left.\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{t^{2}}{2 \sigma^{2}}}\right|_{t=0}=0$
Ans a
6. Given $v_{(}(t)$ applied across a series RL circuit with the voltage $v_{0}(t)$ across the inductor. the input output relation can be derived as follows
$i(t)=\frac{\left(v_{i}(t)-v_{o}(t)\right)}{R} \Rightarrow L \frac{d}{d t} \frac{\left(v_{i}(t)-v_{o}(t)\right)}{R}=v_{o}(t)$
$\Rightarrow \frac{L}{R} \frac{d}{d t} v_{i}(t)=v_{0}(t)+\frac{L}{R} \frac{d}{d t} v_{0}(t)$
Ans d
7. Given complex exponential signal $\exp (j 6 \pi / 13)$ sampled with sampling interval $T_{s}=1 / 3 \pi$. The sampled signal is $x(n)=\mathrm{e}(j 6 \pi / 13 \times n / 3 \pi)=\exp (i 2 n / 13)$. Let period be N.
$\exp (j 2(n+N) / 13)=\exp (22 n / 13)$ if $2 N / 13=2 K \pi \Rightarrow N / K=13 \pi$. Since π is not rational, there do not exist N, K satisfying above relation. Hence the signal is aperiodic
Ans b
8. The output can be calculated as follows. For $t \geq 0$, output $z(t)$ is
$z(t)=\int_{-\infty}^{\infty} e^{-a \tau} u(\tau) e^{b(t-\tau)} u(\tau-t) d \tau=e^{b t} \int_{t}^{\infty} e^{-(a+b) \tau} d \tau=e^{b t} \times \frac{e^{-(a+b) t}}{a+b}=\frac{e^{-a t}}{a+b}$
For $t<0$, output $z(t)$ is
$z(t)=\int_{-\infty}^{\infty} e^{-a \tau} u(\tau) e^{b(t-\tau)} u(\tau-t) d \tau=e^{b t} \int_{0}^{\infty} e^{-(a+b) \tau} d \tau=e^{b t} \times \frac{1}{a+b}=\frac{e^{b t}}{a+b}$

NPTEL ASSIENMENT

Assignment-2

1. Consider a system represented by T (.). For any input signals $x_{1}(t), \quad x_{2}(t)$ such that $T\left(x_{1}(t)\right)=y_{1}(t)$ and $T\left(x_{2}(t)\right)=y_{2}(t)$, the system satisfies the property $T\left(x_{1}(t)+x_{2}(t)\right)=y_{1}(t)+y_{2}(t)$. This property is termed as
\checkmark Additivity ${ }^{\circ}$ Homogenity \curvearrowright Time-variance \ulcorner None of these
2.Consider the output $y(t)$ of a system for a given input signal $x(t)$ described as $y(t)=2 \frac{d x}{d t}+3 \frac{d^{2} x}{d t^{2}}$. The system is
ς Linear only \curvearrowright Time-Invariant only \curvearrowright LTI \curvearrowright None of these
3.Consider the output $y(t)$ of a system for a given input signal $x(t)$ deseribed as $y(t)=2 \frac{d x}{d t}+3 \frac{d^{2} x}{d t^{2}}$. The system is
\ulcorner BIBO stable Not BIBO stable \curvearrowright Depends on the input signal \curvearrowright None of these
2. Consider the signal $x(t)=-t$ for and $-1 \leq t \leq 0$ and 0 otherwise. The signal $-x(2-f)$, in the interval os it is non-zero, has

C value >0 and +ve slope	C value <0 and +ve slope
σ value >0 and -ve slope	\subset value <0 and -ve slope

5. The integral $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi \sigma}} e^{\frac{-\rho^{2}}{2 \sigma^{2}}} \delta^{r}(t) d t$ evaluates to
$\bigcirc 0$

$$
\varsigma e^{\frac{-r^{2}}{2 \sigma^{2}}}<-\frac{1}{\sigma^{2} \sqrt{2 \pi}} \odot \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-\sigma^{2}}{2 \sigma^{2}}}
$$

6. Consider input voltage $v_{l}(f)$ applied across a series RL circuit with the voltage $v_{o}(t)$ across the inductor being the output voltage. The input-output relation of the system is

$$
\begin{aligned}
& \sim v_{,}(t)=\frac{L}{R} \frac{d v_{0}(t)}{d t}+v_{0}(t) \quad \sim \quad \frac{L}{R} \frac{d v_{i}(t)}{d t}+v_{i}(t)=v_{0}(t) \\
& \int \quad \frac{d v_{i}(t)}{d t}=\frac{R}{L} \frac{d v_{0}(t)}{d t}+v_{0}(t) \quad \subset \quad \frac{L}{R} \frac{d v_{i}(t)}{d t}=\frac{L}{R} \frac{d v_{0}(t)}{d t}+v_{0}(t)
\end{aligned}
$$

7. Consider the complex exponential signal $e^{\frac{6 \pi}{13} t}$ sampled with sampling interval $T s=1 /(3 \pi)$. The . . resulting signal is

Periodic with period $n=13 \quad \checkmark$ Aperiodic
C Periodic with period $n=6 \subset$ Periodic with period $n=2$
8. Let $x(t)=\mathrm{e}^{-a t} u(t)$ and $y(t)=\mathrm{e}^{-b t} u(t), a, b>0$ and $a \neq b, x(t) * y(-t)$, where * denotes convolution is
$\int \frac{e^{-a k}}{a+b}-\frac{e^{-b}}{a+b}$
$\int \frac{e^{-(a+b) t}}{a+b} u(t)+\frac{e^{(o+h) x}}{a+b} u(-t)$
c $\frac{e^{-a t}}{a+b} u(t)+\frac{e^{h w}}{a+b} u(-t)$
$\subset \quad \frac{e^{a t}}{a+b} u(-t)+\frac{e^{-d}}{a+b} u(t)$
9. The modulator, which modulates the baseband signal $x(t)$ with a carrier at frequency f_{o}, has which of the following properties
i. Linearity
ii. Causality
iiii. BIBO Stability

10. The sifting property of the discrete time impulse is

$$
\subset \sum_{n=-\infty}^{\infty} x(k) \delta(n-k)=x(n) \quad \subset \quad x(n) \delta(n)=x(0) \delta(n)
$$

$$
\left\ulcorner x(n) \delta(n)=x(0) \quad \subset \quad \sum_{k=-\infty}^{\infty} x(k) \delta(k)=x(0)\right.
$$

P.S.R.ENGINEERING COLLEGE, SIVAKASI-626140 [An Autonomous Institution, Affiliated to Anna University, Chennai]

Programme: B.E. Electronics and Communcation Engineering
Year \& Sem: II \& IV
Course Code \& Name: 161EC43 \& Signals and Systems
Internal Assessment Test :II
Section: II

Course Tutor: Mrs.P.Lingeswari, AP/ECE
Date of Test: 02.03.2018

SLOW LEARNERS LIST

S.No	Roll No	Name of the Student	Marks
1	$16 \mathrm{EC050}$	MARIRAJ	18
2	$16 \mathrm{EC051}$	MARUNMANI	16
3	$16 \mathrm{EC053}$	MURUGAN	18
4	$16 \mathrm{EC074}$	SARAVANA KUMAR	18
5	$16 \mathrm{EC076}$	SELVA KUMAR	4
6	16EC081	SRIDHARAN	6
7	16EC084	SURESH KANNAN	17
8	16EC086	SURYA PRAKASH	12
9	16EC090	THIRUMALAIMURUGAN	18
10	16EC091	UMAMAHESWARI	14
11	16EC095	YATHEENDIRARAJAN	13
12	17LEC01	BHUVANESHWARI K	19
13	17LEC03	ESAKKIAMMAL@	13
14	RACHANADEVIR	13	
15	17LEC06	MUTHUKANI S	4
16	17LEC11	PREEHUMANIPANDIM	12
17	17LEC13	RATHIKAR	10
18	17LEC14	RUPADEVI P	12

Assignments given to the students.

ADVANCE LEARNERS LIST

S.No	Roll No	Name of the Student	Marks
1	$16 \mathrm{EC049}$	MARIAMMAL	47
2	$16 \mathrm{EC054}$	MUTHUKUMAR	49
3	16 EC 062	PARTHASARATHI	55
4	16 EC 066	PREMAKARTHIKA	47
5	$16 \mathrm{EC072}$	SANTHINE	49
6	$16 \mathrm{EC083}$	SUNDARA LAKSHMI	46
7	16EC085	SURIYA PRIYA	56

Signature of the Course Co-ordinator/Modera

TUTORIAL NO. 2
TUTORIAL MO.

Programme:	B.E.	Branch	Electronics and Communication Engineering			
Acad. Year:	$2017-2018$	Year/Semester	II Yr/ IV Sem			
Course Code:	161 EC43	Course Name	SIGNALS AND SYSTEMS			
Section:	II	Date of Tutorial		Duration	50 min	
Course Tutors:	Mrs.P.Lingeswari AP/ECE					

CLASSIFICATION OF SIGNALS

Answer the following Problems/Questions

1. For a periodic signal $v(t)=30 \sin 100 t+10 \cos 300 t+6 \sin \left(500 t+\frac{\pi}{4}\right)$, the fundamental frequency in rad/sec
a) 100
b) 300
c) 500
d) 1500
[GATE 2013]
2. Find whether the signal $x(t)=2 \cos (10 t+1)-\sin (4 t-1)$ is periodic or not. [APRIL/MAY 2010] ${ }^{\text {. }}$
3. Find the fundamental period T of the continuous time signal $x(t)=20 \cos \left(10 \pi t+\frac{\pi}{6}\right)$.
[APRIL/MAY 2010]
4. The discrete-time signal $x(n)=(-1)^{n}$ is periodic with fundamental period
a) 6
b) 4 c) 2
d) 0
5. Determine the power and RMS value of the following signals
(i) $x_{1}(t)=5 \cos \left(50 t+\frac{\pi}{3}\right)$
(ii) $x_{2}(t)=10 \cos 5 t \cos 10 t$.
[NOV/DEC 2009]
6. The function $x(t)$ is shown in the figure. Even and odd parts of a unit step function u(t) are respectively,

a) $\frac{1}{2}, \frac{1}{2} x(t)$
b) $-\frac{1}{2}, \frac{1}{2} x(t)$
c) $\frac{1}{2},-\frac{1}{2} x(t)$
d) $-\frac{1}{2},-\frac{1}{2} x(t)$
[GATE 2013]
7. The power in the signal $s(t)=8 \cos \left(20 \pi-\frac{\pi}{2}\right)+4 \sin (15 \pi t)$ is
a) 40
b) 41
c) 42
d) 82
[GATE 2005]
8. If a signal $f(t)$ has energy E, the energy of the signal $f(2 t)$ is equal to
a) 1
b) $E / 2$
c) 2 E
d) 4 E
[GATE 2001]
9. The period of the signal $x(t)=10 \sin 12 \pi+4 \cos 18 \pi /$ is
a) $\frac{\pi}{4}$
b) $\frac{1}{6}$
c) $\frac{1}{9}$ d) $\frac{1}{3}$
10. The average power of the following signal is

a) $\frac{A^{3}}{2}$
b) A^{2}
d) $A^{2} T_{1}$
e) $A T_{1}^{2}$
11. Check whether the given signals are energy or power signal.
(i) $x(n)=\left(\frac{1}{2}\right)^{U} u(n)$
(ii) $\operatorname{rect}\left(\frac{t}{T_{0}}\right)$
(iii) $x(t)=\cos ^{2}\left(\omega_{0} t\right)$

$$
\stackrel{5}{5}
$$

TUTORIAL NO. 1

Programme:	B.E.	Branch		Electronics and Communication Engineering	
Acad. Year:	$2017-2018$	Year/Semester	II Yr/IV Sem		
Course Code:	161 EC43	Course Name	SIGNALS AND SYSTEMS		
Section:	II	Date of Tutorial		Duration	
Course Tutors:	Mrs.P.Lingeswari AP/ECE				

BASIC OPERATION ON SIGNALS

Answer the following Problems/Questions

1. A continuous-time signal $x(t)$ is shown in below. Sketch and label each of the following signals.
(a) $\mathrm{x}(\mathrm{t}) \mathrm{u}(1-\mathrm{t})$; (b) $\mathrm{x}(\mathrm{t})[\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-\mathrm{I})]$; (c) $x(t) \delta\left(t-\frac{3}{2}\right)$

2. The signal $x(t)$ is shown in figure. Sketch $y(t)=x(10 t-5)$.

3. A discrete-time signal $x[n]$ is shown in Fig, 1-29. Sketch and label each of the following signals. (a) $x[n] u[1-n]$; (b) $x[n]\{u\{n+2]-u[n]\}$ (c) $x(n) \delta(n-1)$

4. A continuous-time signal $x(t)$ is shown below. Sketch and label each of the following signals. (a). $x(t-2) ;(b), x(2 t) ;(c), x(t / 2) ;$ (d),$x(-t) ;(e) \cdot x(2 t-2)$.

5. A discrete signal $x[n]$ is shown below, Sketch and label each of the following signals.
(a). $x[n-2] ;$ (b),$x[2 n] ;$ (c) $\cdot x[-n]$ (d) $\cdot x[-n+2]$.

6. Using the discrete-time signals $x_{1}[n]$ and $x_{2}[n]$ shown as follows, represent each of the signals by a graph and by a sequence of numbers.
(a). $y_{1}[n]=x_{1}[n]+x_{2}[n] ;$ (b). $y_{2}[n]=2 x_{1}[n]$; and (c). $y_{3}[n]=x_{1}[n] x_{2}[n]$.

P.S.R. ENGINEERING COLLEGE SIVAKASI-626 140 (An Autonomous Institution, Affitiated to Anna University, Chennai)

TUTORIAL, NO. 3

Programme:	B.E.	Branch		Electronics and Communication Engineering	
Acad. Year:	$2017-2018$	Year/Semester	II Yr/ IV Sem		
Course Code:	161 EC43	Course Name	SIGNALS AND SYSTEMS		
Section:	II	Date of Tutorial		Duration	
Course Tutors:	Mrs.P.Lingeswari AP/ECE		S0 min		

1

CLASSIFICATION OF SYSTEMS

Answer the following Problems/Questions

1. check the following system is linear or not.
(i) $y(t)=e^{\pi(t)}$
(ii) $y(n)=x(n-1)$
2. Determine whether the system is a linear and time invariant.
(i) $y=t e^{x}$
(ii) $y(t)=t x(t)$
(iii) $\frac{d y}{d t}+3 t y(t)=t^{2} x(t)$
(iv) $y(n)=2 x(n)+\frac{1}{x(n-1)}$
3. Check whether the system is linear,time invariant,causal,static(memoryless) and stable.
(i) $y(n)=\log _{10}|x(n)|$
(ii) $y(n)=x(3 n+1)+x(n-1)$
(iii) $y(n)=x(2 n)$
(iv) $y(n)=x(n) \cos o n$
(v) $y(n)=x(n)+n x(n+1)$
4. Let $x(t)$ be the input and $y(t)$ be the output of a continuous time system. Match the system properties P1, P2 and P3 with system relations R1, R2, R3, R4

Properties
P1: Linear but NOT time - invariant
P2 : Time - invariant but NOT linear
P3 : Linear and time - invariant
a) $(\mathrm{P} 1, \mathrm{R} 1),(\mathrm{P} 2, \mathrm{R} 3),(\mathrm{P} 3, \mathrm{R} 4)$
c) $(\mathrm{P} 1, \mathrm{R} 3),(\mathrm{P} 2, \mathrm{R} 1),(\mathrm{P} 3, \mathrm{R} 2)$
c) $(\mathrm{P} 1, \mathrm{R} 3),(\mathrm{P} 2, \mathrm{R} 1),(\mathrm{P} 3, \mathrm{R} 2)$
b) $(\mathrm{P} 1, \mathrm{R} 2),(\mathrm{P} 2, \mathrm{R} 3),(\mathrm{P} 3, \mathrm{R} 4)$
d) $(\mathrm{P} 1, \mathrm{R} 1),(\mathrm{P} 2, \mathrm{R} 2),(\mathrm{P} 3, \mathrm{R} 3)$

Relations
R1: $y(t)=r 2 x(t)$
$\mathrm{R} 2: y(t)=t x(t)$
$\mathrm{R} 3: y(t)=x(t)$
$\mathrm{R} 4: y(y)=x(t-5)$
[GATE 2008]
5. The input and output of a continuous time system are respectively denoted by $x(t)$ and $y(t)$. Which of the following descriptions corresponds to a causal system?
a) $y(t)=x(t-2)+x(t+4)$
b) $y(t)=(t-4) x(t+1)$
c) $y(t)=(t+4) x(t-1)$
d) $y(t)=(t+5) x(t+5)$
[GATE 2008]
6. A system with input $x(n)$ and output $y(n)$ is given as $y(n)=\sin \left(\frac{5 \pi n}{6}\right) x(n)$. The system is a) linear, stable b)non-linear, stable c)linear, unstable d) non-linear, unstable
[GATE 2006]
P.S.R. ENGINEERING COLLEGE SIVAKASI-626 140 (An Autonomous Institution, Affiliated to Anna University, Chennai) department of electronics and communication engineering, MODERATION OF QUESTION PAPER

moderation of question Pape					
Pre Semester					
Programmes	B.E	Branch	Electronics a	ation Engin	rring
Acad Year:	2017-2018	Yoar'Semester	HYefNS		
Course Code.	161 EC43	Course Name	Signals and		
Maximum Marks:	100	Date of Tust	23-03-2018	Duration	
Course Tutor(s):	LingeswariPonnusamy/esectronics and Communication Engineering				

Qn. No.	Competence Category						- On Level			COs
	Remembertigg (RM)	UnderstandinguS)	Applying(AP)	Analysis(AY)	Evaluating(EV)	Creatagg(CR)	Easy	Medium	Challenpa	
1	2						\checkmark			COH
2		2					\checkmark			C01
3	2						\checkmark			C03
4	2						\checkmark			CO3
5	2						\checkmark			CO4
6	2						\checkmark			CO5
7	2						\checkmark			Cos
8	2						\checkmark			Cos
9	2						\checkmark			C05
10				2			\checkmark	10		CO6
11.0.i	8						\checkmark			COL
11-aif					8				\checkmark	C01
11 bt				16		1		\checkmark		$\mathrm{CO2}$
12.3 .1			1		15.				\checkmark	C03
12.b.					8				\checkmark	CO4
12.b.il			-		8				\checkmark	C04
13.3.1	16						\checkmark			C04
13.b.1			16					\checkmark		CO4
14.a.i		15					\checkmark			cos
14.3.1					12			\checkmark		cos
14.b.in					4			\checkmark		\cos
15.a. 1	16						\checkmark			CO6
15.b.i			8				\checkmark			CO6
15.6 .4						6			\checkmark	C06
Total	56	18	24	18	56	8	84	48	49	
\%	31.11	10	13.33	10	31.11	4.44	46.67	26.67	26.67	

E.Easy(50.00%),M-Medrum(25.00\%),C.Challenge(Z5.00\%)

Remarks

Bi)
Signature of the Course Tator
orne.

Signature of course Coordinator/Moderator
\qquad
Head-of the Department

PRESEMESTER EXAMINATION

Programme:	B.E.	Branch	Electronics and Communication Engineering		
Acad. Year:	$2017-2018$	Year/Semester	I Yr/IV Sem		
Course Code:	161 EC43	Course Name	Signals and Systems		
Maximum marks:	100 Marks	Date of Test	23.03.2018	Duration	3.00 hrs
Course Tutor(s):	Section-1: Dr.K.Valarmathi/ECE	Section-2: Mrs.P.Lingeswari/ECE			

Answer All Ouestions

PART - A

10×2 Marks $=20$ Marks
List any two properties of unit impulse function.
Outline the signal $u(t)-u(t-10)$.
Define the Dirichler's conditions for continuous time Fourier series.
What is the relationship between Fourier transform and Laplace transform?
Define convolution integral.
Find the DTFT of $x(n)-\delta(n)+\delta(n-1)$
What is aliasing and how it is overcome?
Find the Nyquist rate of the signal $x(t)=\sin 200 \pi t-\cos 100 \pi t$
Find the z-transform and its associated ROC for $x(n)=\{1,-1,2,3,4\}$.
10. Distinguish between recursive and non recursive systems.

PART - B
5×16 Marks $=8$ Marks
11.a) i) Find out whether the following signals are periodic or not. If periodic find the 8 fundamental period.
a) $x(t)=4 \cos \left(3 \pi t+\frac{\pi}{4}\right)+2 \cos (4 \pi r)$
b) $x(n)=\cos (0.1 \pi n)$
ii) Prove the signal $x(t)=e^{-3 x} u(t)$ is an energy signal not the power signal.
or
b) Classify the following systems under their linearity, time invariance, casual, stability
i) $y(n)=\frac{d}{d t} x(l)$
ii) $y(n)=x(n)-x(n-1)$
12.a) Determine the Fourier series expansion for a periodic ramp signal with unit amplitude and a period T .
b) i) Evaluate the inverse Laplace transform of $X(s)=\frac{8 s+10}{(s+1)(s+2)^{3}}$.
ii) Determine the inverse Laplace transform of $X(s)=\frac{1-2 s^{2}-14 s}{s(s+3)(s+4)}$.
13.a) Using Laplace transform find the response of the system described by the equation $\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+4 y(t)=\frac{d x(t)}{d t}$ with initial conditions $y(0)=0 ;\left.\frac{d y(t)}{d t}\right|_{t=0}=1$ for the input $x(t)=e^{-2 x} u(t)$.
or
b) Construet direct form I, II, cascade and parallel form realization structure for the given LTI
system $H(s)=\frac{4 s+28}{s^{2}+6 s+5}$.
14.a) Explain in detail about sampling theorem and how it is reconstructed for a band limited signal.
or
b) i) Evaluate the inverse Z transform of $X(z)=\frac{z^{-1}}{1-0.25 z^{-1}-0.375 z^{-2}}$.

For (i) $\operatorname{ROC}|z|>0.75$ (ii) $\operatorname{ROC}|z|>0.5$
ii) Determine the Z transform of $x(n)=n^{2} u(n)$
15.a) Perform convolution to find the response of the systems $h_{1}(n)$ and $h_{2}(n)$ for the input 16 sequences $x_{1}(n)$ and $x_{2}(n)$ respectively.
i) $x_{1}(n)=\{1,-1,2,3\} \quad h_{1}(n)=\{1,-2,3,-1\}$
ii) $\quad x_{2}(n)=\{1,2,3,2\} \quad h_{2}(n)=\{1,2,2\}$
b) i) Solve the impulse response and step response 8 of $y(n)+y(n-1)-2 y(n-2)=x(n-1)+2 x(n-2)$
ii) Design the cascade and parallel form block diagram realization structure for the 8 following system function, $H(z)=\frac{1}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-\frac{1}{4} z^{-1}\right)}$

HOD/ECE
P.S.R. ENGINEERING COLLEGE SIVAKASI-626 140 (An Autonomous Institution, Affiliated to Anna University, Chennai)

TUTORIAL NO. 4

Programme:	B.E.	Branch	Electronics and Communication Engineering			
Acad. Year:	$2017-2018$	Year/Semester	II Yr/ IV Sem			
Course Code:	16 IEC43	Course Name	SIGNALS AND SYSTEMS			
Section:	II	Date of Tutorial	Duration			50 min
Course Tutors:	Mrs.P.Lingeswari AP/ECE					

LAPLACE TRANSFORM AND INVERSE LAPLACE TRANSFORM

Answer the following Problems/Questions

1. Find the Laplace transform of $\left[4 e^{-2 t} \cos 5 t-3 e^{-2 t} \sin 5 t\right] u(t)$.
2. Find the initial and final values of $X(S)=\frac{s+5}{s^{2}+3 s+2}$.
3. Find the Laplace transform of $x(t)=t^{2} e^{-4 t} u(t)$.
4. Find the Laplace transform of $x(t)=e^{n a t} \cos \omega t u(t)$.
5. Find the inverse Laplace transform of $X(S)=\frac{1+e^{-2 s}}{3 s^{2}+2 s}$.
6. Find the inverse Laplace transform of $X(S)=\frac{1}{(s+5)(s-3)}$ for the ROCs.
(i) $-5<\operatorname{Re}(\mathrm{s})<3$
(ii) $\operatorname{Re}(s)>3$
7. Determine the inverse Laplace transform of $X(S)=\frac{2(s+2)}{s^{2}+7 s+12}$ for the ROCs.
(i) $\operatorname{Re}(\mathrm{s})>-3$
8. Obtain the inverse Laplace transform of the function $X(S)=\frac{1}{s^{2}+3 s+2}$ for the ROCs.
(i) $-2<\operatorname{Re}(s)<-1$
9. Find the Laplace transform of (i) $x(t)=e^{-a t} u(t-1)$ (ii) $x(t)=\delta(t)+t^{2}+u(t)$.

Hence, the net result is, $\frac{e^{-a t}}{a+b} u(t)+\frac{e^{b t}}{a+b} u(-t)$
Ans c
9. The modulator output can be described as $y(t)=x(t) \cos (2 \pi f t)$. As shown in lectures the system is linear. Further, $y(t)$ depends only on $x(t)$ and not past values of $x(t)$. Hence it is also causal. Further, if $|x(t)|<C,|v(t)|=|x(t) \cos (2 \pi / t)| \leq|x(t)|<C$. Hence, system is also BIBO stable
Ans d
10. The sifting property of the discrete time impulse is $\sum_{k=-\infty}^{\infty} x(k) \delta(n-k)=x(n)$ Ans a

IN3S日V																										TWHSXVIVATES	6203891	82
TIVS	9						ε				2	1														yVWIY VATAS	L200］91	42
SSVd	85	S					9		51	8	2			8	ξ			τ						2		yvwnx valas	9200391	92
Tryd	71											9	9											2		¢VWIXVATS	8200391	52
SsVd	89	§	§			8			01	8	9			8	8			1			2		1	2		VAHLVS	Sc00391	72
TIVI	S1							\％		τ	$\overline{7}$			\bar{z}	9									1		ybInIX VNVAVYVS	7200391	$\Sigma \%$
SSVd	12	8	8		2	6			51	8		．		8	8			1					2	2		V／IHINVS	EL00391	$\pi 7$
SSVd	6	9	1		1	11			71	1	t			9	9			2		I	2	1		2		aNIHINYS	2200391	12
LNGSgV															－											VHLdd9NVS	1200391	02
IIVA	ε									τ	1															IGNVd IHIISVS	0200：391	61
SSVd	6.	6	9				EI		SI	2	9			9	8	1	2	2	1			1	2	2		HSalWV	6900391	81
SSVd	06			91		8			51	6	9			9	9			2			2			τ		INIHSさVHMV AIVd	29003191	41
SSVd	$0 L$	8	8			6			91	9	l			t	8		1	1	1		1						9900391	91
SSvid	26			91	2	8		SI		8	¢			5	8			2	1		1	1	\％			पVIVEIVyd	S900：191	S1
SSVd	84	1	9			6			51	8	L			8	8		\％	2	2		1		1	2		NIMXVG V8HLISVd	1900491	11
Ssvd	99	2	ε		2	6			S1	8	8			4	8			1	1					2		VAIYd VWH．LVd	E90，291	81
SSVd	¢8	8	8		2	01			$\$ 1$	8	2			8	8			1	1	z		1	τ	2		IHIVaVSVHLIV发	2900991	21
TV：	t								1	1	\％															NVIVAISazanvd	190391	11
SSVd	65			t		6			01	6	5			5	8			2			2	1		τ		NVSZIVYNAM VHITGNVAVN	0900391	01
SSVd	69	9					\＃1	SI		9	9			9	8			2			1		2	2	1	CVYVOVN	6500391	6
TIVA	¢1									2	\＆			2	t									2		INVWIHLIW	9500391	8
SSVd	$L L$	8	9		1	01		91		8	9			8	8		z	1			1			2		《VWOXOHLINW	1500391	2
IIVd	1							τ		2	£															Nv9กษก็	¢500391	9
TV．	17			01	1	01		71							ε							1	2			\forall YINOW	2500a91	¢
TVPI	11			t		\rightarrow	L																－			INVWNAXVW	1500391	\dagger
SsVd	05	5					2）		51					9	8			2						2		［veitivw	0500791	ε
58 Vat	ES			21	1	8		6		9	1			\ddagger				2			2	1	$\bar{\sim}$			TVWWVIDVW	6400791	2
SSVd	19	l	2		1	5			91		8		91					1			1	1	2	τ		IVTVO3WINVW	8500391	1
｜נns＞y	yatw Mry	－4＇4s1	［＇9＇91	1egI	W9\％1	197	182＋1	19al	Ie＇cI	19＇\％	19＇21	｜＂\％	T971	［19］1］	［19］	01	6	8	ι	9	5	\dagger	¢	τ	1	$\sim^{\text {amen }}$	${ }^{\circ} \mathrm{N}$ IIO\％	${ }^{\circ} \mathrm{NIT}$
		a－Lavd														V－İdyd												

	PETCHIAMMAL	(5 August 21	5 August 2	23 mins 56	0			0	-	0	0	0	0	0	0
	GODIESWARAP	5 August 2	5 August 2	24 mins 42	1				1	0	1	0	1	0	0
Jeyaraj pandian	viswa priya 18ecc	5 August 2	5 August 2	8 mins 2 sf	1				0	0	0	0	0	0	0
	J.JAYOTHI LEEL	5 August 2	5 August 2	6 mins 41 §	0				0	0	1	1	1	0	1
Mariappan	VARSHA 18EC05	5 August 2	5 August 2	7 mins 44 :	0				0	0	0	0	0	0	0
Mariappan	varshini 18EC054	5 August 2	5 August 2	10 mins 35	0				0	0	0	0	0	0	0
Overall average															
					1				0			0	0	0	0

																					Grade/30.0
0	0	0	0	0	0	0		0		--	$0-$	- 0									
0		0	0	1	0	0	1	0	0	0								0	0	1	8
0	0	0	0	0	0	0	0	1		,		1				0		0	0	1	8
0		0	0	0	0	0	0	-						1	1	0	1	0	1	0	12
1			0	1										0	0	0	0	0		1	
						0	0	1	1	1	0	0	-	1	0	01	0	0	0	0	12
0		0	0	1																	
						0	1	0	1	11	10	1	,	1	1	0	1	0	0	1	12
0		1	1	1	1	0	1	0	1	11	11	,	0	,	1	1	0	0	0	1	16
		0	0	1	0	1	0	d	1	10	01	1		0	0	00	0	0		0	
0		0	0	1	0	0	0	0	1	11	11	1		1		0	0	0	0	0	11
0		0	0	0	1	0			1	10	00	1	1	0	0	0	0	0	0	1	6
0		0	0	1	1	0	0	1	1	11	11	10	-	1		01	0	0	0	1	14
		1	0	1	1	1	1	0	1	11	11	1		1	0	00		0	0	0	12
		0	0	0	0	0	0	,	1	10	00	1		1		00	0	0	0	0	
		1	0	1	0	0	0	0	1	10	0	0		0	1	10	0	0	0	0	
		0		,	0	0	0	0	1	10	0	10	-	0	0	0	0	0	0	1	9
		0		0	0	0	0	0		01	10	0		1		00		0	0	1	
		1		0	0	0	0	11		00	0			0		0	0	0	0	0	
	0	0		1	1	0	0	01	1	10	00	1		0	0	0	0	0	0	1	
		0		1	0	0	0	0	1	11	1	11		1		0	0	0		0	12
		0		0	0	0	0	0	1	0	01	10		0		0	0	1	0	1	
		0		0	1	1	1			10	0			1		00	0	0	1		15
	0	1		1	1	0	0	11	1	11	11	10	-	0		00	0	0	0	1	
					0	0	0	0		11	1	1		1		0	0	0		1	16
		0		0	1	0	0	01		11	11	10		0		10	0	1		1	
		1		0	0	1	1	01		00	0					00	0	1			
						0					00					0				0	
										-	--										
		-		--		--	--	--		--	--	--		-		-		--			
				--			--	--		-	--										
		0		0	0	0	01	11			11	10				00		0	0	1	
		0	1	1	0	0	0	0	1	10	01		1	1		10	0	0		1	12
		0	0	1	0	0	0	0	- 1	10	00	0		,		00		0	1	1	
		1	0	0	0	1	1	01	11	1	11					10	1	0	1		
		0	1	1	0	1	1	0	0	0	01	0	-	,		0		1			
	1	0	1	1	0	0	0	0	1	10	01	1	1	0		10	0	1	0	1	
		0		0	0	1	10	0	1	10	01	11	1	1		01	0	1	1	1	14
	0	1	0	0	0	0	0	0	1	10	00	1		0		10	0	1			
					0	-	0			00	00	1		0		0	,	0	0	1	
		1	0		1	0	0	01		10	01					10		0		0	
		0				0	0	0			00					00				1	

| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 16 | |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 6 | |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 14 | |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 6 | |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 7 | |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0.4 | 0 | 0 | 0 | 0 | 1 | 10.4 | |

P.S.R. ENGINEERING COLLEGE - SEVALPATTI, SIVAKASI - 6261 (An Autonomous institution - Affiliated to Anna University, Chennai)

ACADEMIC YEAR 2019-2020

Online Objective Test Result

Programme: B.E/ECE
Course Name: ANALOG ELECTRONICS

Year: II
Course Code: 161EC31

Overall Number of Students Achieving Grade Ranges

HOD/ECE

[^0]: Enter correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3:

