

Subject Name : ADVANCED JAVA PROGRAMMING

Subject Code : 191CSEB

YEAR/SEM IV/VII

Faculty Name : Amutha J AP/CSE

P.S.R. ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University,

Chennai)

Sevalpatti (P.O), Sivakasi - 626140.

COURSE MATERIAL

191CSEB ADVANCED JAVA PROGRAMMING
L T P C

3 0 0 3

Programme: B.E. Computer Science and Engineering
Sem

:
-

Category:
PE

Prerequisites: 191CS43 – Object Oriented Programming

Aim:

To design and develop enterprise strength distributed and multitier applications

using Java Technology.

Course Outcomes: The Students will be able to

CO1: Gain the basic concepts of Java..

CO2: Learn advanced Java programming concepts like RMI, Collections etc.

CO3: Develop network programs in Java.

CO4: Relate the concepts needed for distributed and multi-tier applications.

CO5: Solve the real world problems using concepts like JDBC, JNDI.

CO6:
Explore the features of various platforms and frameworks like hibernate, Java

Server Face used in web applications development.

COLLECTIONS & NETWORKING 9

Collections: Collection Interfaces, Concrete Collections, The Collections Framework.

Networking: Internet Addressing – Inet Address - Factory Methods - Instance Methods -

TCP/IP Client Sockets - URL - URL Connection - TCP/IP Server Sockets.

DISTRIBUTED APPLICATIONS 9

Introduction to J2EE - Enterprise Java Bean: Preparing a Class to be a JavaBean, Creating a

JavaBean, JavaBean Properties - Types of beans - Stateful Session bean, Stateless Session bean,

and Entity bean. CORBA: Technical/Architectural Overview-RMI-IIOP.

JAVA DATABASE CONNECTIVITY 9

Java Database Connectivity (JDBC): Merging Data from Multiple Tables: Joining, Manipulating

- Databases with JDBC, Transaction Processing, Retrieve the employee details from the Server

through JDBC Driver. Java Naming and Directory Interface - Naming concepts - directory

concepts - JNDI Interface - Example.

SERVER SIDE PROGRAMMING 9

Servlets - Introduction to servlets - Servlets life cycle – Java Server Pages (JSP):

Introduction, Java Server Pages Overview, First Java Server Page Example, Implicit Objects,

Scripting, Standard Actions, Directives, Custom Tag Libraries

RECENT JAVA TOOLS 9

Spring Boot - Deploying a Spring-Boot application running with Java8 - Hibernate: Introduction

to Hibernate 3.0 - Hibernate Architecture - First Hibernate Application. Java Server Faces -

Installing application - writing - deploying and testing application - Request Process life cycle -

Basic JSF Tags - Expression Language.

Total Periods: 45

Text Books:

1. Uttam K. Roy, “Advanced Java Programming”, Oxford University press, 2015.

References:

1. Elliotte Rusty Harold, “Java Network Programming”, O’Reilly Publishers, 4/e, 2013.

2. Ed Roman, “Mastering Enterprise Java Beans”, John Wiley & Sons Inc., 3/e, 2004.

3. S. Malhotra and S. Choudhary, “Programming in Java”, Oxford University Press. 2/e, 2014.

UNIT-I

• The Collection in Java is a framework that provides an architecture to store and

manipulate the group of objects.

• Java Collections can achieve all the operations that you perform on a data such as

searching, sorting, insertion, manipulation, and deletion.

• Java Collection means a single unit of objects. Java Collection framework provides

many interfaces (Set, List, Queue, Deque) and classes (ArrayList, Vector,

LinkedList, PriorityQueue , HashSet, LinkedHashSet, TreeSet).

What is Collection in Java

 A Collection represents a single unit of objects, i.e., a group.

What is a framework in Java

 It provides readymade architecture.

 It represents a set of classes and interfaces.

 It is optional.

What is Collection framework

 The Collection framework represents a unified architecture for storing and

manipulating a group of objects. It has:

 Interfaces and its implementations, i.e., classes, Algorithm

COLLECTIONS & NETWORKING

Collections: Collection Interfaces, Concrete Collections, The Collections Framework.

Networking: Internet Addressing – Inet Address - Factory Methods - Instance Methods -

TCP/IP Client Sockets - URL - URL Connection - TCP/IP Server Sockets.

Iterable interface:

The Iterable interface is present in java.lang.Iterable package. It was introduced in JDK 1.5. It

allows users to i Iterable in Java is an interface that allows collection elements to be accessed

individually. Using Iterable, elements of collections like arrays, sets, queues, maps, etc. can be

transversed easily.

The Collection framework extends the Iterable interface. Thus, all the classes implementing

the collections framework also implement the Iterable interface, and objects of these classes

can use Java's Iterable feature.

By using Iterator, we can access each item in the collection, one item at a time. Here, we have

an array of 5 elements, iterator named iter of this array returns each element of the array one

by one starting from 0^th^ index. terate through elements sequentially from a collection. It

returns each element of the collection one after the other, beginning from the front and moving

forward. There are three ways in which elements can be iterated in Java: the enhanced for loop,

the forEach() method, and the iterator() method. The Collection interface extends the Iterable

interface thus, all the classes implementing the Collection interface are iterable.

Methods of Iterator

The Iterator interface provides 4 methods that can be used to perform various operations on

elements of collections.

hasNext() - returns true if there exists an element in the collection

next() - returns the next element of the collection

remove() - removes the last element returned by the next()

forEachRemaining() - performs the specified action for each remaining element of the

collection

package testing;

import java.util.ArrayList;

import java.util.Iterator;

public class arraylist_main {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 ArrayList<Integer> numbers = new ArrayList<>();

 numbers.add(1);

 numbers.add(3);

 numbers.add(2);

 System.out.println("ArrayList: " + numbers);

 // Creating an instance of Iterator

 Iterator<Integer> iterate = numbers.iterator();

 // Using the next() method

 int number = iterate.next();

 System.out.println("Accessed Element: " + number);

 // Using the remove() method

 iterate.remove();

 System.out.println("Removed Element: " + number);

 System.out.print("Updated ArrayList: "+numbers);

 }

}

Output:

ArrayList: [1, 3, 2]

Accessed Element: 1

Removed Element: 1

Updated ArrayList: [3, 2]

Classes that Implement List

Since List is an interface, we cannot create objects from it.

In order to use the functionalities of the List interface, we can use these classes:

These classes are defined in the Collections framework and implement the List interface.

How to use List?

In Java, we must import java.util.List package in order to use List.

// ArrayList implementation of List

List<String> list1 = new ArrayList<>();

// LinkedList implementation of List

List<String> list2 = new LinkedList<>();

Here, we have created objects list1 and list2 of classes ArrayList and LinkedList. These

objects can use the functionalities of the List interface.

Methods of List

The List interface includes all the methods of the Collection interface. Its

because Collection is a super interface of List.

Some of the commonly used methods of the Collection interface that's also available in

the List interface are:

Methods Description

add() adds an element to a list

addAll() adds all elements of one list to another

get() helps to randomly access elements from lists

iterator()

returns iterator object that can be used to sequentially access

elements of lists

set() changes elements of lists

remove() removes an element from the list

removeAll() removes all the elements from the list

clear()

removes all the elements from the list (more efficient than

removeAll())

size() returns the length of lists

toArray() converts a list into an array

contains() returns true if a list contains specific element

https://www.programiz.com/java-programming/library/arraylist/add
https://www.programiz.com/java-programming/library/arraylist/addall
https://www.programiz.com/java-programming/library/arraylist/get
https://www.programiz.com/java-programming/library/arraylist/iterator
https://www.programiz.com/java-programming/iterator
https://www.programiz.com/java-programming/library/arraylist/set
https://www.programiz.com/java-programming/library/arraylist/remove
https://www.programiz.com/java-programming/library/arraylist/removeall
https://www.programiz.com/java-programming/library/arraylist/clear
https://www.programiz.com/java-programming/library/arraylist/size
https://www.programiz.com/java-programming/library/arraylist/toarray
https://www.programiz.com/java-programming/library/arraylist/contains

Implementation of the List Interface

1. Implementing the ArrayList Class

package testing;

import java.util.ArrayList;

import java.util.List;

public class arraylist1 {

 public static void main(String[] args)

 {

 List<Integer> numbers=new ArrayList<>();

 numbers.add(1);

 numbers.add(2);

 numbers.add(3);

 numbers.add(4);

 System.out.println("Arraylist:"+numbers);

 System.out.println("Arraylist:"+numbers.get(2));

 System.out.println("Arraylist:"+numbers.remove(1));

 System.out.println("Arraylist:"+numbers);

 } }

Output:

Arraylist:[1, 2, 3, 4]

Arraylist:3

Arraylist:2

Arraylist:[1, 3, 4]

2. Implementing the LinkedList Class

package testing;

import java.util.LinkedList;

import java.util.List;

public class list_Linkedlist {

 public static void main(String[] args) {

 List<Integer> n=new LinkedList<>();

 n.add(1);

 n.add(2);

 n.add(3);

 System.out.println("List"+n);

 System.out.println("Access Element"+n.get(1));

 //System.out.println("List"+n.indexOf(2));

 System.out.println("List"+n.removeFirst());

 System.out.println("List"+n);

 System.out.println("Last element List"+n.getLast());

 //System.out.println("List"+n);

 System.out.println("Insert the index 1 position "+n.set(1,4));

 System.out.println("List"+n);

 n.add(7);

 System.out.println("Add the new element"+n);

 }

}

OUTPUT:

List[1, 2, 3]

Access Element2

List1

List[2, 3]

Last element List3

Insert the index 1 position 3

List[2, 4]

Add the new element[2, 4, 7]

Vector

Vector uses a dynamic array to store the data elements. It is similar to ArrayList. However, It

is synchronized and contains many methods that are not the part of Collection framework.

package testing;

import java.util.Iterator;

import java.util.Vector;

public class List_vector {

public static void main(String[] args) {

 // TODO Auto-generated method stub

 Vector<String> v=new Vector<>();

 v.add("kumar");

 v.add("ram");

 v.add("sri");

 Iterator<String> itr=v.iterator();

 while(itr.hasNext())

 {

 System.out.println(itr.next());

 }

 }

}

OUTPUT:

kumar

ram

sri

Stack

The stack is the subclass of Vector. It implements the last-in-first-out data structure, i.e., Stack.

The stack contains all of the methods of Vector class and also provides its methods like boolean

push(), boolean peek(), boolean push(object o), which defines its properties.

Consider the following example.

package testing;

import java.util.Iterator;

import java.util.Stack;

public class List_stack {

 public static void main(String[] args) {

 Stack<String> s=new Stack<>();

 s.push("sri");

 s.push("ram");

 s.push("anu");

 System.out.println("stack "+s);

 s.pop();

 System.out.println("stack "+s);

 Iterator<String> i=s.iterator();

 System.out.println("Iterator point the Stack ");

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

 }

}

Output:

stack [sri, ram, anu]

stack [sri, ram]

Iterator point the Stack

sri

ram

Queue Interface

Queue interface maintains the first-in-first-out order. It can be defined as an ordered list that

is used to hold the elements which are about to be processed. There are various classes like

PriorityQueue, Deque, and ArrayDeque which implements the Queue interface.

Queue interface can be instantiated as:

Queue<String> q1 = new PriorityQueue();

Queue<String> q2 = new ArrayDeque();

There are various classes that implement the Queue interface, some of them are given below.

PriorityQueue

The PriorityQueue class implements the Queue interface. It holds the elements or objects

which are to be processed by their priorities. PriorityQueue doesn't allow null values to be

stored in the queue.

Consider the following example.

package testing;

import java.util.Iterator;

import java.util.PriorityQueue;

public class Collection_PriorityQueue {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 PriorityQueue<String> q1=new PriorityQueue<>();

 q1.add("sivakasi");

 q1.add("chennai");

 q1.add("madurai");

 System.out.println("Head element in queue\n"+q1.element());

 System.out.println("Peek element in queue\n"+q1.peek());

 System.out.println("Display the list of queue\n");

 for(String str:q1)

 {

 System.out.println(str);

 }

 //q1.addAll(q1);

 Iterator i=q1.iterator();

 System.out.println("Priority Queue List items\n");

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

 System.out.println("Pop operation after element");

 q1.remove();

 q1.poll();

 Iterator i1=q1.iterator();

 while(i1.hasNext())

 {

 System.out.println(i1.next());

 }

 }

}

OUTPUT

Head element in queue

chennai

Peek element in queue

chennai

Display the list of queue

chennai

sivakasi

madurai

Priority Queue List items

chennai

sivakasi

madurai

Pop operation after element

Sivakasi

Deque Interface

Deque interface extends the Queue interface. In Deque, we can remove and add the elements

from both the side. Deque stands for a double-ended queue which enables us to perform the

operations at both the ends.

Deque can be instantiated as:

1. Deque d = new ArrayDeque();

ArrayDeque

ArrayDeque class implements the Deque interface. It facilitates us to use the Deque. Unlike

queue, we can add or delete the elements from both the ends.

ArrayDeque is faster than ArrayList and Stack and has no capacity restrictions.

Consider the following example.

package testing;

import java.util.ArrayDeque;

import java.util.Deque

public class Collection_Arrayqueue {

 public static void main(String[] args) {

 Deque<String> de=new ArrayDeque<String>();

 de.add("jeni");

 de.add("aarthi");

 de.add("sri");

 System.out.println("Dequeue Element list");

 for(String str:de)

 {

 System.out.println(str);

 }

 System.out.println("Dequeue remove the first element and poll element:");

 de.removeFirst();

 de.pollLast();

 for(String str1:de)

 {

 System.out.println(str1);

 }

 }}

OUTPUT:

Dequeue Element list

jeni

aarthi

sri

Dequeue remove the first element and poll element:

Aarthi

Set Interface

Set Interface in Java is present in java.util package. It extends the Collection interface. It

represents the unordered set of elements which doesn't allow us to store the duplicate items.

We can store at most one null value in Set. Set is implemented by HashSet, LinkedHashSet,

and TreeSet.

Set can be instantiated as:

1. Set<data-type> s1 = new HashSet<data-type>();

2. Set<data-type> s2 = new LinkedHashSet<data-type>();

3. Set<data-type> s3 = new TreeSet<data-type>();

HashSet

HashSet class implements Set Interface. It represents the collection that uses a hash table for

storage. Hashing is used to store the elements in the HashSet. It contains unique items.

Consider the following example

package testing;

import java.util.HashSet;

import java.util.Iterator;

public class Set_hashset {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 HashSet<String> set=new HashSet<>();

 set.add("sivakasi");

 set.add("chennai");

 set.add("sivakasi");

 set.add("theni");

 set.add("madurai");

 System.out.println("Display the city name:");

 for(String str:set)

 {

 System.out.println(str);

 }

 System.out.println("Iterator class based display the city details");

 Iterator i=set.iterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

 }

}

OUTPUT:

Display the city name:

madurai

sivakasi

chennai

theni

Iterator class based display the city details

madurai

sivakasi

chennai

theni

LinkedHashSet

LinkedHashSet class represents the LinkedList implementation of Set Interface. It extends the

HashSet class and implements Set interface. Like HashSet, It also contains unique elements.

It maintains the insertion order and permits null elements.

Consider the following example.

import java.util.*;

public class TestJavaCollection8{

public static void main(String args[]){

LinkedHashSet<String> set=new LinkedHashSet<String>();

set.add("Ravi");

set.add("Vijay");

set.add("Ravi");

set.add("Ajay");

Iterator<String> itr=set.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

}

Output:

Ravi

Vijay

Ajay

SortedSet Interface

SortedSet is the alternate of Set interface that provides a total ordering on its elements. The

elements of the SortedSet are arranged in the increasing (ascending) order. The SortedSet

provides the additional methods that inhibit the natural ordering of the elements.

The SortedSet can be instantiated as:

SortedSet<data-type> set = new TreeSet();

TreeSet

Java TreeSet class implements the Set interface that uses a tree for storage. Like HashSet,

TreeSet also contains unique elements. However, the access and retrieval time of TreeSet is

quite fast. The elements in TreeSet stored in ascending order.

Consider the following example:

import java.util.*;

public class TestJavaCollection9{

public static void main(String args[]){

//Creating and adding elements

TreeSet<String> set=new TreeSet<String>();

set.add("Ravi");

set.add("Vijay");

set.add("Ravi");

set.add("Ajay");

//traversing elements

Iterator<String> itr=set.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

}

}

Output:

Ajay

Ravi

Vijay

Java InetAddress class

Java InetAddress class represents an IP address. The java.net.InetAddress class provides

methods to get the IP of any host name for example www.javatpoint.com, www.google.com,

www.facebook.com, etc.

An IP address is represented by 32-bit or 128-bit unsigned number. An instance of InetAddress

represents the IP address with its corresponding host name. There are two types of addresses:

Unicast and Multicast. The Unicast is an identifier for a single interface whereas Multicast is

an identifier for a set of interfaces.

Moreover, InetAddress has a cache mechanism to store successful and unsuccessful host name

resolutions.

IP Address

o An IP address helps to identify a specific resource on the network using a numerical

representation.

o Most networks combine IP with TCP (Transmission Control Protocol). It builds a

virtual bridge among the destination and the source.

There are two versions of IP address:

1. IPv4

IPv4 is the primary Internet protocol. It is the first version of IP deployed for production in the

ARAPNET in 1983. It is a widely used IP version to differentiate devices on network using an

addressing scheme. A 32-bit addressing scheme is used to store 232 addresses that is more than

4 million addresses.

Features of IPv4:

o It is a connectionless protocol.

o It utilizes less memory and the addresses can be remembered easily with the class based

addressing scheme.

o It also offers video conferencing and libraries.

2. IPv6

IPv6 is the latest version of Internet protocol. It aims at fulfilling the need of more internet

addresses. It provides solutions for the problems present in IPv4. It provides 128-bit address

space that can be used to form a network of 340 undecillion unique IP addresses. IPv6 is also

identified with a name IPng (Internet Protocol next generation).

Features of IPv6:

o It has a stateful and stateless both configurations.

o It provides support for quality of service (QoS).

o It has a hierarchical addressing and routing infrastructure.

TCP/IP Protocol

o TCP/IP is a communication protocol model used connect devices over a network via

internet.

o TCP/IP helps in the process of addressing, transmitting, routing and receiving the data

packets over the internet.

o The two main protocols used in this communication model are:

1. TCP i.e. Transmission Control Protocol. TCP provides the way to create a

communication channel across the network. It also helps in transmission of

packets at sender end as well as receiver end.

2. IP i.e. Internet Protocol. IP provides the address to the nodes connected on the

internet. It uses a gateway computer to check whether the IP address is correct

and the message is forwarded correctly or not.

Java InetAddress Class Methods

Method Description

public static InetAddress getByName(String host)

throws UnknownHostException

It returns the instance of InetAddress

containing LocalHost IP and name.

public static InetAddress getLocalHost() throws

UnknownHostException

It returns the instance of InetAdddress

containing local host name and address.

public String getHostName() It returns the host name of the IP address.

public String getHostAddress() It returns the IP address in string format.

Example of Java InetAddress Class

Let's see a simple example of InetAddress class to get ip address of www.javatpoint.com

website.

InetDemo.java

package testing;

import java.net.InetAddress;

public class inetaddress_1 {

 public static void main(String arg[])

 {

 try

 {

 InetAddress ip=InetAddress.getByName("www.tneaonline.org");

 System.out.println("Host Name: "+ip.getHostName());

 System.out.println("IP Address: "+ip.getHostAddress());

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 }

}

Output:

Host Name: www.tneaonline.org

IP Address: 3.109.215.89

Java DatagramSocket and DatagramPacket

Java DatagramSocket and DatagramPacket classes are used for connection-less socket

programming using the UDP instead of TCP.

Datagram

Datagrams are collection of information sent from one device to another device via the

established network. When the datagram is sent to the targeted device, there is no assurance

that it will reach to the target device safely and completely. It may get damaged or lost in

between. Likewise, the receiving device also never know if the datagram received is damaged

or not. The UDP protocol is used to implement the datagrams in Java.

Java DatagramSocket class

Java DatagramSocket class represents a connection-less socket for sending and receiving

datagram packets. It is a mechanism used for transmitting datagram packets over network.`

A datagram is basically an information but there is no guarantee of its content, arrival or arrival

time.

Commonly used Constructors of DatagramSocket class

Method Description

void bind(SocketAddress

addr)

It binds the DatagramSocket to a specific address and

port.

void close() It closes the datagram socket.

void connect(InetAddress

address, int port)

It connects the socket to a remote address for the socket.

void disconnect() It disconnects the socket.

boolean getBroadcast() It tests if SO_BROADCAST is enabled.

DatagramChannel

getChannel()

It returns the unique DatagramChannel object associated

with the datagram socket.

InetAddress getInetAddress() It returns the address to where the socket is connected.

InetAddress

getLocalAddress()

It gets the local address to which the socket is connected.

int getLocalPort() It returns the port number on the local host to which the

socket is bound.

SocketAddress

getLocalSocketAddress()

It returns the address of the endpoint the socket is bound

to.

int getPort() It returns the port number to which the socket is

connected.

int getReceiverBufferSize() It gets the value of the SO_RCVBUF option for this

DatagramSocket that is the buffer size used by the

platform for input on the DatagramSocket.

boolean isClosed() It returns the status of socket i.e. closed or not.

o DatagramSocket() throws SocketEeption: it creates a datagram socket and binds it

with the available Port Number on the localhost machine.

o DatagramSocket(int port) throws SocketEeption: it creates a datagram socket and

binds it with the given Port Number.

o DatagramSocket(int port, InetAddress address) throws SocketEeption: it creates a

datagram socket and binds it with the specified port number and host address.

Java DatagramSocket Class

Java DatagramPacket Class

Java DatagramPacket is a message that can be sent or received. It is a data container. If you

send multiple packet, it may arrive in any order. Additionally, packet delivery is not

guaranteed.

Commonly used Constructors of DatagramPacket class

o DatagramPacket(byte[] barr, int length): it creates a datagram packet. This

constructor is used to receive the packets.

o DatagramPacket(byte[] barr, int length, InetAddress address, int port): it creates

a datagram packet. This constructor is used to send the packets.

Java DatagramPacket Class Methods

Method Description

1) InetAddress getAddress() It returns the IP address of the machine to which the

datagram is being sent or from which the datagram was

received.

2) byte[] getData() It returns the data buffer.

boolean isConnected() It returns the connection state of the socket.

void send(DatagramPacket p) It sends the datagram packet from the socket.

void receive(DatagramPacket

p)

It receives the datagram packet from the socket.

3) int getLength() It returns the length of the data to be sent or the length

of the data received.

4) int getOffset() It returns the offset of the data to be sent or the offset of

the data received.

5) int getPort() It returns the port number on the remote host to which

the datagram is being sent or from which the datagram

was received.

6) SocketAddress getSocketAddress() It gets the SocketAddress (IP address + port number) of

the remote host that the packet is being sent to or is

coming from.

7) void setAddress(InetAddress iaddr) It sets the IP address of the machine to which the

datagram is being sent.

8) void setData(byte[] buff) It sets the data buffer for the packet.

9) void setLength(int length) It sets the length of the packet.

10) void setPort(int iport) It sets the port number on the remote host to which the

datagram is being sent.

11) void

setSocketAddress(SocketAddress

addr)

It sets the SocketAddress (IP address + port number) of

the remote host to which the datagram is being sent.

Example of Sending DatagramPacket by DatagramSocket

1. //DSender.java

2. import java.net.*;

3. public class DSender{

4. public static void main(String[] args) throws Exception {

5. DatagramSocket ds = new DatagramSocket();

6. String str = "Welcome java";

7. InetAddress ip = InetAddress.getByName("127.0.0.1");

8.

9. DatagramPacket dp = new DatagramPacket(str.getBytes(), str.length(), ip, 3000);

10. ds.send(dp);

11. ds.close();

12. }

13. }

Output:

Example of Receiving DatagramPacket by DatagramSocket

1. //DReceiver.java

2. import java.net.*;

3. public class DReceiver{

4. public static void main(String[] args) throws Exception {

5. DatagramSocket ds = new DatagramSocket(3000);

6. byte[] buf = new byte[1024];

7. DatagramPacket dp = new DatagramPacket(buf, 1024);

8. ds.receive(dp);

9. String str = new String(dp.getData(), 0, dp.getLength());

10. System.out.println(str);

11. ds.close();

12. }

13. }

Output:

Java Socket Programming

Java Socket programming is used for communication between the applications running on

different JRE.

Java Socket programming can be connection-oriented or connection-less.

Socket and ServerSocket classes are used for connection-oriented socket programming and

DatagramSocket and DatagramPacket classes are used for connection-less socket

programming.

The client in socket programming must know two information:

1. IP Address of Server, and

2. Port number.

Here, we are going to make one-way client and server communication. In this application,

client sends a message to the server, server reads the message and prints it. Here, two classes

are being used: Socket and ServerSocket. The Socket class is used to communicate client and

server. Through this class, we can read and write message. The ServerSocket class is used at

server-side. The accept() method of ServerSocket class blocks the console until the client is

connected. After the successful connection of client, it returns the instance of Socket at server-

side.

Socket class

A socket is simply an endpoint for communications between the machines. The Socket class

can be used to create a socket.

Important methods

Method Description

1) public InputStream getInputStream() returns the InputStream attached with this socket.

2) public OutputStream

getOutputStream()

returns the OutputStream attached with this

socket.

3) public synchronized void close() closes this socket

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to establish

communication with the clients.

Important methods

Method Description

1) public Socket accept() returns the socket and establish a connection between server and

client.

2) public synchronized void

close()

closes the server socket.

Example of Java Socket Programming

Creating Server:

To create the server application, we need to create the instance of ServerSocket class. Here, we

are using 6666 port number for the communication between the client and server. You may

also choose any other port number. The accept() method waits for the client. If clients connects

with the given port number, it returns an instance of Socket.

1. ServerSocket ss=new ServerSocket(6666);

2. Socket s=ss.accept();//establishes connection and waits for the client

Creating Client:

To create the client application, we need to create the instance of Socket class. Here, we need

to pass the IP address or hostname of the Server and a port number. Here, we are using

"localhost" because our server is running on same system.

1. Socket s=new Socket("localhost",6666);

Let's see a simple of Java socket programming where client sends a text and server receives

and prints it.

File: MyServer.java

1. import java.io.*;

2. import java.net.*;

3. public class MyServer {

4. public static void main(String[] args){

5. try{

6. ServerSocket ss=new ServerSocket(6666);

7. Socket s=ss.accept();//establishes connection

8. DataInputStream dis=new DataInputStream(s.getInputStream());

9. String str=(String)dis.readUTF();

10. System.out.println("message= "+str);

11. ss.close();

12. }catch(Exception e){System.out.println(e);}

13. }

14. }

File: MyClient.java

1. import java.io.*;

2. import java.net.*;

3. public class MyClient {

4. public static void main(String[] args) {

5. try{

6. Socket s=new Socket("localhost",6666);

7. DataOutputStream dout=new DataOutputStream(s.getOutputStream());

8. dout.writeUTF("Hello Server");

9. dout.flush();

10. dout.close();

11. s.close();

12. }catch(Exception e){System.out.println(e);}

13. }

14. }

download this example

To execute this program open two command prompts and execute each program at each

command prompt as displayed in the below figure.

After running the client application, a message will be displayed on the server console.

https://www.javatpoint.com/src/networking/socket.zip

Java URL

The Java URL class represents an URL. URL is an acronym for Uniform Resource Locator.

It points to a resource on the World Wide Web. For example:

1. https://www.javatpoint.com/java-tutorial

A URL contains many information:

1. Protocol: In this case, http is the protocol.

2. Server name or IP Address: In this case, www.javatpoint.com is the server name.

3. Port Number: It is an optional attribute. If we write

http//ww.javatpoint.com:80/sonoojaiswal/ , 80 is the port number. If port number is not

mentioned in the URL, it returns -1.

4. File Name or directory name: In this case, index.jsp is the file name.

Constructors of Java URL class

URL(String spec)

Creates an instance of a URL from the String representation.

URL(String protocol, String host, int port, String file)

Creates an instance of a URL from the given protocol, host, port number, and file.

URL(String protocol, String host, int port, String file, URLStreamHandler handler)

Creates an instance of a URL from the given protocol, host, port number, file, and handler.

URL(String protocol, String host, String file)

Creates an instance of a URL from the given protocol name, host name, and file name.

URL(URL context, String spec)

Creates an instance of a URL by parsing the given spec within a specified context.

URL(URL context, String spec, URLStreamHandler handler)

Creates an instance of a URL by parsing the given spec with the specified handler within a

given context.

Commonly used methods of Java URL class

The java.net.URL class provides many methods. The important methods of URL class are

given below.

Method Description

public String getProtocol() it returns the protocol of the URL.

public String getHost() it returns the host name of the URL.

public String getPort() it returns the Port Number of the URL.

public String getFile() it returns the file name of the URL.

public String getAuthority() it returns the authority of the URL.

public String toString() it returns the string representation of the URL.

public String getQuery() it returns the query string of the URL.

public String getDefaultPort() it returns the default port of the URL.

public URLConnection

openConnection()

it returns the instance of URLConnection i.e. associated

with this URL.

public boolean equals(Object obj) it compares the URL with the given object.

public Object getContent() it returns the content of the URL.

public String getRef() it returns the anchor or reference of the URL.

public URI toURI() it returns a URI of the URL.

Example of Java URL class

package ip_concept;

import java.net.URL;

public class URLDemo {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 try{

 URL url=new

URL("http://www.tneaonline.com/TNEARegistration/index");

 System.out.println("Protocol: "+url.getProtocol());

 System.out.println("Host Name: "+url.getHost());

 System.out.println("Port Number: "+url.getPort());

 System.out.println("File Name: "+url.getFile());

 }catch(Exception e){System.out.println(e);}

 }

}

Protocol: http

Host Name: www.tneaonline.com

Port Number: -1

File Name: /TNEARegistration/index

Java URLConnection Class

The Java URLConnection class represents a communication link between the URL and the

application. It can be used to read and write data to the specified resource referred by the URL.

What is the URL?

o URL is an abbreviation for Uniform Resource Locator. An URL is a form of string that

helps to find a resource on the World Wide Web (WWW).

o URL has two components:

1. The protocol required to access the resource.

2. The location of the resource.

Features of URLConnection class

1. URLConnection is an abstract class. The two subclasses HttpURLConnection and

JarURLConnection makes the connetion between the client Java program and URL

resource on the internet.

2. With the help of URLConnection class, a user can read and write to and from any

resource referenced by an URL object.

3. Once a connection is established and the Java program has an URLConnection object,

we can use it to read or write or get further information like content length, etc.

Constructors

Constructor Description

1) protected URLConnection(URL url) It constructs a URL connection to the specified URL.

URLConnection Class Methods

Method Description

void addRequestProperty(String key, String value) It adds a general request property

specified by a key-value pair

void connect() It opens a communications link to the

resource referenced by this URL, if

such a connection has not already

been established.

boolean getAllowUserInteraction() It returns the value of the

allowUserInteraction field for the

object.

int getConnectionTimeout() It returns setting for connect timeout.

Object getContent() It retrieves the contents of the URL

connection.

Object getContent(Class[] classes) It retrieves the contents of the URL

connection.

String getContentEncoding() It returns the value of the content-

encoding header field.

int getContentLength() It returns the value of the content-

length header field.

long getContentLengthLong() It returns the value of the content-

length header field as long.

String getContentType() It returns the value of the date header

field.

long getDate() It returns the value of the date header

field.

static boolean getDefaultAllowUserInteraction() It returns the default value of the

allowUserInteraction field.

boolean getDefaultUseCaches() It returns the default value of an

URLConnetion's useCaches flag.

boolean getDoInput() It returns the value of the

URLConnection's doInput flag.

boolean getDoInput() It returns the value of the

URLConnection's doOutput flag.

long getExpiration() It returns the value of the expires

header files.

static FileNameMap getFilenameMap() It loads the filename map from a data

file.

String getHeaderField(int n) It returns the value of nth header field

String getHeaderField(String name) It returns the value of the named

header field.

long getHeaderFieldDate(String name, long Default) It returns the value of the named field

parsed as a number.

int getHeaderFieldInt(String name, int Default) It returns the value of the named field

parsed as a number.

String getHeaderFieldKey(int n) It returns the key for the nth header

field.

long getHeaderFieldLong(String name, long Default) It returns the value of the named field

parsed as a number.

Map<String, List<String>> getHeaderFields() It returns the unmodifiable Map of the

header field.

long getIfModifiedSince() It returns the value of the object's

ifModifiedSince field.

InputStream getInputStream() It returns an input stream that reads

from the open condition.

long getLastModified() It returns the value of the last-

modified header field.

OutputStream getOutputStream() It returns an output stream that writes

to the connection.

Permission getPermission() It returns a permission object

representing the permission necessary

to make the connection represented

by the object.

int getReadTimeout() It returns setting for read timeout.

Map<String, List<String>> getRequestProperties() It returns the value of the named

general request property for the

connection.

URL getURL() It returns the value of the

URLConnection's URL field.

boolean getUseCaches() It returns the value of the

URLConnection's useCaches field.

Static String guessContentTypeFromName(String

fname)

It tries to determine the content type

of an object, based on the

specified file component of a URL.

static String

guessContentTypeFromStream(InputStream is)

It tries to determine the type of an

input stream based on the characters

at the beginning of the input stream.

void setAllowUserInteraction(boolean

allowuserinteraction)

It sets the value of the

allowUserInteraction field of this

URLConnection.

static void

setContentHandlerFactory(ContentHandlerFactory

fac)

It sets the ContentHandlerFactory of

an application.

static void setDefaultAllowUserInteraction(boolean

defaultallowuserinteraction)

It sets the default value of the

allowUserInteraction field for all

future URLConnection objects to the

specified value.

void steDafaultUseCaches(boolean defaultusecaches) It sets the default value of the

useCaches field to the specified value.

void setDoInput(boolean doinput) It sets the value of the doInput field

for this URLConnection to the

specified value.

void setDoOutput(boolean dooutput) It sets the value of the doOutput field

for the URLConnection to the

specified value.

How to get the object of URLConnection Class

The openConnection() method of the URL class returns the object of URLConnection class.

Syntax:

1. public URLConnection openConnection()throws IOException{}

Displaying Source Code of a Webpage by URLConnecton Class

The URLConnection class provides many methods. We can display all the data of a webpage

by using the getInputStream() method. It returns all the data of the specified URL in the stream

that can be read and displayed.

package ip_concept;

import java.io.InputStream;

import java.net.URL;

import java.net.URLConnection;

public class URLConnection_1 {

 public static void main(String[] args) {

 // TODO Auto-generated method stub

 try{

 URL url=new

URL("http://www.tneaonline.com/TNEARegistration/index");

 URLConnection urlcon=url.openConnection();

 InputStream stream=urlcon.getInputStream();

 int i;

 while((i=stream.read())!=-1){

 System.out.print((char)i);

 }

 }catch(Exception e){System.out.println(e);}

 }

}

Output(get the web page information)

<!DOCTYPE html>

<!--

Template Name: Metronic - Responsive Admin Dashboard Template build with Twitter

Bootstrap 3.3.4

Version: 4.0.2

Author: KeenThemes

Website: http://www.keenthemes.com/

Contact: support@keenthemes.com

Follow: www.twitter.com/keenthemes

Like: www.facebook.com/keenthemes

Purchase: http://themeforest.net/item/metronic-responsive-admin-dashboard-

template/4021469?ref=keenthemes

License: You must have a valid license purchased only from themeforest(the above link) in

order to legally use the theme for your project.

-->

<!--[if IE 8]> <html lang="en" class="ie8 no-js"> <![endif]-->

What is a method in Java?

A method is a block of code or collection of statements or a set of code grouped together to

perform a certain task or operation. It is used to achieve the reusability of code. We write a

method once and use it many times. We do not require to write code again and again. It also

provides the easy modification and readability of code, just by adding or removing a chunk

of code. The method is executed only when we call or invoke it.

The most important method in Java is the main() method. If you want to read more about the

main() method, go through the link https://www.javatpoint.com/java-main-method.

Method Declaration

The method declaration provides information about method attributes, such as visibility,

return-type, name, and arguments. It has six components that are known as method header,

as we have shown in the following figure.

Method Signature: Every method has a method signature. It is a part of the method

declaration. It includes the method name and parameter list.

Access Specifier: Access specifier or modifier is the access type of the method. It specifies

the visibility of the method. Java provides four types of access specifier:

• Public: The method is accessible by all classes when we use public specifier in our

application.

• Private: When we use a private access specifier, the method is accessible only in the

classes in which it is defined.

• Protected: When we use protected access specifier, the method is accessible within

the same package or subclasses in a different package.

• Default: When we do not use any access specifier in the method declaration, Java

uses default access specifier by default. It is visible only from the same package only.

Return Type: Return type is a data type that the method returns. It may have a primitive data

type, object, collection, void, etc. If the method does not return anything, we use void

keyword.

Method Name: It is a unique name that is used to define the name of a method. It must be

corresponding to the functionality of the method. Suppose, if we are creating a method for

https://www.javatpoint.com/java-main-method

subtraction of two numbers, the method name must be subtraction(). A method is invoked

by its name.

Parameter List: It is the list of parameters separated by a comma and enclosed in the pair of

parentheses. It contains the data type and variable name. If the method has no parameter, left

the parentheses blank.

Method Body: It is a part of the method declaration. It contains all the actions to be

performed. It is enclosed within the pair of curly braces.

Instance Method

The method of the class is known as an instance method. It is a non-static method defined in

the class. Before calling or invoking the instance method, it is necessary to create an object of

its class. Let's see an example of an instance method.

InstanceMethodExample.java

 public class InstanceMethodExample

 {

 public static void main(String [] args)

 {

 //Creating an object of the class

 InstanceMethodExample obj = new InstanceMethodExample();

 //invoking instance method

 System.out.println("The sum is: "+obj.add(12, 13));

 }

 int s;

 //user-defined method because we have not used static keyword

 public int add(int a, int b)

 {

 s = a+b;

 //returning the sum

 return s;

 }

 }

Output:

The sum is: 25

There are two types of instance method:

 Accessor Method

 Mutator Method

Accessor Method: The method(s) that reads the instance variable(s) is known as the accessor

method. We can easily identify it because the method is prefixed with the word get. It is also

known as getters. It returns the value of the private field. It is used to get the value of the

private field.

Example

 public int getId()

 {

 return Id;

 }

Mutator Method: The method(s) read the instance variable(s) and also modify the values. We

can easily identify it because the method is prefixed with the word set. It is also known as

setters or modifiers. It does not return anything. It accepts a parameter of the same data type

that depends on the field. It is used to set the value of the private field.

Example

 public void setRoll(int roll)

 {

 this.roll = roll;

 }

Example of accessor and mutator method

Student.java

 public class Student

 {

 private int roll;

 private String name;

 public int getRoll() //accessor method

 {

 return roll;

 }

 public void setRoll(int roll) //mutator method

 {

 this.roll = roll;

 }

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

 public void display()

 {

 System.out.println("Roll no.: "+roll);

 System.out.println("Student name: "+name);

 }

 }

Factory Method Pattern

A Factory Pattern or Factory Method Pattern says that just define an interface or abstract

class for creating an object but let the subclasses decide which class to instantiate. In

other words, subclasses are responsible to create the instance of the class.

The Factory Method Pattern is also known as Virtual Constructor.

Advantage of Factory Design Pattern

• Factory Method Pattern allows the sub-classes to choose the type of objects to create.

• It promotes the loose-coupling by eliminating the need to bind application-specific

classes into the code. That means the code interacts solely with the resultant interface

or abstract class, so that it will work with any classes that implement that interface or

that extends that abstract class.

Usage of Factory Design Pattern

• When a class doesn't know what sub-classes will be required to create

• When a class wants that its sub-classes specify the objects to be created.

• When the parent classes choose the creation of objects to its sub-classes.

UML for Factory Method Pattern

• We are going to create a Plan abstract class and concrete classes that extends the Plan

abstract class. A factory class GetPlanFactory is defined as a next step.

• GenerateBill class will use GetPlanFactory to get a Plan object. It will pass

information (DOMESTICPLAN / COMMERCIALPLAN / INSTITUTIONALPLAN)

to GetPalnFactory to get the type of object it needs.

Calculate Electricity Bill : A Real World Example of Factory Method

Step 1: Create a Plan abstract class.

1. import java.io.*;

2. abstract class Plan{

3. protected double rate;

4. abstract void getRate();

5.

6. public void calculateBill(int units){

7. System.out.println(units*rate);

8. }

9. }//end of Plan class.

Step 2: Create the concrete classes that extends Plan abstract class.

1. class DomesticPlan extends Plan{

2. //@override

3. public void getRate(){

4. rate=3.50;

5. }

6. }//end of DomesticPlan class.

1. class CommercialPlan extends Plan{

2. //@override

3. public void getRate(){

4. rate=7.50;

5. }

6. /end of CommercialPlan class.

1. class InstitutionalPlan extends Plan{

2. //@override

3. public void getRate(){

4. rate=5.50;

5. }

6. /end of InstitutionalPlan class.

Step 3: Create a GetPlanFactory to generate object of concrete classes based on given

information..

1. class GetPlanFactory{

2.

3. //use getPlan method to get object of type Plan

4. public Plan getPlan(String planType){

5. if(planType == null){

6. return null;

7. }

8. if(planType.equalsIgnoreCase("DOMESTICPLAN")) {

9. return new DomesticPlan();

10. }

11. else if(planType.equalsIgnoreCase("COMMERCIALPLAN")){

12. return new CommercialPlan();

13. }

14. else if(planType.equalsIgnoreCase("INSTITUTIONALPLAN")) {

15. return new InstitutionalPlan();

16. }

17. return null;

18. }

19. }//end of GetPlanFactory class.

Step 4: Generate Bill by using the GetPlanFactory to get the object of concrete classes by

passing an information such as type of plan DOMESTICPLAN or COMMERCIALPLAN or

INSTITUTIONALPLAN.

1. import java.io.*;

2. class GenerateBill{

3. public static void main(String args[])throws IOException{

4. GetPlanFactory planFactory = new GetPlanFactory();

5.

6. System.out.print("Enter the name of plan for which the bill will be generated: ");

7. BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

8.

9. String planName=br.readLine();

10. System.out.print("Enter the number of units for bill will be calculated: ");

11. int units=Integer.parseInt(br.readLine());

12.
13. Plan p = planFactory.getPlan(planName);

14. //call getRate() method and calculateBill()method of DomesticPaln.

15.
16. System.out.print("Bill amount for "+planName+" of "+units+" units is: ");

17. p.getRate();

18. p.calculateBill(units);

19. }

20. }//end of GenerateBill class.

download this Electricity bill Example

Output

UNIT-II

Introduction

https://www.javatpoint.com/designpattern/designpatternexample/factorymethodpattern.zip

J2EE stands for Java 2 Platform, Enterprise Edition. J2EE is the standard platform for

developing applications in the enterprise and is designed for enterprise applications that run on

servers. J2EE provides APIs that let developers create workflows and make use of resources

such as databases or web services. J2EE consists of a set of APIs. Developers can use these

APIs to build applications for business computing.

Benefits of J2EE

Below is the list of benefits that J2EE provides:

1. Portability: If you build a J2EE application on a specific platform, it runs the same

way on any other J2EE-compliant platform. This makes it easy to move applications

from one environment to another. For example, moving an application from one

computer to another or relocating an application from a test server to a production

server.

2. Reusability: The components in J2EE are reused, so the average size of an application

is much smaller than it would be if you had to write equivalent functionality from

scratch for each program. For example, one component lets you read objects from a

database. You can use that object-reading feature in any J2EE application. Since this

functionality is already written and tested, you don’t have to write it yourself every

time you need it.

3. Security: Java technology lets programmers handle sensitive data far more securely

than they can in C/C++ programs.

4. Scalability: J2EE lets developers build applications that run well on both small,

single-processor computers and large, multi-processor systems.

5. Reliability: Many of the services (such as transaction management and monitoring)

that applications need to be reliable are built into J2EE.

Java SE Java EE

Java SE provide basic functionalities such

as defining types and objects.

Java EE facilitates development of large

scale applications.

SE is a normal Java specification EE is built upon Java SE. It provides

functionalities like web applications, and

Servlets.

It has features like class libraries,

deployment environments, etc.

Java EE is a structured application with a

separate client, business, and Enterprise

layers.

It is mostly used to develop APIs for

Desktop Applications like antivirus

software, game, etc.

It is mainly used for developing web

applications.

Suitable for beginning Java developers. Suitable for experienced Java developers

who build enterprise-wide applications.

It does not provide user authentication. It provides user authentication.

When use Enterprise Java Bean?

1. Application needs Remote Access. In other words, it is distributed.

2. Application needs to be scalable. EJB applications supports load balancing, clustering

and fail-over.

3. Application needs encapsulated business logic. EJB application is separated from

presentation and persistent layer.

Types of Enterprise Java Bean

There are 3 types of enterprise bean in java.

Session Bean

Session bean contains business logic that can be invoked by local, remote or webservice client.

Message Driven Bean

Like Session Bean, it contains the business logic but it is invoked by passing message.

Entity Bean

It encapsulates the state that can be persisted in the database. It is deprecated. Now, it is

replaced with JPA (Java Persistent API).

Disadvantages of EJB

1. Requires application server

2. Requires only java client. For other language client, you need to go for webservice.

3. Complex to understand and develop ejb applications.

Session Bean

Session bean encapsulates business logic only, it can be invoked by local, remote and

webservice client.

It can be used for calculations, database access etc.

The life cycle of session bean is maintained by the application server (EJB Container).

Types of Session Bean

There are 3 types of session bean.

1) Stateless Session Bean: It doesn't maintain state of a client between multiple method calls.

2) Stateful Session Bean: It maintains state of a client across multiple requests.

3) Singleton Session Bean: One instance per application, it is shared between clients and

supports concurrent access.

Stateless Session Bean

Stateless Session bean is a business object that represents business logic only. It doesn't have

state (data).

In other words, conversational state between multiple method calls is not maintained by the

container in case of stateless session bean.

The stateless bean objects are pooled by the EJB container to service the request on demand.

It can be accessed by one client at a time. In case of concurrent access, EJB container routes

each request to different instance.

Annotations used in Stateless Session Bean

There are 3 important annotations used in stateless session bean:

1. @Stateless

2. @PostConstruct

3. @PreDestroy

Life cycle of Stateless Session Bean

There is only two states of stateless session bean: does not exist and ready. It is explained by

the figure given below.

EJB Container creates and maintains a pool of session bean first. It injects the dependency if

then calls the @PostConstruct method if any. Now actual business logic method is invoked by

the client. Then, container calls @PreDestory method if any. Now bean is ready for garbage

collection.

Example of Stateless Session Bean

To develop stateless bean application, we are going to use Eclipse IDE and glassfish 3 server.

To create EJB application, you need to create bean component and bean client.

1) Create stateless bean component

To create the stateless bean component, you need to create a remote interface and a bean class.

File: AdderImplRemote.java

package com.javatpoint;

import javax.ejb.Remote;

@Remote

public interface AdderImplRemote {

int add(int a,int b);

}

File: AdderImpl.java

package com.javatpoint;

import javax.ejb.Stateless;

@Stateless(mappedName="st1")

public class AdderImpl implements AdderImplRemote {

 public int add(int a,int b){

 return a+b;

 }

}

2) Create stateless bean client

The stateless bean client may be local, remote or webservice client. Here, we are going to

create remote client. It is console based application. Here, we are not using dependency

injection. The dependency injection can be used with web based client only.

File: AdderImpl.java

package com.javatpoint;

import javax.naming.Context;

import javax.naming.InitialContext;

public class Test {

public static void main(String[] args)throws Exception {

 Context context=new InitialContext();

 AdderImplRemote remote=(AdderImplRemote)context.lookup("st1");

 System.out.println(remote.add(32,32));

}

}

Output

Output: 64

Stateful Session Bean

Stateful Session bean is a business object that represents business logic like stateless session

bean. But, it maintains state (data).

In other words, conversational state between multiple method calls is maintained by the

container in stateful session bean.

Annotations used in Stateful Session Bean

There are 5 important annotations used in stateful session bean:

1. @Stateful

2. @PostConstruct

3. @PreDestroy

4. @PrePassivate

5. @PostActivate

Example of Stateful Session Bean

To develop stateful session bean application, we are going to use Eclipse IDE and glassfish

3 server.

As described in the previous example, you need to create bean component and bean client for

creating session bean application.

1) Create stateful bean component

Let's create a remote interface and a bean class for developing stateful bean component.

File: BankRemote.java

1. package com.javatpoint;

2. import javax.ejb.Remote;

3. @Remote

4. public interface BankRemote {

5. boolean withdraw(int amount);

6. void deposit(int amount);

7. int getBalance();

8. }

File: Bank.java

1. package com.javatpoint;

2. import javax.ejb.Stateful;

3. @Stateful(mappedName = "stateful123")

4. public class Bank implements BankRemote {

5. private int amount=0;

6. public boolean withdraw(int amount){

7. if(amount<=this.amount){

8. this.amount-=amount;

9. return true;

10. }else{

11. return false;

12. }

13. }

14. public void deposit(int amount){

15. this.amount+=amount;

16. }

17. public int getBalance(){

18. return amount;

19. }

20. }

2) Create stateful bean client

The stateful bean client may be local, remote or webservice client. Here, we are going to create

web based client and not using dependency injection.

File: index.jsp

1. Open Account

File: operation.jsp

1. <form action="operationprocess.jsp">

2. Enter Amount:<input type="text" name="amount"/>

3.

4. Choose Operation:

5. Deposit<input type="radio" name="operation" value="deposit"/>

6. Withdraw<input type="radio" name="operation" value="withdraw"/>

7. Check balance<input type="radio" name="operation" value="checkbalance"/>

8.

9. <input type="submit" value="submit">

10. </form>

File: operationprocess.jsp

1. <%@ page import="com.javatpoint.*" %>

2. <%

3. BankRemote remote=(BankRemote)session.getAttribute("remote");

4. String operation=request.getParameter("operation");

5. String amount=request.getParameter("amount");

6.

7. if(operation!=null){

8.

9. if(operation.equals("deposit")){

10. remote.deposit(Integer.parseInt(amount));

11. out.print("Amount successfully deposited!");

12. }else

13. if(operation.equals("withdraw")){

14. boolean status=remote.withdraw(Integer.parseInt(amount));

15. if(status){

16. out.print("Amount successfully withdrawn!");

17. }else{

18. out.println("Enter less amount");

19. }

20. }else{

21. out.println("Current Amount: "+remote.getBalance());

22. }

23. }

24. %>

25. <hr/>

26. <jsp:include page="operation.jsp"></jsp:include>

File: OpenAccount.java

1. package com.javatpoint;

2. import java.io.IOException;

3. import javax.ejb.EJB;

4. import javax.naming.InitialContext;

5. import javax.servlet.ServletException;

6. import javax.servlet.annotation.WebServlet;

7. import javax.servlet.http.HttpServlet;

8. import javax.servlet.http.HttpServletRequest;

9. import javax.servlet.http.HttpServletResponse;

10. @WebServlet("/OpenAccount")

11. public class OpenAccount extends HttpServlet {

12. //@EJB(mappedName="stateful123")

13. //BankRemote b;

14. protected void doGet(HttpServletRequest request, HttpServletResponse response)

15. throws ServletException, IOException {

16. try{

17. InitialContext context=new InitialContext();

18. BankRemote b=(BankRemote)context.lookup("stateful123");

19.

20. request.getSession().setAttribute("remote",b);

21. request.getRequestDispatcher("/operation.jsp").forward(request, response);

22.

23. }catch(Exception e){System.out.println(e);}

24. }

25. }

https://examples.javacodegeeks.com/java-development/enterprise-java/ejb3/ejb-tutorial-

beginners-example/

1. Introduction

The Enterprise Java Beans (EJB) is a specification for deployable server-side components in

Java. It is an agreement between components and application servers that enable any

component to run in any application server. EJB components (called enterprise beans) are

deployable, and can be imported and loaded into an application server, which hosts those

components to develop secured, robust and scalable distributed applications.

To run EJB application, you need an application server (EJB Container) such as Jboss,

Glassfish, Weblogic, Websphere etc. It performs:

1. Life Cycle Management

2. Security

3. Transaction Management

4. Load Balancing

5. Persistence Mechanism

6. Exception Handling

7. Object Pooling

EJB application is deployed on the server, so it is called server side component also. We’ll be

discussing EJB 3.0 in this tutorial.

2. Types of Enterprise Java Beans

EJB defines three different kinds of enterprise beans.

1. Session beans: Session bean contains business logic that can be invoked by local,

remote or webservice client. The bean class typically contains business-process

related logic, such as logic to compute prices, transfer funds between bank

accounts, or perform order entry.Session bean are of 3 types:

o Stateless Session Bean: A stateless session bean doesn’t maintain state

of a client between multiple method calls. When a client invokes the

methods of a stateless bean, the bean’s instance variables may contain a

state specific to that client but only for the duration of the invocation.

When the method is finished, the client-specific state should not be

retained.

o Stateful Session Bean: A stateful session bean maintain state of a client

across multiple requests. In a stateful session bean, the instance variables

represent the state of a unique client/bean session. This state is often

called the conversational state as the client interacts with its bean,.

o Singelton Session Bean: A singleton session bean is instantiated once

per application and exists for the lifecycle of the application. Singleton

session beans are designed for circumstances in which a single enterprise

bean instance is shared across and concurrently accessed by clients.

2. Entity beans: Entity beans encapsulates the state that can be persisted in the

database. User data can be saved to database via entity beans and later on can be

retrieved from the database in the entity bean. The bean class contains data-related

logic such as logic to reduce balance of bank account or modify customer details.

3. Message-driven beans: Message-driven beans are similar to session beans in their

actions. It contains the business logic but it is invoked by passing message. The

difference is that you can call message driven beans only by sending messages to

those beans. These message-driven beans might call other enterprise beans as well.

Tip

You may skip project creation and jump directly to the beginning of the example below.

3. Create EJB Module

In example below, We’ll create a ejb module project named BasicOperationsEJBModule

using NetBeans.

Open NetBeans IDE, choose File > New Project.

In the New Project wizard, expand the Java EE category and select EJB Module as shown

in the figure below. Then click Next.

Create EJB Module

https://examples.javacodegeeks.com/java-development/enterprise-java/ejb3/ejb-tutorial-beginners-example/#code
https://examples.javacodegeeks.com/wp-content/uploads/2016/02/29.jpg

You have to specify the Project Name and the Project Location in the appropriate text

fields and then click Next.

Specify EJB Module Name

In the next window, add the Server and select the Java EE version and click Finish.

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/30.jpg

Select Server and finish

4. Create a new Application Class Project

In this section you will create an application class library project for EJB remote interface

and entity class.

Open NetBeans IDE, choose File > New Project.

In the New Project wizard, expand the Java category and select Java Class Library as

shown in the figure below. Then click Next.

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/31.jpg

Specify Client Project Name

You have to specify the Project Name and the Project Location in the appropriate text

fields and then click Next.

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/32.jpg

Specifyn Client Name

ADVERTISEMENT

5. Create Session Bean

The EJB 3.1 specification introduces @Stateless annotation that enables you to easily create

stateless session beans. A stateless session bean as per its name does not have any associated

client state, but it may preserve its instance state. EJB Container normally creates a pool of

few stateless bean’s objects and use these objects to process client’s request.

To create the stateless session bean, perform the following steps.

• Right-click the EJB module and choose New > Other to open the New File wizard.

• Select Session Bean in the Enterprise JavaBeans category. Click Next.

http://docs.oracle.com/javaee/6/api/javax/ejb/Stateless.html
https://examples.javacodegeeks.com/wp-content/uploads/2016/02/33.jpg

Specify EJB Name

• Type OperationsSessionBean for the EJB Name.

• Type com.javacodegeeks.example.ejb for the Package name.

• Select Stateless.

• Click Finish.

5.1 Adding a Business Method

In this exercise you will create a simple business method in the session bean that returns a

string.

1. Right-click in the editor of OperationsSessionBean and choose Insert Code

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/7-1.jpg

Select Insert Code

2. Select Add Business Method.

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/36.jpg

Add Business Method

3. Type add in Method Name and float as return type and x, y as parameter names

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/37.jpg

Enter business method details

4. Similarly, create subtract method as shown in below figure

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/35.jpg

Add business method

5. Create multiply business method

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/11.jpg

Add business method

6. Create divide business method

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/34.jpg

Add business method

OperationsSessionBean.java

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

package com.javacodegeeks.example.ejb;

import javax.ejb.Stateless;

/**

 *

 * @author RadhaKrishna

 */

@Stateless

public class OperationsSessionBean implements OperationsSessionBeanRemote {

 // Add business logic below. (Right-click in editor and choose

 // "Insert Code > Add Business Method")

 @Override

 public float add(float x, float y) {

 return x + y;

 }

 @Override

 public float subtract(float x, float y) {

 return x - y;

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/13.jpg

23

24

25

26

27

28

29

30

31

32

33

34

 }

 @Override

 public float mutliply(float x, float y) {

 return x * y;

 }

 @Override

 public float divide(float x, float y) {

 return x / y;

 }

}

6. Deploy the EJB Module

You can now build and deploy the EJB module. Right-click

the BasicOperationsEJBModule module and choose Deploy. When you click Deploy, the

IDE builds the ejb module and deploys the JAR archive to the server.

In the Services window, if you expand the Applications node of GlassFish Server you can see

that BasicOperationsEJBModule was deployed.

7. Create a new Web Module to test EJB

Choose File > New Project.

In the New Project wizard, expand the Java Web category and select Web Application as

shown in the figure below. Then click Next.

Create Web Application

You have to specify the Project Name and the Project Location in the appropriate text

fields and then click Next.

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/14.jpg

Specify Project Name

In the next window, add the J2EE Server and select the J2EE version and click Finish.

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/15.jpg

Select Server

8. Create JSP Files to test EJB

In this exercise you will create a JSP to test user operations and obtain result.

• Right-click the Web module and choose File > New File wizard.

• In the New File wizard, expand the Web category and select JSP as shown in the

figure below.

• Then click Next.

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/16.jpg

Specify JSP Name

form.jsp

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

<html>

 <head>

 <title>Calculator</title>

 </head>

 <body bgcolor="lightgreen">

 <h1>Basic Operations</h1>

 <hr>

 <form action="Result.jsp" method="POST">

 <p>Enter first value:

 <input type="text" name="num1" size="25"></p>

 <p>Enter second value:

 <input type="text" name="num2" size="25"></p>

 Select your choice:

 <input type="radio" name="group1" value ="add">Addition

 <input type="radio" name="group1" value ="sub">Subtraction

 <input type="radio" name="group1" value ="multi">Multiplication

 <input type="radio" name="group1" value ="div">Division

 <p>

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/18.jpg

24

25

26

27

28

29

30

 <input type="submit" value="Submit">

 <input type="reset" value="Reset">

 </p>

 </form>

 </body>

</html>

</form>

The result will be displayed in Result.jsp. Create jsp as per below.

• Right-click the Web module and choose File > New File wizard.

• In the New File wizard, expand the Web category and select JSP as shown in the

figure below.

• Then click Next.

Specify JSP Name

Result.jsp

01

02

03

04

05

06

07

08

09

10

11

<%@ page contentType="text/html; charset=UTF-8" %>

<%@ page import="com.javacodegeeks.example.ejb.*, javax.naming.*"%>

<%!

 private OperationsSessionBeanRemote ops = null;

 float result = 0;

 public void jspInit() {

 try {

 InitialContext ic = new InitialContext();

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/19.jpg

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

 ops = (OperationsSessionBeanRemote)ic.lookup(OperationsSessionBeanRemote.class.getName());

 System.out.println("Loaded Calculator Bean");

 } catch (Exception ex) {

 System.out.println("Error:"

 + ex.getMessage());

 }

 }

 public void jspDestroy() {

 ops = null;

 }

%>

<%

 try {

 String s1 = request.getParameter("num1");

 String s2 = request.getParameter("num2");

 String s3 = request.getParameter("group1");

 System.out.println(s3);

 if (s1 != null && s2 != null) {

 Float num1 = new Float(s1);

 Float num2 = new Float(s2);

 if (s3.equals("add")) {

 result = ops.add(num1.floatValue(), num2.floatValue());

 } else if (s3.equals("sub")) {

 result = ops.subtract(num1.floatValue(), num2.floatValue());

 } else if (s3.equals("multi")) {

 result = ops.mutliply(num1.floatValue(), num2.floatValue());

 } else {

 result = ops.divide(num1.floatValue(), num2.floatValue());

 }

%>

<p>

 The result is: <%= result%>

<p>

 <%

 }

 }// end of try

 catch (Exception e) {

62

63

64

65

 e.printStackTrace();

 //result = "Not valid";

 }

 %>

• Right click BasicOperationsWebClient project and select Properties

• In the menu select Libraries and click Add Project and

add BasicOperationsEJBModule and BasicOperationsEJBClient projects

• Click OK.

Add Projects

9. Run the Project

You can now run the project. When you run the project, you want the browser to open to the

page with the form.jsp. You do this by specifying the URL in the Properties dialog box for

the web application. The URL is relative to the context path for the application. After you

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/22.jpg

enter the relative URL, you can build, deploy and run the application from the Projects

window.

To set the relative URL and run the application, do the following:

• In the Projects window, right-click the BasicOperationsWebClient application node

• Select Properties in the pop-up menu.

• Select Run in the Categories pane.

• In the Relative URL textfield, type /form.jsp.

• Click OK.

Specify Relative URL

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/26.jpg

form.jsp

When you submit the request Result.jsp is called to display the result

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/27.jpg

Result.jsp

10. Download the NetBeans Project

This was an example of Session bean in EJB.

Message Driven Bean

A Messaging system allows and promotes the loose coupling of components

• Allows components to post messages for other components.

• Asynchronous rather than synchronous

• Also known as MOM (Message-Oriented Middleware.

Two basic models

• Point-to-point

• Publish/subscribe

 A java API that allows applications to:

• Create

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/28.jpg

• Send

• Receive

• Read messages

In principle kind of like a news system, but doesn’t involve e-mail.

Publish /Subscribe Messaging Domain

Message Consumption

In JMS messages can be consumed in two ways:

Synchronously

A subscriber or receiver explicitly fetches a messages from the destination using the

“receive” methods

Asynchronously

A client can register a message listener (like an event listener) with a consumer.

RMI (Remote Method Invocation)

The RMI (Remote Method Invocation) is an API that provides a mechanism to create

distributed application in java. The RMI allows an object to invoke methods on an object

running in another JVM.

The RMI provides remote communication between the applications using two

objects stub and skeleton.

Understanding stub and skeleton

RMI uses stub and skeleton object for communication with the remote object.

A remote object is an object whose method can be invoked from another JVM. Let's

understand the stub and skeleton objects:

stub

The stub is an object, acts as a gateway for the client side. All the outgoing requests are routed

through it. It resides at the client side and represents the remote object. When the caller invokes

method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine (JVM),

2. It writes and transmits (marshals) the parameters to the remote Virtual Machine (JVM),

3. It waits for the result

4. It reads (unmarshals) the return value or exception, and

5. It finally, returns the value to the caller.

skeleton

The skeleton is an object, acts as a gateway for the server side object. All the incoming requests

are routed through it. When the skeleton receives the incoming request, it does the following

tasks:

1. It reads the parameter for the remote method

2. It invokes the method on the actual remote object, and

3. It writes and transmits (marshals) the result to the caller.

In the Java 2 SDK, an stub protocol was introduced that eliminates the need for

skeletons.

Understanding requirements for the distributed applications

If any application performs these tasks, it can be distributed application.

.

1. The application need to locate the remote method

2. It need to provide the communication with the remote objects, and

3. The application need to load the class definitions for the objects.

The RMI application have all these features, so it is called the distributed application.

Java RMI Example

The is given the 6 steps to write the RMI program.

1. Create the remote interface

2. Provide the implementation of the remote interface

3. Compile the implementation class and create the stub and skeleton objects using the

rmic tool

4. Start the registry service by rmiregistry tool

5. Create and start the remote application

6. Create and start the client application

RMI Example

In this example, we have followed all the 6 steps to create and run the rmi application. The

client application need only two files, remote interface and client application. In the rmi

application, both client and server interacts with the remote interface. The client application

invokes methods on the proxy object, RMI sends the request to the remote JVM. The return

value is sent back to the proxy object and then to the client application.

1) create the remote interface

For creating the remote interface, extend the Remote interface and declare the

RemoteException with all the methods of the remote interface. Here, we are creating a remote

interface that extends the Remote interface. There is only one method named add() and it

declares RemoteException.

1. import java.rmi.*;

2. public interface Adder extends Remote{

3. public int add(int x,int y)throws RemoteException;

4. }

2) Provide the implementation of the remote interface

Now provide the implementation of the remote interface. For providing the implementation of

the Remote interface, we need to

ADVERTISEMENT

o Either extend the UnicastRemoteObject class,

o or use the exportObject() method of the UnicastRemoteObject class

In case, you extend the UnicastRemoteObject class, you must define a constructor that

declares RemoteException.

1. import java.rmi.*;

2. import java.rmi.server.*;

3. public class AdderRemote extends UnicastRemoteObject implements Adder{

4. AdderRemote()throws RemoteException{

5. super();

6. }

7. public int add(int x,int y){return x+y;}

8. }

3) create the stub and skeleton objects using the rmic tool.

Next step is to create stub and skeleton objects using the rmi compiler. The rmic tool invokes

the RMI compiler and creates stub and skeleton objects.

1. rmic AdderRemote

4) Start the registry service by the rmiregistry tool

Now start the registry service by using the rmiregistry tool. If you don't specify the port number,

it uses a default port number. In this example, we are using the port number 5000.

1. rmiregistry 5000

5) Create and run the server application

Now rmi services need to be hosted in a server process. The Naming class provides methods

to get and store the remote object. The Naming class provides 5 methods.

public static java.rmi.Remote lookup(java.lang.String) throws

java.rmi.NotBoundException, java.net.MalformedURLException,

java.rmi.RemoteException;

It returns the reference of the remote

object.

public static void bind(java.lang.String, java.rmi.Remote) throws

java.rmi.AlreadyBoundException, java.net.MalformedURLException,

java.rmi.RemoteException;

It binds the remote object with the

given name.

public static void unbind(java.lang.String) throws java.rmi.RemoteException,

java.rmi.NotBoundException, java.net.MalformedURLException;

It destroys the remote object which is

bound with the given name.

public static void rebind(java.lang.String, java.rmi.Remote) throws

java.rmi.RemoteException, java.net.MalformedURLException;

It binds the remote object to the new

name.

public static java.lang.String[] list(java.lang.String) throws java.rmi.RemoteException,

java.net.MalformedURLException;

It returns an array of the names of the

remote objects bound in the registry.

In this example, we are binding the remote object by the name sonoo.

1. import java.rmi.*;

2. import java.rmi.registry.*;

3. public class MyServer{

4. public static void main(String args[]){

5. try{

6. Adder stub=new AdderRemote();

7. Naming.rebind("rmi://localhost:5000/sonoo",stub);

8. }catch(Exception e){System.out.println(e);}

9. }

10. }

6) Create and run the client application

At the client we are getting the stub object by the lookup() method of the Naming class and

invoking the method on this object. In this example, we are running the server and client

applications, in the same machine so we are using localhost. If you want to access the remote

object from another machine, change the localhost to the host name (or IP address) where the

remote object is located.

ADVERTISEMENT

1. import java.rmi.*;

2. public class MyClient{

3. public static void main(String args[]){

4. try{

5. Adder stub=(Adder)Naming.lookup("rmi://localhost:5000/sonoo");

6. System.out.println(stub.add(34,4));

7. }catch(Exception e){}

8. }

9. }

download this example of rmi

1. For running this rmi example,

2.

1) compile all the java files

javac *.java

https://static.javatpoint.com/src/rmi/rmi1.zip

2)create stub and skeleton object by rmic tool

rmic AdderRemote

3)start rmi registry in one command prompt

rmiregistry 5000

4)start the server in another command prompt

java MyServer

5)start the client application in another command prompt

java MyClient

Output of this RMI example

Meaningful example of RMI application with database

Consider a scenario, there are two applications running in different machines. Let's say

MachineA and MachineB, machineA is located in United States and MachineB in India.

MachineB want to get list of all the customers of MachineA application.

Let's develop the RMI application by following the steps.

1) Create the table

First of all, we need to create the table in the database. Here, we are using Oracle10 database.

2) Create Customer class and Remote interface

File: Customer.java

1. package com.javatpoint;

2. public class Customer implements java.io.Serializable{

3. private int acc_no;

4. private String firstname,lastname,email;

5. private float amount;

6. //getters and setters

7. }

Note: Customer class must be Serializable.

File: Bank.java

1. package com.javatpoint;

2. import java.rmi.*;

3. import java.util.*;

4. interface Bank extends Remote{

5. public List<Customer> getCustomers()throws RemoteException;

6. }

3) Create the class that provides the implementation of Remote interface

File: BankImpl.java

1. package com.javatpoint;

2. import java.rmi.*;

3. import java.rmi.server.*;

4. import java.sql.*;

5. import java.util.*;

6. class BankImpl extends UnicastRemoteObject implements Bank{

7. BankImpl()throws RemoteException{}

8.

9. public List<Customer> getCustomers(){

10. List<Customer> list=new ArrayList<Customer>();

11. try{

12. Class.forName("oracle.jdbc.driver.OracleDriver");

13. Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","oracle");

14. PreparedStatement ps=con.prepareStatement("select * from customer400");

15. ResultSet rs=ps.executeQuery();

16.

17. while(rs.next()){

18. Customer c=new Customer();

19. c.setAcc_no(rs.getInt(1));

20. c.setFirstname(rs.getString(2));

21. c.setLastname(rs.getString(3));

22. c.setEmail(rs.getString(4));

23. c.setAmount(rs.getFloat(5));

24. list.add(c);

25. }

26.

27. con.close();

28. }catch(Exception e){System.out.println(e);}

29. return list;

30. }//end of getCustomers()

31. }

4) Compile the class rmic tool and start the registry service by rmiregistry tool

5) Create and run the Server

File: MyServer.java

1. package com.javatpoint;

2. import java.rmi.*;

3. public class MyServer{

4. public static void main(String args[])throws Exception{

5. Remote r=new BankImpl();

6. Naming.rebind("rmi://localhost:6666/javatpoint",r);

7. }}

6) Create and run the Client

File: MyClient.java

1. package com.javatpoint;

2. import java.util.*;

3. import java.rmi.*;

4. public class MyClient{

5. public static void main(String args[])throws Exception{

6. Bank b=(Bank)Naming.lookup("rmi://localhost:6666/javatpoint");

7.

8. List<Customer> list=b.getCustomers();

9. for(Customer c:list){

10. System.out.println(c.getAcc_no()+" "+c.getFirstname()+" "+c.getLastname()

11. +" "+c.getEmail()+" "+c.getAmount());

12. }

13.

14. }}

RMI-IIOP

RMI-IIOP is another development framework that is used for developing applications based

on the Distributed Object Model. This framework enhances the standard RMI to work with the

Internet Inter-ORB Protocol (IIOP). Since IIOP is the communication protocol of CORBA, you

can use the RMI-IIOP to connect your Java remote objects to CORBA clients. It also works

well for Java-to-Java objects communication over IIOP.

CORBA technology provides a language-independent approach to the communication of

distributed objects. It uses entities, called Object Request Brokers (ORB), to transmit requests

from the client to the server, and return the results from the request back to the client. These

ORBs must support the Object by Value and Java to IDL mapping CORBA standards. By

imposing those standards and introducing Interface Definition Language (IDL), CORBA

provides interoperability between ORB implementations from different vendors.

The RMI-IIOP framework actually brings together those interoperability features of CORBA

and the ease-of-use features of RMI.

The RMI-IIOP functions are logically concentrated into the J2EE Engine’s IIOP Provider

Service.

https://help.sap.com/saphelp_snc70/helpdata/DE/a4/38de11fc7d7b42a18c1a244b973b0e/content.htm

RMI-IIOP Objects Communication

The process of communication between the client and the server parts of an RMI-IIOP

application is similar to that of RMI-P4 objects. The client obtains a reference to the server-

side object and calls remote methods on it. The call is transmitted by the IIOP protocol. RMI-

IIOP uses stubs and ties to facilitate remote communication between the remote objects.

Remote Objects Communication in RMI-IIOP

Definition of RMI-IIOP Stubs and Ties

The stub is a class that extends javax.rmi.CORBA.Stub and implements the remote interface.

A tie is a class that extends org.omg.CORBA_2_3.portableObjectImpl and

implements javax.rmi.CORBA.Tie. The stub is the implementation of the interface that is

passed to the client, and the tie is the server-side class. Both classes facilitate communication

between the client and the server-side object.

UNIT-III

JDBC stands for Java Database Connectivity. JDBC is a Java API to connect and execute the

query with the database. It is a part of JavaSE (Java Standard Edition). JDBC API uses JDBC

drivers to connect with the database. There are four types of JDBC drivers:

o JDBC-ODBC Bridge Driver,

o Native Driver,

o Network Protocol Driver, and

o Thin Driver

We have discussed the above four drivers in the next chapter.

We can use JDBC API to access tabular data stored in any relational database. By the help of

JDBC API, we can save, update, delete and fetch data from the database. It is like Open

Database Connectivity (ODBC) provided by Microsoft.

The current version of JDBC is 4.3. It is the stable release since 21st September, 2017. It is

based on the X/Open SQL Call Level Interface. The java.sql package contains classes and

interfaces for JDBC API. A list of popular interfaces of JDBC API are given below:

o Driver interface

o Connection interface

o Statement interface

o PreparedStatement interface

o CallableStatement interface

o ResultSet interface

o ResultSetMetaData interface

o DatabaseMetaData interface

o RowSet interface

A list of popular classes of JDBC API are given below:

o DriverManager class

o Blob class

o Clob class

o Types class

Why Should We Use JDBC

Before JDBC, ODBC API was the database API to connect and execute the query with the

database. But, ODBC API uses ODBC driver which is written in C language (i.e. platform

dependent and unsecured). That is why Java has defined its own API (JDBC API) that uses

JDBC drivers (written in Java language).

We can use JDBC API to handle database using Java program and can perform the following

activities:

1. Connect to the database

2. Execute queries and update statements to the database

3. Retrieve the result received from the database.

ADVERTISEMENT

Do You Know

o How to connect Java application with Oracle and Mysql database using JDBC?

o What is the difference between Statement and PreparedStatement interface?

o How to print total numbers of tables and views of a database using JDBC?

o How to store and retrieve images from Oracle database using JDBC?

o How to store and retrieve files from Oracle database using JDBC?

What is API

API (Application programming interface) is a document that contains a description of all the

features of a product or software. It represents classes and interfaces that software programs

can follow to communicate with each other. An API can be created for applications, libraries,

operating systems, etc.

JDBC Driver

1. JDBC Drivers

1. JDBC-ODBC bridge driver

2. Native-API driver

3. Network Protocol driver

4. Thin driver

https://www.javatpoint.com/jdbc-driver
https://www.javatpoint.com/jdbc-driver#driver1
https://www.javatpoint.com/jdbc-driver#driver2
https://www.javatpoint.com/jdbc-driver#driver3
https://www.javatpoint.com/jdbc-driver#driver4

JDBC Driver is a software component that enables java application to interact with the database. There are 4 types of JDBC drivers:

1. JDBC-ODBC bridge driver

2. Native-API driver (partially java driver)

3. Network Protocol driver (fully java driver)

4. Thin driver (fully java driver)

1) JDBC-ODBC bridge driver

The JDBC-ODBC bridge driver uses ODBC driver to connect to the database. The JDBC-ODBC bridge driver converts JDBC

method calls into the ODBC function calls. This is now discouraged because of thin driver.

In Java 8, the JDBC-ODBC Bridge has been removed.

Oracle does not support the JDBC-ODBC Bridge from Java 8. Oracle recommends that you

use JDBC drivers provided by the vendor of your database instead of the JDBC-ODBC Bridge.

Advantages:

ADVERTISEMENT

o easy to use.

o can be easily connected to any database.

Disadvantages:

o Performance degraded because JDBC method call is converted into the ODBC function

calls.

o The ODBC driver needs to be installed on the client machine.

2) Native-API driver

The Native API driver uses the client-side libraries of the database. The driver converts JDBC method calls into native calls of the

database API. It is not written entirely in java.

Advantage:

o performance upgraded than JDBC-ODBC bridge driver.

Disadvantage:

o The Native driver needs to be installed on the each client machine.

o The Vendor client library needs to be installed on client machine.

3) Network Protocol driver

The Network Protocol driver uses middleware (application server) that converts JDBC calls

directly or indirectly into the vendor-specific database protocol. It is fully written in java.

Advantage:

o No client side library is required because of application server that can perform many

tasks like auditing, load balancing, logging etc.

Disadvantages:

o Network support is required on client machine.

o Requires database-specific coding to be done in the middle tier.

o Maintenance of Network Protocol driver becomes costly because it requires database-

specific coding to be done in the middle tier.

4) Thin driver

The thin driver converts JDBC calls directly into the vendor-specific database protocol. That is why it is known as thin driver. It is

fully written in Java language.

Advantage:

o Better performance than all other drivers.

o No software is required at client side or server side.

Disadvantage:

o Drivers depend on the Database.

Java Database Connectivity with MySQL

To connect Java application with the MySQL database, we need to follow 5 following steps.

In this example we are using MySql as the database. So we need to know following

informations for the mysql database:

1. Driver class: The driver class for the mysql database is com.mysql.jdbc.Driver.

2. Connection URL: The connection URL for the mysql database

is jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql is the database,

localhost is the server name on which mysql is running, we may also use IP address,

3306 is the port number and sonoo is the database name. We may use any database, in

such case, we need to replace the sonoo with our database name.

3. Username: The default username for the mysql database is root.

4. Password: It is the password given by the user at the time of installing the mysql

database. In this example, we are going to use root as the password.

Let's first create a table in the mysql database, but before creating table, we need to create

database first.

1. create database sonoo;

2. use sonoo;

3. create table emp(id int(10),name varchar(40),age int(3));

Example to Connect Java Application with mysql database

In this example, sonoo is the database name, root is the username and password both.

1. import java.sql.*;

2. class MysqlCon{

3. public static void main(String args[]){

4. try{

5. Class.forName("com.mysql.jdbc.Driver");

6. Connection con=DriverManager.getConnection(

7. "jdbc:mysql://localhost:3306/sonoo","root","root");

8. //here sonoo is database name, root is username and password

9. Statement stmt=con.createStatement();

10. ResultSet rs=stmt.executeQuery("select * from emp");

11. while(rs.next())

12. System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

13. con.close();

14. }catch(Exception e){ System.out.println(e);}

15. }

16. }

download this example

The above example will fetch all the records of emp table.

To connect java application with the mysql database, mysqlconnector.jar file is required to

be loaded.

download the jar file mysql-connector.jar

https://static.javatpoint.com/src/jdbc/MysqlCon.zip
https://static.javatpoint.com/src/jdbc/mysql-connector.jar

Two ways to load the jar file:

1. Paste the mysqlconnector.jar file in jre/lib/ext folder

2. Set classpath

1) Paste the mysqlconnector.jar file in JRE/lib/ext folder:

Download the mysqlconnector.jar file. Go to jre/lib/ext folder and paste the jar file here.

2) Set classpath:

There are two ways to set the classpath:

o temporary

o permanent

How to set the temporary classpath

open command prompt and write:

1. C:>set classpath=c:\folder\mysql-connector-java-5.0.8-bin.jar;.;

How to set the permanent classpath

Go to environment variable then click on new tab. In variable name write classpath and in

variable value paste the path to the mysqlconnector.jar file by appending mysqlconnector.jar;.;

as C:\folder\mysql-connector-java-5.0.8-bin.jar;.;

Solution

Following example uses inner join sql command to combine data from two tables. To display

the contents of the table getString() method of resultset is used.

import java.sql.*;

public class jdbcConn {

 public static void main(String[] args) throws Exception {

 Class.forName("org.apache.derby.jdbc.ClientDriver");

 Connection con = DriverManager.getConnection (

 "jdbc:derby://localhost:1527/testDb","username", "password");

 Statement stmt = con.createStatement();

 String query ="SELECT fname,lname,isbn from author inner join books on

author.AUTHORID = books.AUTHORID";

 ResultSet rs = stmt.executeQuery(query);

 System.out.println("Fname Lname ISBN");

 while (rs.next()) {

 String fname = rs.getString("fname");

 String lname = rs.getString("lname");

 int isbn = rs.getInt("isbn");

 System.out.println(fname + " " + lname+" "+isbn);

 }

 System.out.println();

 System.out.println();

 }

}

Result

The above code sample will produce the following result. The result may vary.

Fname Lname ISBN

john grisham 123

jeffry archer 113

jeffry archer 112

jeffry archer 122

JDBC Transaction Management

The sequence of actions (SQL statements) is treated as a single unit that is known as a

transaction. Transaction Management is important for RDBMS-oriented applications to

maintain data integrity and consistency.

While performing the transaction, we will use getXXX and setXXX methods to retrieve and

set the data in the ResultSet object. XXX represents the data types of the columns. We will

discuss the transaction and data types of JDBC in this tutorial.

Transaction Types

In JDBC every SQL query will be considered as a transaction. When we create

a Database connection in JDBC, it will run in auto-commit mode (auto-commit value is

TRUE). After the execution of the SQL statement, it will be committed automatically.

Sometimes, we may want to commit the transaction after the execution of some

more SQL statements. At that time, we need to set the auto-commit value to False. So that

data won’t be committed before executing all the queries. If we get an exception in the

transaction, we can rollback() changes and make it like before. Transaction Management can

be explained well – using ACID properties.

ACID means

• A–Atomicity -> If all queries are executed successfully, data will be

committed, else won’t.

• C–Consistency -> DB must be in a consistent state after any transaction.

• I– Isolation -> Transaction is isolated from other transactions.

• D–Durability -> If the transaction is committed once, it will remain always

committed.

There are three most important functions in Transaction Management. They are:

https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/

• Commit: After the execution of the SQL statements, we want to make the

changes permanent in the Database. We should call the commit() method.

Normally, what is commit means it will make the changes permanently in

the Database. We can’t undo/ revoke the changes. But we can change the data

in the Database.

• Rollback: Rollback undoes the changes till the last commit or mentioned

savepoint. Sometimes we may want to undo the changes. For example, we

have one nested query, one part has been executed successfully, and the other

has thrown some exception. At that time, we want to undo the changes done

by the first part, we should call Rollback() method to do that if an exception

has occurred.

• Savepoint: Savepoint helps to create checkpoint in a transaction and it allows

to perform a rollback to that particular savepoint. Any savepoint that has been

created for a transaction will be automatically destroyed and become invalid

once the transaction is committed or rolled back.

Till now we have seen what is commit, rollback, and savepoint and its operations. Below, we

will see the methods of it and how to use it in the program.

Methods Of Transaction Management

The connection interface provides 5 methods for transaction management. They are as

follows:

#1) setAutoCommit() Method

By default, the value of AutoCommit value is TRUE. After the execution of

the SQL statement, it will be committed automatically. By using the setAutoCommit()

method we can set the value to AutoCommit.

#2) Commit() Method

The commit method is used to commit the data. After the execution of the SQL statement,

we can call the commit(). It will commit the changes which are made by the SQL statement.

Syntax: conn.commit();

#3) Rollback() Method

The rollback method is used to undo the changes till the last commit has happened. If we face

any issue or exception in the execution flow of the SQL statements, we may roll back the

transaction.

Syntax: conn.rollback();

#4) setSavepoint() Method

Savepoint gives you additional control over the transaction. When you set a savepoint in the

transaction (a group of SQL statements), you can use the rollback() method to undo all the

changes till the savepoint or after the savepoint(). setSavepoint() method is used to create a

new savepoint.

#5) releaseSavepoint() Method

It is used to delete the created savepoint.

In the below program, you will get to know more about these methods and will also learn

how to use it in the Java program.

1. import java.sql.*;

https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/
https://www.softwaretestinghelp.com/jdbc-transaction-management/

2. class FetchRecords{

3. public static void main(String args[])throws Exception{

4. Class.forName("oracle.jdbc.driver.OracleDriver");

5. Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe

","system","oracle");

6. con.setAutoCommit(false);

7.

8. Statement stmt=con.createStatement();

9. stmt.executeUpdate("insert into user420 values(190,'abhi',40000)");

10. stmt.executeUpdate("insert into user420 values(191,'umesh',50000)");

11.

12. con.commit();

13. con.close();

14. }}

If you see the table emp400, you will see that 2 records has been added.

Lesson: Naming and Directory Concepts

Naming Concepts

A fundamental facility in any computing system is the naming service--the means by which

names are associated with objects and objects are found based on their names. When using

almost any computer program or system, you are always naming one object or another. For

example, when you use an electronic mail system, you must provide the name of the

recipient. To access a file in the computer, you must supply its name. A naming service

allows you to look up an object given its name.

A naming service's primary function is to map people friendly names to objects, such as

addresses, identifiers, or objects typically used by computer programs.

For example, the Internet Domain Name System (DNS) maps machine names to IP

Addresses:

www.example.com ==> 192.0.2.5

A file system maps a filename to a file reference that a program can use to access the contents

of the file.

c:\bin\autoexec.bat ==> File Reference

These two examples also illustrate the wide range of scale at which naming services exist—

from naming an object on the Internet to naming a file on the local file system.

Names

To look up an object in a naming system, you supply it the name of the object. The naming

system determines the syntax that the name must follow. This syntax is sometimes called the

naming systems naming convention. A name is made up components. A name's

representation consist of a component separator marking the components of the name.

Naming System Component Separator Names

UNIX file system "/" /usr/hello

DNS "." sales.Wiz.COM

LDAP "," and "=" cn=Rosanna Lee, o=Sun, c=US

The UNIX file system's naming convention is that a file is named from its path relative to the

root of the file system, with each component in the path separated from left to right using the

forward slash character ("/"). The UNIX pathname, /usr/hello, for example, names a

file hello in the file directory usr, which is located in the root of the file system.

DNS naming convention calls for components in the DNS name to be ordered from right to

left and delimited by the dot character ("."). Thus the DNS name sales.Wiz.COM names a

DNS entry with the name sales, relative to the DNS entry Wiz.COM. The DNS

entry Wiz.COM, in turn, names an entry with the name Wiz in the COM entry.

The Lightweight Directory Access Protocol (LDAP) naming convention orders components

from right to left, delimited by the comma character (","). Thus the LDAP name cn=Rosanna

Lee, o=Sun, c=US names an LDAP entry cn=Rosanna Lee, relative to the entry o=Sun,

which in turn, is relative to c=us. LDAP has the further rule that each component of the name

must be a name/value pair with the name and value separated by an equals character ("=").

Bindings

The association of a name with an object is called a binding. A file name is bound to a file.

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc2251.txt

The DNS contains bindings that map machine names to IP addresses. An LDAP name is

bound to an LDAP entry.

References and Addresses

Depending on the naming service, some objects cannot be stored directly by the naming

service; that is, a copy of the object cannot be placed inside the naming service. Instead, they

must be stored by reference; that is, a pointer or reference to the object is placed inside the

naming service. A reference represents information about how to access an object. Typically,

it is a compact representation that can be used to communicate with the object, while the

object itself might contain more state information. Using the reference, you can contact the

object and obtain more information about the object.

For example, an airplane object might contain a list of the airplane's passengers and crew, its

flight plan, and fuel and instrument status, and its flight number and departure time. By

contrast, an airplane object reference might contain only its flight number and departure time.

The reference is a much more compact representation of information about the airplane

object and can be used to obtain additional information. A file object, for example, is

accessed using a file reference. A printer object, for example, might contain the state of the

printer, such as its current queue and the amount of paper in the paper tray. A printer object

reference, on the other hand, might contain only information on how to reach the printer, such

as its print server name and printing protocol.

Although in general a reference can contain any arbitrary information, it is useful to refer to

its contents as addresses (or communication end points): specific information about how to

access the object.

For simplicity, this tutorial uses "object" to refer to both objects and object references when a

distinction between the two is not required.

Context

A context is a set of name-to-object bindings. Every context has an associated naming

convention. A context always provides a lookup (resolution) operation that returns the object,

it typically also provides operations such as those for binding names, unbinding names, and

listing bound names. A name in one context object can be bound to another context object

(called a subcontext) that has the same naming convention.

A file directory, such as /usr, in the UNIX file system represents a context. A file directory

named relative to another file directory represents a subcontext (UNIX users refer to this as

a subdirectory). That is, in a file directory /usr/bin, the directory bin is a subcontext of usr. A

DNS domain, such as COM, represents a context. A DNS domain named relative to another

DNS domain represents a subcontext. For the DNS domain Sun.COM, the DNS

domain Sun is a subcontext of COM.

Finally, an LDAP entry, such as c=us, represents a context. An LDAP entry named relative to

another LDAP entry represents a subcontext. For the LDAP entry o=sun,c=us, the

entry o=sun is a subcontext of c=us.

Naming Systems and Namespaces

A naming system is a connected set of contexts of the same type (they have the same naming

convention) and provides a common set of operations.

A system that implements the DNS is a naming system. A system that communicates using

the LDAP is a naming system.

A naming system provides a naming service to its customers for performing naming-related

operations. A naming service is accessed through its own interface. The DNS offers a naming

service that maps machine names to IP addresses. LDAP offers a naming service that maps

LDAP names to LDAP entries. A file system offers a naming service that maps filenames to

files and directories.

A namespace is the set of all possible names in a naming system. The UNIX file system has a

namespace consisting of all of the names of files and directories in that file system. The DNS

namespace contains names of DNS domains and entries. The LDAP namespace contains

names of LDAP entries.

Directory Concepts

Many naming services are extended with a directory service. A directory service associates

names with objects and also associates such objects with attributes.

directory service = naming service + objects containing attributes

You not only can look up an object by its name but also get the object's attributes

or search for the object based on its attributes.

An example is the telephone company's directory service. It maps a subscriber's name to his

address and phone number. A computer's directory service is very much like a telephone

company's directory service in that both can be used to store information such as telephone

numbers and addresses. The computer's directory service is much more powerful, however,

because it is available online and can be used to store a variety of information that can be

utilized by users, programs, and even the computer itself and other computers.

A directory object represents an object in a computing environment. A directory object can

be used, for example, to represent a printer, a person, a computer, or a network. A directory

object contains attributes that describe the object that it represents.

Attributes

A directory object can have attributes. For example, a printer might be represented by a

directory object that has as attributes its speed, resolution, and color. A user might be

represented by a directory object that has as attributes the user's e-mail address, various

telephone numbers, postal mail address, and computer account information.

An attribute has an attribute identifier and a set of attribute values. An attribute identifier is a

token that identifies an attribute independent of its values. For example, two different

computer accounts might have a "mail" attribute; "mail" is the attribute identifier. An

attribute value is the contents of the attribute. The email address, for example, might have:

Attribute Identifier : Attribute Value

 mail john.smith@example.com

Directories and Directory Services

A directory is a connected set of directory objects. A directory service is a service that

provides operations for creating, adding, removing, and modifying the attributes associated

with objects in a directory. The service is accessed through its own interface.

Many examples of directory services are possible.

Network Information Service (NIS)

NIS is a directory service available on the UNIX operating system for storing system-

related information, such as that relating to machines, networks, printers, and users.

Oracle Directory Server

The Oracle Directory Server is a general-purpose directory service based on the

Internet standard LDAP.

Search Service

You can look up a directory object by supplying its name to the directory service.

Alternatively, many directories, such as those based on the LDAP, support the notion

of searches. When you search, you can supply not a name but a query consisting of a logical

expression in which you specify the attributes that the object or objects must have. The query

is called a search filter. This style of searching is sometimes called reverse lookup or content-

http://www.oracle.com/technetwork/testcontent/index-085178.html
http://www.ietf.org/rfc/rfc2251.txt

based searching. The directory service searches for and returns the objects that satisfy the

search filter.

For example, you can query the directory service to find:

• all users that have the attribute "age" greater than 40 years.

• all machines whose IP address starts with "192.113.50".

Combining Naming and Directory Services

Directories often arrange their objects in a hierarchy. For example, the LDAP arranges

all directory objects in a tree, called a directory information tree (DIT). Within the

DIT, an organization object, for example, might contain group objects that might in

turn contain person objects. When directory objects are arranged in this way, they play

the role of naming contexts in addition to that of containers of attributes.

« Previous • Trail • Next »

Lesson: Overview of JNDI

The Java Naming and Directory Interface™ (JNDI) is an application programming interface

(API) that provides naming and directory functionality to applications written using the

Java™ programming language. It is defined to be independent of any specific directory

service implementation. Thus a variety of directories -new, emerging, and already deployed

can be accessed in a common way.

Architecture

The JNDI architecture consists of an API and a service provider interface (SPI). Java

applications use the JNDI API to access a variety of naming and directory services. The SPI

enables a variety of naming and directory services to be plugged in transparently, thereby

allowing the Java application using the JNDI API to access their services. See the following

figure:

https://docs.oracle.com/javase/tutorial/jndi/concepts/index.html
https://docs.oracle.com/javase/tutorial/jndi/TOC.html
https://docs.oracle.com/javase/tutorial/jndi/overview/index.html
https://docs.oracle.com/javase/tutorial/jndi/overview/naming.html
https://docs.oracle.com/javase/tutorial/jndi/overview/dir.html

Packaging

JNDI is included in the Java SE Platform. To use the JNDI, you must have the JNDI classes

and one or more service providers. The JDK includes service providers for the following

naming/directory services:

• Lightweight Directory Access Protocol (LDAP)

• Common Object Request Broker Architecture (CORBA) Common Object Services

(COS) name service

• Java Remote Method Invocation (RMI) Registry

• Domain Name Service (DNS)

Other service providers can be downloaded from the JNDI page or obtained from other

vendors.

The JNDI is divided into five packages:

• javax.naming

• javax.naming.directory

• javax.naming.ldap

• javax.naming.event

• javax.naming.spi

The next part of the lesson has a brief description of the JNDI packages.

What is JNDI in Java

The interface used by the Java programming language is by the name Java Naming and

Directory Interface (JNDI). It is an API (application programming interface) that

communicates with servers and uses naming conventions to get files from databases. A word

or a single phrase might serve as the naming convention.

It can also be added to a socket in order to use servers that transfer flat files or data files in a

project to perform socket programming. In browsers with a lot of directories, it can also be

used on web pages. Using the Java programming language, JNDI gives Java users the ability

to search Java objects.

The architecture of JNDI in the Java Interface:

The Service Provider Interface (SPI) which is made up of an API and an interface known as

JNDI.

http://www.oracle.com/technetwork/java/jndi/index.html
https://docs.oracle.com/javase/tutorial/jndi/overview/naming.html
https://docs.oracle.com/javase/tutorial/jndi/overview/dir.html
https://docs.oracle.com/javase/tutorial/jndi/overview/dir.html
https://docs.oracle.com/javase/tutorial/jndi/overview/event.html
https://docs.oracle.com/javase/tutorial/jndi/overview/event.html

JNDI, is visible in the architecture as a series of various directories. There is a connection

between the Java program and the JNDI architecture, as seen in this diagram. Since the

interface is used to connect to many directories, the levels make it apparent that the JNDI API

is above it. The following lists a few of the directory services.

o Domain name service

o Lightweight Directory Access Protocol.

o Remote Method Invocation in Java

The JNDI SPI connects with the directories listed above to create a platform with the JNDI

implementation choices.

JNDI Packages:

In Java, JNDI SPI is specifically used by five packages. Some of the packages use the

javax.naming language. There are classes and interfaces for name service access in the package

known as javax.naming. Lookup, list Bindings, and Name are a few of the available functions.

Java.naming.directory is the second one. This package is a more sophisticated version of

Java.naming directory that helps in obtaining the data as objects. The packages java. Naming.

event and Java. naming. spi are two more examples.

Additionally, JNDI is a key component of three of the newest Java technologies. They are

as follows:

o The Java Database Connectivity (JDBC) package

o The Java Messaging Service (JMS)

o Enterprise Java Beans (EJB)

In the Java programming language, there are two functions called bind() and lookup() that are

used to name objects and look them up in directories, respectively.

Context.bind("name", object)

Any name can be given to the current object in the directory in this case by changing the name.

In this instance of the bind function, the object's name has been set.

Object hello= Context.lookup("name")

The hello object in this function searches the directory for the item's name. Depending on the

type of directory supported, different types of serialized or non-serialized data are also used.

Example of JNDI Interface in Java:

This program, which operates through a menu system, asks the user to input the principal

amount before printing the simple interest, compound interest, and the difference between the

simple and compound interest based on the user's preferences.

Additionally, the program ends if the user decides not to utilize it any further. The amount of

time it takes for interest to start accruing is 7 years, and the rate of interest is fixed at 8.5 percent.

All interest rates are calculated as a result.

The development of a menu-driven application that allows users to enter a principal amount

and calculate simple interest, compound interest, and the absolute difference between the two.

Implementation:

FileName: JndiExample.java

1. import java.util.*;

2. import java.io.*;

3. public class JndiExample

4. {

5. public static void main(String[] args) throws Exception

6. {

7. BufferedReader ob = new BufferedReader(new InputStreamReader(System.in));

8. System.out.print("Enter the Principal Amount : ");

9. float P = Float.parseFloat(ob.readLine());

10. int ch = 0;

11. do

12. {

13. ch = 0;

14. // Resetting the selection made by the user

15. // showing the menu of options

16. System.out.println("------------- M E N U ----------------");

17. System.out.println("1 - To Find the Simple Interest amount");

18. System.out.println("2 - To Find the Compound Interest amount");

19. System.out.println("3 - To Determine the Simple Interest and Compound Inter

est Difference ");

20. System.out.println("4 - To quit the program's operation");

21. System.out.print("Enter the user's Choice : ");

22. ch = Integer.parseInt(ob.readLine());

23. System.out.println("");

24. switch(ch)

25. {

26. case 1://for the case simple interest

27. System.out.println("The Simple Interest is Rs."+simple(P));

28. break;

29. case 2://for the case compound interset

30. System.out.println("The Compound Interest is Rs."+compound(P));

31. break;

32. case 3://for the case difference between simple and compound interests

33. System.out.println("The Absolute Difference is Rs."+(compound(P)-

simple(P)));

34. break;

35. case 4:

36. System.out.println("Program Terminated");

37. break;

38. default:

39. System.out.println("Invalid Option");

40. }

41. System.out.println("\n");

42. }while(ch!=4);

43. }

44. public static float simple(float p)//to calculate the simple interest

45. {

46. return (float)((p*8.5*7.0)/100.0); //returning the simple interest

47. }

48. public static float compound(float p)//to calculate the compound interest

49. {

50. return (p*(float)(Math.pow((1.0+(8.5/100.0)),7.0)-

1.0));//returning the compound interest

51. }

52. }

Output:

Benefits of JNDI Interface in Java:

The advantages of a JNDI naming service include:

o You don't need to understand how the data from your application is stored in a directory

service to create programs using JNDI APIs.

o As long as the resources are reachable from a JNDI directory, you can develop code to

retrieve data on a single machine or across numerous systems.

o Any programming language that offers a JNDI API can be used to create programs

utilizing JNDI.

o Standardizes the configuration of database connections.

o Enables the use of password encryption (passwords are currently stored as clear text

strings). See Encrypting Passwords in Tomcat for more on encrypting your database

passwords.

o Allows more fine-grained control over database connection pooling settings.

Limitations of JNDI Interface in Java:

JNDI has some restrictions and, regrettably, is not intended for high-performance

environments:

o Data like configuration information does not fit into this paradigm since only specific

sorts of data can be stored using the standard set mechanism offered by JNDI.

o The provision does not cover transactions.

o Although some implementations offer APIs to build up SSL connections to directory

servers, there is no built-in security model.

UNIT-IV

Servlets

Servlet technology is used to create a web application (resides at server side and generates a

dynamic web page).

Servlet technology is robust and scalable because of java language. Before Servlet, CGI

(Common Gateway Interface) scripting language was common as a server-side programming

language. However, there were many disadvantages to this technology. We have discussed

these disadvantages below.

There are many interfaces and classes in the Servlet API such as Servlet, GenericServlet,

HttpServlet, ServletRequest, ServletResponse, etc.

What is a Servlet?

Servlet can be described in many ways, depending on the context.

o Servlet is a technology which is used to create a web application.

o Servlet is an API that provides many interfaces and classes including documentation.

o Servlet is an interface that must be implemented for creating any Servlet.

o Servlet is a class that extends the capabilities of the servers and responds to the

incoming requests. It can respond to any requests.

o Servlet is a web component that is deployed on the server to create a dynamic web page.

What is a web application?

A web application is an application accessible from the web. A web application is composed

of web components like Servlet, JSP, Filter, etc. and other elements such as HTML, CSS, and

JavaScript. The web components typically execute in Web Server and respond to the HTTP

request.

SERVER SIDE PROGRAMMING

Servlets - Introduction to servlets - Servlets life cycle - Java Server Pages (JSP):

Introduction, Java Server Pages Overview, First Java Server Page Example, Implicit

Objects, Scripting, Standard Actions, Directives, Custom Tag Libraries

CGI (Common Gateway Interface)

CGI technology enables the web server to call an external program and pass HTTP

request information to the external program to process the request. For each request, it

starts a new proce Servlets Packages

Java Servlets are Java classes run by a web server that has an interpreter that supports the Java

Servlet specification.

Servlets can be created using the javax.servlet and javax.servlet.http packages, which are a

standard part of the Java's enterprise edition, an expanded version of the Java class library that

supports large-scale development projects.

These classes implement the Java Servlet and JSP specifications. At the time of writing this

tutorial, the versions are Java Servlet 2.5 and JSP 2.1.

Java servlets have been created and compiled just like any other Java class. After you install

the servlet packages and add them to your computer's Classpath, you can compile servlets with

the JDK's Java compiler or any other current compiler.

Disadvantages of CGI

There are many problems in CGI technology:

1. If the number of clients increases, it takes more time for sending the response.

2. For each request, it starts a process, and the web server is limited to start processes.

3. It uses platform dependent language e.g. C, C++, perl.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/perl-tutorial

Advantages of Servlet

There are many advantages of Servlet over CGI. The web container creates threads for handling

the multiple requests to the Servlet. Threads have many benefits over the Processes such as

they share a common memory area, lightweight, cost of communication between the threads

are low. The advantages of Servlet are as follows:

1. Better performance: because it creates a thread for each request, not process.

2. Portability: because it uses Java language.

3. Robust: JVM manages Servlets, so we don't need to worry about the memory

leak, garbage collection, etc.

4. Secure: because it uses java language.

Life Cycle of a Servlet (Servlet Life Cycle)

The web container maintains the life cycle of a servlet instance. Let's see the life cycle of the

servlet:

1. Servlet class is loaded.

2. Servlet instance is created.

3. init method is invoked.

4. service method is invoked.

5. destroy method is invoked.

https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/Garbage-Collection

As displayed in the above diagram, there are three states of a servlet: new, ready and end. The

servlet is in new state if servlet instance is created. After invoking the init() method, Servlet

comes in the ready state. In the ready state, servlet performs all the tasks. When the web

container invokes the destroy() method, it shifts to the end state.

1) Servlet class is loaded

The classloader is responsible to load the servlet class. The servlet class is loaded when the

first request for the servlet is received by the web container.

2) Servlet instance is created

The web container creates the instance of a servlet after loading the servlet class. The servlet

instance is created only once in the servlet life cycle.

3) init method is invoked

The web container calls the init method only once after creating the servlet instance. The init

method is used to initialize the servlet. It is the life cycle method of the javax.servlet.Servlet

interface. Syntax of the init method is given below:

1. public void init(ServletConfig config) throws ServletException

4) service method is invoked

The web container calls the service method each time when request for the servlet is received.

If servlet is not initialized, it follows the first three steps as described above then calls the

service method. If servlet is initialized, it calls the service method. Notice that servlet is

initialized only once. The syntax of the service method of the Servlet interface is given below:

1. public void service(ServletRequest request, ServletResponse response)

2. throws ServletException, IOException

5) destroy method is invoked

The web container calls the destroy method before removing the servlet instance from the

service. It gives the servlet an opportunity to clean up any resource for example memory, thread

etc. The syntax of the destroy method of the Servlet interface is given below:

1. public void destroy()

Servlets Packages

Java Servlets are Java classes run by a web server that has an interpreter that supports the

Java Servlet specification.

Servlets can be created using the javax.servlet and javax.servlet.http packages, which are a

standard part of the Java's enterprise edition, an expanded version of the Java class library

that supports large-scale development projects.

These classes implement the Java Servlet and JSP specifications. At the time of writing this

tutorial, the versions are Java Servlet 2.5 and JSP 2.1.

Java servlets have been created and compiled just like any other Java class. After you install

the servlet packages and add them to your computer's Classpath, you can compile servlets

with the JDK's Java compiler or any other current compiler.

like any other Java program, you need to compile a servlet by using the Java

compiler javac and after compilation the servlet application, it would be deployed in a

configured environment to test and run..

This development environment setup involves the following steps −

Setting up Java Development Kit

This step involves downloading an implementation of the Java Software Development Kit

(SDK) and setting up PATH environment variable appropriately.

Setting up Web Server − Tomcat

A number of Web Servers that support servlets are available in the market. Some web servers

are freely downloadable and Tomcat is one of them.

Apache Tomcat is an open source software implementation of the Java Servlet and Java Server

Pages technologies and can act as a standalone server for testing servlets and can be integrated

with the Apache Web Server. Here are the steps to setup Tomcat on your machine −

After startup, the default web applications included with Tomcat will be available by

visiting http://localhost:8080/. If everything is fine then it should display following result –

Life Cycle of a Servlet (Servlet Life Cycle)

A servlet life cycle can be defined as the entire process from its creation till the destruction.

The following are the paths followed by a servlet.

● The servlet is initialized by calling the init() method.

● The servlet calls service() method to process a client's request.

● The servlet is terminated by calling the destroy() method.

● Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in detail.

The init() Method

The init method is called only once. It is called only when the servlet is created, and not

called for any user requests afterwards. So, it is used for one-time initializations, just as with

the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the servlet,

but you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each user

request resulting in a new thread that is handed off to doGet or doPost as appropriate. The

init() method simply creates or loads some data that will be used throughout the life of the

servlet.

The init method definition looks like this −

public void init() throws ServletException {

 // Initialization code...

}

The service() Method

The service() method is the main method to perform the actual task. The servlet container

(i.e. web server) calls the service() method to handle requests coming from the client(

browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and calls

service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE,

etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method −

public void service(ServletRequest request, ServletResponse response)

 throws ServletException, IOException {

}

The service () method is called by the container and service method invokes doGet, doPost,

doPut, doDelete, etc. methods as appropriate. So you have nothing to do with service()

method but you override either doGet() or doPost() depending on what type of request you

receive from the client.

The doGet() and doPost() are most frequently used methods with in each service request.

Here is the signature of these two methods.

The doGet() Method

A GET request results from a normal request for a URL or from an HTML form that has no

METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The doPost() Method

A POST request results from an HTML form that specifically lists POST as the METHOD

and it should be handled by doPost() method.

public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The destroy() Method

The destroy() method is called only once at the end of the life cycle of a servlet. This method

gives your servlet a chance to close database connections, halt background threads, write

cookie lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection. The

destroy method definition looks like this −

public void destroy() {

 // Finalization code...

}

Architecture Diagram

The following figure depicts a typical servlet life-cycle scenario.

● First the HTTP requests coming to the server are delegated to the servlet container.

● The servlet container loads the servlet before invoking the service() method.

● Then the servlet container handles multiple requests by spawning multiple threads, each

thread executing the service() method of a single instance of the servlet.

Servlets are Java classes which service HTTP requests and implement

the javax.servlet.Servlet interface. Web application developers typically write servlets that

extend javax.servlet.http.HttpServlet, an abstract class that implements the Servlet interface

and is specially designed to handle HTTP requests.

JSP Implicit Objects – Syntax and Examples

In dynamic web application development, client and server interactions are essential for

sending and receiving information over the Internet. When the browser requests a webpage, a

lot of information is sent to the webserver. Such information cannot be read directly because

such information is part of an HTTP header request. In this chapter, you will learn about the

various request headers provided by JSP.

The JSP request can be defined as an implicit object is an instance of "HttpServletRequest" and

is formed for all JSP requests through the web container. This JSP request gets request

information like a parameter, remote address, header information, server port, server name,

character encoding, content type, etc.

JSP request Implicit Object

● A request object is an implicit object that is used to request an implicit object, which is

to receive data on a JSP page, which has been submitted by the user on the previous

JSP/HTML page.

● The request implicit object used in Java is an instance of

a javax.servlet.http.HttpServletRequest interface where a client requests a page every

time the JSP engine has to create a new object for characterizing that request.

● The container creates it for every request.

● It is used to request information such as parameters, header information, server names,

cookies, and HTTP methods.

● It uses the getParameter() method to access the request parameter.

Here is an example of a JSP request implicit object where a user submits login information,

and another JSP page receives it for processing:

Example (HTML file):

Copy Code<!DOCTYPE html>

<html>

 <head>

 <title>User login form</title>

 </head>

 <body>

 <form action="login.jsp">

 Please insert Username: <input type="text" name="u_name" />

 Please insert Password: <input type="text" name="passwd" />

 <input type="submit" value="Submit Details" />

 </form>

 </body>

</html>

Example (login.jsp):

Copy Code<%@ page import = " java.util.* " %>

<%

String username = request.getParameter("u_name");

String password = request.getParameter("passwd");

out.print("Name: "+username+" Password: " +passwd);

%>

The brief information about the implicit objects are given below:

The out Implicit Object

● An out object is an implicit object for writing data to the buffer and sending output as

a response to the client's browser.

● The out implicit object is an instance of a javax.servlet.jsp.jspWriter class.

● You will learn more about the various concepts of the out Object in subsequent

chapters.

Example (HTML file):

Copy Code<!DOCTYPE html>

<html>

 <head>

 <title>Please insert a User name and a password</title>

 </head>

 <body>

 <% out.println("Today's date-time: "+java.util.Calendar.getInstance().getTime()); %>

 </body>

</html>

Output:

Today's date-time: Nov 01 12:10:05 IST 2020

The request Implicit Object

● A request object is an implicit object that is used to request an implicit object, which

is to receive data on a JSP page, which has been submitted by the user on the previous

JSP/HTML page.

● The request implicit object used in Java is an instance of

a javax.servlet.http.HttpServletRequest interface where a client requests a page every

time the JSP engine has to create a new object for characterizing that request.

● The container creates it for every request.

● It is used to request information such as parameters, header information, server

names, cookies, and HTTP methods.

● It uses the getParameter() method to access the request parameter.

Here is an example of a JSP request implicit object where a user submits login information,

and another JSP page receives it for processing:

Example (HTML file):

Copy Code<!DOCTYPE html>

<html>

 <head>

 <title>Please insert a User name and a password</title>

 </head>

 <body>

 <form action="login.jsp">

 Please insert Username: <input type="text" name="u_name" />

 Please insert Password: <input type="text" name="passwd" />

 <input type="submit" value="Submit Details" />

 </form>

 </body>

</html>

Example (login.jsp):

Copy Code<%@ page import = " java.util.* " %>

<%

String username = request.getParameter("u_name");

String password = request.getParameter("passwd");

out.print("Name: "+username+" Password: " +passwd);

%>

The lesson "JSP Request" contains more detailed information about "The request Implicit

Object" and its methods.

The response Implicit Object

● A response object is an implicit object implemented to modify or deal with the reply

sent to the client (i.e., browser) after processing the request, such as redirect

responding to another resource or an error sent to a client.

● The response implicit object is an instance of

a javax.servlet.http.HttpServletResponse interface.

● The container creates it for every request.

● You will learn more about the various concepts of the request and response in

subsequent chapters.

The session Implicit Object

● A session object is the most commonly used implicit object implemented to store user

data to make it available on other JSP pages until the user's session is active.

● The session implicit object is an instance of a javax.servlet.http.HttpSession interface.

● This session object has different session methods to manage data within the session

scope.

● You will learn more about the use of the session in subsequent chapters.

The application Implicit Object

An application object is another implicit object implemented to initialize application-wide

parameters and maintain functional data throughout the JSP application.

The exception Implicit Object

● An exception implicit object is implemented to handle exceptions to display error

messages.

● The exception implicit object is an instance of the java.lang.Throwable class.

● It is only available for JSP pages, with the isErrorPage value set as "True". This

means Exception objects can only be used in error pages.

Example (HTML file):

Copy Code<!DOCTYPE html>

<html>

 <head>

 <title>Enter two Integers for Division</title>

 </head>

 <body>

 <form action="submit.jsp">

 Insert first Integer: <input type="text" name="numone" />

 Insert second Integer: <input type="text" name="numtwo" />

 <input type="submit" value="Get Results" />

https://www.w3schools.in/jsp/request/

 </form>

 </body>

</html>

Example (submit.jsp):

Copy Code<%@ page errorPage="exception.jsp" %>

<%

String num1 = request.getParameter("numone");

String num2 = request.getParameter("numtwo");

int var1= Integer.parseInt(num1);

int var2= Integer.parseInt(num2);

int r= var1 / var2;

out.print("Output is: "+ r);

%>

Example (exception.jsp):

Copy Code<%@ page isErrorPage='true' %>

<%

out.print("Error Message : ");

out.print(exception.getMessage());

%>

The page Implicit Object

A page object is an implicit object that is referenced to the current instance of the servlet. You

can use it instead. Covering it specifically is hardly ever used and not a valuable implicit

object while building a JSP application.

Copy Code<% String pageName = page.toString();

out.println("The current page is: " +pageName);%>

The config Implicit Object

A config object is a configuration object of a servlet that is mainly used to access and receive

configuration information such as servlet context, servlet name, configuration parameters,

etc. It uses various methods used to fetch configuration information.

JSP:

JSP technology is used to create web application just like Servlet technology. It can be thought

of as an extension to Servlet because it provides more functionality than servlet such as

expression language, JSTL, etc.

A JSP page consists of HTML tags and JSP tags. The JSP pages are easier to maintain than

Servlet because we can separate designing and development. It provides some additional

features such as Expression Language, Custom Tags, etc.

Advantages of JSP over Servlet

There are many advantages of JSP over the Servlet. They are as follows:

1) Extension to Servlet

JSP technology is the extension to Servlet technology. We can use all the features of the Servlet

in JSP. In addition to, we can use implicit objects, predefined tags, expression language and

Custom tags in JSP, that makes JSP development easy.

2) Easy to maintain

JSP can be easily managed because we can easily separate our business logic with presentation

logic. In Servlet technology, we mix our business logic with the presentation logic.

3) Fast Development: No need to recompile and redeploy

If JSP page is modified, we don't need to recompile and redeploy the project. The Servlet code

needs to be updated and recompiled if we have to change the look and feel of the application.

4) Less code than Servlet

In JSP, we can use many tags such as action tags, JSTL, custom tags, etc. that reduces the code.

Moreover, we can use EL, implicit objects, etc.

What is JSP LifeCycle?

JSP Life Cycle is defined as translation of JSP Page into servlet as a JSP Page needs to be

converted into servlet first in order to process the service requests. The Life Cycle starts with

the creation of JSP and ends with the disintegration of that.

Different Phases of JSP Life Cycle

When the browser asks for a JSP, JSP engine first checks whether it needs to compile the

page. If the JSP is last compiled or the recent modification is done in JSP, then the JSP engine

compiles the page.

Compilation process of JSP page involves three steps:

● Parsing of JSP

● Turning JSP into servlet

● Compiling the servlet

JSP Life Cycle Diagram

JSP Lifecycle is depicted in the below diagram.

The following steps explain the life cycle of JSP:

1. Translation of JSP page

2. Compilation of JSP page(Compilation of JSP page into _jsp.java)

3. Classloading (_jsp.java is converted to class file _jsp.class)

4. Instantiation(Object of generated servlet is created)

5. Initialisation(_jspinit() method is invoked by container)

6. Request Processing(_jspservice() method is invoked by the container)

7. Destroy (_jspDestroy() method invoked by the container)

1) Translation of the JSP Page:

A Java servlet file is generated from a JSP source file. This is the first step of JSP life cycle.

In translation phase, container validates the syntactic correctness of JSP page and tag files.

● The JSP container interprets the standard directives and actions, and the custom

actions referencing tag libraries (they are all part of JSP page and will be discussed in

the later section) used in this JSP page.

● In the above pictorial description, demo.jsp is translated to demo_jsp.java in the first

step

● Let’s take an example of “demo.jsp” as shown below:

Demo.jsp

<html>

<head>

<title>Demo JSP</title>

</head>

<%

int demvar=0;%>

<body>

Count is:

<% Out.println(demovar++); %>

<body>

</html>

Code Explanation for Demo.jsp

Code Line 1: html start tag

Code Line 2: Head tag

Code Line 3 – 4: Title Tag i.e. Demo JSP and closing head tag

Code Line 5 – 6: Scriptlet tag wherein initializing the variable demo

Code Line 7 – 8: In body tag, a text to be printed in the output (Count is:)

Code Line 9: Scriplet tag where trying to print the variable demovar with incremented value

Code Line 10 – 11: Body and HTML tags closed

Demo JSP Page is converted into demo_jsp servlet in the below code.

https://www.guru99.com/java-tutorial.html

Code explanation for Demo_jsp.java

Code Line 1: Servlet class demo_jsp is extending parent class HttpServlet

Code Line 2 – 3: Overriding the service method of jsp i.e. _jspservice which has

HttpServletRequest and HttpServletResponse objects as its parameters

Code Line 4: Opening method

Code Line 5: Calling the method getWriter() of response object to get PrintWriterobject

(prints formatted representation of objects to text output stream)

Code Line 6: Calling setContentType method of response object to set the content type

Code Line 7: Using write() method of PrintWriter object trying to parse html

Code Line 8: Initializing demovar variable to 0

Code Line 9: Calling write() method of PrintWriter object to parse the text

Code Line 10: Calling print() method of PrintWriter object to increment the variable

demovar from 0+1=1.Hence, the output will be 1

Code Line 11: Using write() method of PrintWriter object trying to parse html

Output:

● Here you can see that in the screenshot theOutput is 1 because demvar is initialized to

0 and then incremented to 0+1=1

In the above example,

● demo.jsp, is a JSP where one variable is initialized and incremented. This JSP is

converted to the servlet (demo_jsp.class) wherein the JSP engine loads the JSP Page

and converts to servlet content.

● When the conversion happens all template text is converted to println() statements and

all JSP elements are converted to Java code.

This is how a simple JSP page is translated into a servlet class.

2) Compilation of the JSP Page

● The generated java servlet file is compiled into java servlet class

● The translation of java source page to its implementation class can happen at any time

between the deployment of JSP page into the container and processing of the JSP

page.

● In the above pictorial description demo_jsp.java is compiled to a class file

demo_jsp.class

3) Classloading

● Servlet class that has been loaded from JSP source is now loaded into the container

4) Instantiation

● In this step the object i.e. the instance of the class is generated.

● The container manages one or more instances of this class in the response to requests

and other events. Typically, a JSP container is built using a servlet container. A JSP

container is an extension of servlet container as both the container support JSP and

servlet.

● A JSPPage interface which is provided by container

provides init() and destroy() methods.

● There is an interface HttpJSPPage which serves HTTP requests, and it also contains

the service method.

5) Initialization

public void jspInit()

{

 //initializing the code

}

● _jspinit() method will initiate the servlet instance which was generated from JSP and

will be invoked by the container in this phase.

● Once the instance gets created, init method will be invoked immediately after that

● It is only called once during a JSP life cycle, the method for initialization is declared

as shown above

6) Request Processing

void _jspservice(HttpServletRequest request HttpServletResponse response)

https://www.guru99.com/jsp-elements.html

{

 //handling all request and responses

}

● _jspservice() method is invoked by the container for all the requests raised by the JSP

page during its life cycle

● For this phase, it has to go through all the above phases and then only service method

can be invoked.

● It passes request and response objects

● This method cannot be overridden

● The method is shown above: It is responsible for generating of all HTTP methods i.e

GET, POST, etc.

7) Destroy

public void _jspdestroy()

{

 //all clean up code

}

● _jspdestroy() method is also invoked by the container

● This method is called when container decides it no longer needs the servlet instance to

service requests.

● When the call to destroy method is made then, the servlet is ready for a garbage

collection

● This is the end of the life cycle.

● We can override jspdestroy() method when we perform any cleanup such as releasing

database connections or closing open files.

● <%@ page language="java" contentType="text/html; charset=ISO-8859-1"

● pageEncoding="ISO-8859-1"%>

● <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

● <html>

● <head>

● <meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

● <title>Guru JSP6</title>

● </head>

● <body>

● <% int num1=10; int num2 = 50;

● int num3 = num1+num2;

● if(num3 != 0 || num3 > 0){

● int num4= num1*num2;

● out.println("Number 4 is " +num4);

● out.println("Number 3 is " +num3);

● }%>

● </body>

● </html>

s

JSP Scriptlet tag (Scripting elements)

In JSP, java code can be written inside the jsp page using the scriptlet tag. Let's see what are

the scripting elements first.

JSP Scripting elements

The scripting elements provides the ability to insert java code inside the jsp. There are three

types of scripting elements:

o scriptlet tag

o expression tag

o declaration tag

JSP scriptlet tag

A scriptlet tag is used to execute java source code in JSP. Syntax is as follows:

1. <% java source code %>

Example of JSP scriptlet tag

In this example, we are displaying a welcome message.

1. <html>

2. <body>

3. <% out.print("welcome to jsp"); %>

4. </body>

5. </html>

Example of JSP scriptlet tag that prints the user name

In this example, we have created two files index.html and welcome.jsp. The index.html file

gets the username from the user and the welcome.jsp file prints the username with the welcome

message.

File: index.html

1. <html>

2. <body>

3. <form action="welcome.jsp">

4. <input type="text" name="uname">

5. <input type="submit" value="go">

6. </form>

7. </body>

8. </html>

File: welcome.jsp

1. <html>

2. <body>

3. <%

4. String name=request.getParameter("uname");

5. out.print("welcome "+name);

6. %>

7. </form>

8. </body>

9. </html>

JSP expression tag

The code placed within JSP expression tag is written to the output stream of the response. So

you need not write out.print() to write data. It is mainly used to print the values of variable or

method.

Syntax of JSP expression tag

1. <%= statement %>

Example of JSP expression tag

In this example of jsp expression tag, we are simply displaying a welcome message.

1. <html>

2. <body>

3. <%= "welcome to jsp" %>

4. </body>

5. </html>

Example of JSP expression tag that prints current time

To display the current time, we have used the getTime() method of Calendar class. The

getTime() is an instance method of Calendar class, so we have called it after getting the instance

of Calendar class by the getInstance() method.

index.jsp

1. <html>

2. <body>

3. Current Time: <%= java.util.Calendar.getInstance().getTime() %>

4. </body>

5. </html>

Example of JSP expression tag that prints the user name

In this example, we are printing the username using the expression tag. The index.html file gets

the username and sends the request to the welcome.jsp file, which displays the username.

File: index.jsp

1. <html>

2. <body>

3. <form action="welcome.jsp">

4. <input type="text" name="uname">

5. <input type="submit" value="go">

6. </form>

7. </body>

8. </html>

File: welcome.jsp

1. <html>

2. <body>

3. <%= "Welcome "+request.getParameter("uname") %>

4. </body>

5. </html>

JSP Declaration Tag

The JSP declaration tag is used to declare fields and methods.

The code written inside the jsp declaration tag is placed outside the service() method of auto

generated servlet.

So it doesn't get memory at each request.

Syntax of JSP declaration tag

The syntax of the declaration tag is as follows:

1. <%! field or method declaration %>

Difference between JSP Scriptlet tag and Declaration tag

Jsp Scriptlet Tag Jsp Declaration Tag

The jsp scriptlet tag can only declare

variables not methods.

The jsp declaration tag can declare variables

as well as methods.

The declaration of scriptlet tag is placed

inside the _jspService() method.

The declaration of jsp declaration tag is

placed outside the _jspService() method.

Example of JSP declaration tag that declares field

In this example of JSP declaration tag, we are declaring the field and printing the value of the

declared field using the jsp expression tag.

index.jsp

1. <html>

2. <body>

3. <%! int data=50; %>

4. <%= "Value of the variable is:"+data %>

5. </body>

6. </html>

Example of JSP declaration tag that declares method

In this example of JSP declaration tag, we are defining the method which returns the cube of

given number and calling this method from the jsp expression tag. But we can also use jsp

scriptlet tag to call the declared method.

index.jsp

1. <html>

2. <body>

3. <%!

4. int cube(int n){

5. return n*n*n*;

6. }

7. %>

8. <%= "Cube of 3 is:"+cube(3) %>

9. </body>

10. </html>

 JSP Action Tags

JSP action tags are the special tags that can be used to provide instructions to the JSP

container on how to manage the server-side actions. It can be enclosed with the <jsp: .. > tags

and it can allow the developers to perform various tasks such as including other files,

forwarding the requests, and manipulating the session attributes.

List of the Commonly used JSP Action Tags in JSP

Tag Name Syntax Description Example

Include Tag

<jsp:include

page=”filename.jsp” />

It can be used to include

the content of the other

resources like the JSP,

HTML, or servlet in the

current JSP page.

<jsp:include

page=”header.jsp” />

Forward Tag

<jsp:forward

page=”destination.jsp” />

This tag can be used to

forward the current

request to another

resource like the JSP,

HTML, or servlet without

the client’s knowledge.

<jsp:forward

page=”success.jsp” />

Tag Name Syntax Description Example

setProperty Tag

<jsp:setProperty

name=”beanName”

property=”propertyName”

value=”propertyValue” />

This tag can be used to

set the properties of the

JavaBean component of

the JSP pages.

<jsp:setProperty

name=”user”

property=”username”

value=”John” />

getProperty

<jsp:getProperty

name=”beanName”

property=”propertyName”

/>

This tag can be used to

retrieve the properties of

the JavaBean component

of the JSP pages.

<jsp:getProperty

name=”user”

property=”username” />

useBean Tag

<jsp:useBean id=”beanId”

class=”packageName.class

Name” />

This tag can be used to

instantiate the JavaBean

component or retrieve the

existing instance of the

JSP pages.

<jsp:useBean id=”user”

class=”com.example.Us

er” />

plugin Tag

<jsp:plugin

type=”pluginType”

code=”pluginCode” />

It can be used to

generates the HTML code

for the browser specific

plugin.

<jsp:plugin

type=”applet”

code=”MyApplet.class”

/>

attribute tag

<jsp:attribute

name=”attributeName”

value=”attributeValue” />

This tag can be used to

defines the attributes

values for the custom

actions of the JSP pages.

<jsp:attribute

name=”color”

value=”blue” />

Body Tag

<jsp:body> <!– Body

Content –> </jsp:body>

This tag can be used to

defines the body content

for the custom actions of

the JSP pages.

<jsp:body> <p>This is

the body content.</p>

</jsp:body>

Directive

A JSP directive affects the overall structure of the servlet class. It usually has the following

form −

<%@ directive attribute = "value" %>

Directives can have a number of attributes which you can list down as key-value pairs and

separated by commas.

The blanks between the @ symbol and the directive name, and between the last attribute and

the closing %>, are optional.

There are three types of directive tag −

S.No. Directive & Description

1
<%@ page ... %>

Defines page-dependent attributes, such as scripting language, error page, and

buffering requirements.

2 <%@ include ... %>

Includes a file during the translation phase.

3 <%@ taglib ... %>

Declares a tag library, containing custom actions, used in the page

JSP - The page Directive

The page directive is used to provide instructions to the container. These instructions pertain

to the current JSP page. You may code page directives anywhere in your JSP page. By

convention, page directives are coded at the top of the JSP page.

Following is the basic syntax of the page directive −

<%@ page attribute = "value" %>

You can write the XML equivalent of the above syntax as follows −

<jsp:directive.page attribute = "value" />

Attributes

Following table lists out the attributes associated with the page directive −

S.No. Attribute & Purpose

1 buffer

Specifies a buffering model for the output stream.

2 autoFlush

Controls the behavior of the servlet output buffer.

3 contentType

Defines the character encoding scheme.

4
errorPage

Defines the URL of another JSP that reports on Java unchecked runtime

exceptions.

5
isErrorPage

Indicates if this JSP page is a URL specified by another JSP page's errorPage

attribute.

6 extends

Specifies a superclass that the generated servlet must extend.

7
import

Specifies a list of packages or classes for use in the JSP as the Java import

statement does for Java classes.

8 info

Defines a string that can be accessed with the servlet's getServletInfo() method.

9 isThreadSafe

Defines the threading model for the generated servlet.

10 language

Defines the programming language used in the JSP page.

11 session

Specifies whether or not the JSP page participates in HTTP sessions

12 isELIgnored

Specifies whether or not the EL expression within the JSP page will be ignored.

13 isScriptingEnabled

Determines if the scripting elements are allowed for use.

Check for more details related to all the above attributes at Page Directive.

<%-- JSP code to demonstrate how to use page

directive to import a package --%>

<%@page import = "java.util.Date"%>

<%Date d = new Date();%>

<%=d%>

What are JSP Directives?

● JSP directives are the messages to JSP container. They provide global information

about an entire JSP page.

● JSP directives are used to give special instruction to a container for translation of JSP

to servlet code.

● In JSP life cycle phase, JSP has to be converted to a servlet which is the translation

phase.

https://www.tutorialspoint.com/jsp/page_directive.htm

● They give instructions to the container on how to handle certain aspects of JSP

processing

● Directives can have many attributes by comma separated as key-value pairs.

● In JSP, directive is described in <%@ %> tags.

Syntax of Directive:

<%@ directive attribute="" %>

There are three types of directives:

1. Page directive

2. Include directive

3. Taglib directive

Each one of them is described in detail below with examples:

JSP Page directive

Syntax of Page directive:

<%@ page…%>

● It provides attributes that get applied to entire JSP page.

● It defines page dependent attributes, such as scripting language, error page, and

buffering requirements.

● It is used to provide instructions to a container that pertains to current JSP page.

Following are its list of attributes associated with page directive:

1. Language

2. Extends

3. Import

4. contentType

5. info

6. session

7. isThreadSafe

8. autoflush

9. buffer

10. IsErrorPage

11. pageEncoding

12. errorPage

13. isELIgonored

More details about each attribute

1) language: It defines the programming language (underlying language) being used in the

page.

Syntax of language:

<%@ page language="value" %>

https://www.guru99.com/best-programming-language.html

Here value is the programming language (underlying language)

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

Explanation of code: In the above example, attribute language value is Java which is the

underlying language in this case. Hence, the code in expression tags would be compiled using

java compiler.

2) Extends: This attribute is used to extend (inherit) the class like JAVA does

Syntax of extends:

<%@ page extends="value" %>

Here the value represents class from which it has to be inherited.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<%@ page extends="demotest.DemoClass" %>

Explanation of the code: In the above code JSP is extending DemoClass which is within

demotest package, and it will extend all class features.

3) Import: This attribute is most used attribute in page directive attributes.It is used to tell the

container to import other java classes, interfaces, enums, etc. while generating servlet code.It

is similar to import statements in java classes, interfaces.

Syntax of import:

<%@ page import="value" %>

Here value indicates the classes which have to be imported.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 import="java.util.Date" pageEncoding="ISO-8859-1"%>

Explanation of the code:

In the above code, we are importing Date class from java.util package (all utility classes), and

it can use all methods of the following class.

4) contentType:

● It defines the character encoding scheme i.e. it is used to set the content type and the

character set of the response

● The default type of contentType is “text/html; charset=ISO-8859-1”.

https://www.guru99.com/java-tutorial.html

Syntax of the contentType:

<%@ page contentType="value" %>

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

Explanation of the code:

In the above code, the content type is set as text/html, it sets character encoding for JSP and

for generated response page.

5) info

● It defines a string which can be accessed by getServletInfo() method.

● This attribute is used to set the servlet description.

Syntax of info:

<%@ page info="value" %>

Here, the value represents the servlet information.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 info="Guru Directive JSP" pageEncoding="ISO-8859-1"%>

Explanation of the code:

In the above code, string “Guru Directive JSP” can be retrieved by the servlet interface using

getServletInfo()

6) Session

● JSP page creates session by default.

● Sometimes we don’t need a session to be created in JSP, and hence, we can set this

attribute to false in that case.The default value of the session attribute is true, and the

session is created.When it is set to false, then we can indicate the compiler to not

create the session by default.

Syntax of session:

<%@ page session="true/false"%>

Here in this case session attribute can be set to true or false

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 session="false"%>

Explanation of code:

In the above example, session attribute is set to “false” hence we are indicating that we don’t

want to create any session in this JSP

7) isThreadSafe:

● It defines the threading model for the generated servlet.

● It indicates the level of thread safety implemented in the page.

● Its default value is true so simultaneous

● We can use this attribute to implement SingleThreadModel interface in generated

servlet.

● If we set it to false, then it will implement SingleThreadModel and can access any

shared objects and can yield inconsistency.

Syntax of isThreadSafe:

<% @ page isThreadSafe="true/false" %>

Here true or false represents if synchronization is there then set as true and set it as false.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 isThreadSafe="true"%>

Explanation of the code:

In the above code, isThreadSafe is set to “true” hence synchronization will be done, and

multiple threads can be used.

8) AutoFlush:

This attribute specifies that the buffered output should be flushed automatically or not and

default value of that attribute is true.

If the value is set to false the buffer will not be flushed automatically and if its full, we will

get an exception.

When the buffer is none then the false is illegitimate, and there is no buffering, so it will be

flushed automatically.

Syntax of autoFlush:

<% @ page autoFlush="true/false" %>

Here true/false represents whether buffering has to be done or not

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 autoFlush="false"%>

Explanation of the code:

In the above code, the autoflush is set to false and hence buffering won’t be done and it has

manually flush the output.

9) Buffer:

● Using this attribute the output response object may be buffered.

● We can define the size of buffering to be done using this attribute and default size is

8KB.

● It directs the servlet to write the buffer before writing to the response object.

Syntax of buffer:

<%@ page buffer="value" %>

Here the value represents the size of the buffer which has to be defined. If there is no buffer,

then we can write as none, and if we don’t mention any value then the default is 8KB

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 buffer="16KB"%>

Explanation of the code:

In the above code, buffer size is mentioned as 16KB wherein the buffer would be of that size

10) isErrorPage:

● It indicates that JSP Page that has an errorPage will be checked in another JSP page

● Any JSP file declared with “isErrorPage” attribute is then capable to receive

exceptions from other JSP pages which have error pages.

● Exceptions are available to these pages only.

● The default value is false.

Syntax of isErrorPage:

<%@ page isErrorPage="true/false"%>

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 isErrorPage="true"%>

Explanation of the code:

In the above code, isErrorPage is set as true. Hence, it will check any other JSPs has

errorPage (described in the next attribute) attribute set and it can handle exceptions.

11) PageEncoding:

The “pageEncoding” attribute defines the character encoding for JSP page.

The default is specified as “ISO-8859-1” if any other is not specified.

Syntax of pageEncoding:

<%@ page pageEncoding="vaue" %>

Here value specifies the charset value for JSP

Example:

<%@ page language="java" contentType="text/html;" pageEncoding="ISO-8859-1"

 isErrorPage="true"%>

Explanation of the code:

In the above code “pageEncoding” has been set to default charset ISO-8859-1

12) errorPage:

This attribute is used to set the error page for the JSP page if JSP throws an exception and

then it redirects to the exception page.

Syntax of errorPage:

<%@ page errorPage="value" %>

Here value represents the error JSP page value

Example:

<%@ page language="java" contentType="text/html;" pageEncoding="ISO-8859-1"

 errorPage="errorHandler.jsp"%>

Explanation of the code:

In the above code, to handle exceptions we have errroHandler.jsp

13) isELIgnored:

● IsELIgnored is a flag attribute where we have to decide whether to ignore EL tags or

not.

● Its datatype is java enum, and the default value is false hence EL is enabled by

default.

Syntax of isELIgnored:

<%@ page isELIgnored="true/false" %>

Here, true/false represents the value of EL whether it should be ignored or not.

Example:

<%@ page language="java" contentType="text/html;" pageEncoding="ISO-8859-1"

 isELIgnored="true"%>

Explanation of the code:

In the above code, isELIgnored is true and hence Expression Language (EL) is ignored here.

https://www.guru99.com/jsp-expression-language.html

In the below example we are using four attributes(code line 1-2)

Example with four attributes

<%@ page language="java" contentType="text/html;" pageEncoding="ISO-8859-1"

 isELIgnored="false"%>

 <%@page import="java.util.Date" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Directive Guru JSP1</title>

</head>

<body>

<a>Date is:

<%= new java.util.Date() %>

</body>

</html>

Explanation of the code:

Code Line 1-2: Here we have defined four attributes i.e.

● Language: It is set as Java as programming language

● contentType: set as text/html to tell the compiler that html has to be format

● pageEncoding: default charset is set in this attribute

● isELIgnored: Expression Tag is false hence it is not ignored

Code Line 3: Here we have used import attribute, and it is importing “Date class” which is

from Java util package, and we are trying to display current date in the code.

When you execute the above code, you will get the following output

Output:

● Date is: Current date using the date method of the date class

JSP Include directive

● JSP “include directive”(codeline 8) is used to include one file to the another file

https://www.guru99.com/java-tutorial.html

● This included file can be HTML, JSP, text files, etc.

● It is also useful in creating templates with the user views and break the pages into

header&footer and sidebar actions.

● It includes file during translation phase

Syntax of include directive:

<%@ include….%>

Example:

Directive_jsp2.jsp (Main file)

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

 <%@ include file="directive_header_jsp3.jsp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Guru Directive JSP2</title>

</head>

<body>

<a>This is the main file

</body>

</html>

Directive_header_jsp3.jsp (which is included in the main file)

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

</head>

<body>

<a>Header file :

<%int count =1; count++;

out.println(count);%> :

</body>

</html>

Explanation of the code:

Directive_jsp2.jsp:

Code Line 3: In this code, we use include tags where we are including the file

directive_header_jsp3.jsp into the main file(_jsp2.jsp)and gets the output of both main file

and included file.

Directive_header_jsp3.jsp:

Code Line 11-12: We have taken a variable count initialized to 1 and then incremented it.

This will give the output in the main file as shown below.

When you execute the above code you get the following output:

Output:

● The output is Header file: 2 : This is the main file

● The output is executed from the directive_jsp2.jsp file while the

directive_header_jsp3.jsp included file will be compiled first.

● After the included file is done, the main file is executed, and the output will be from

the main file “This is the main file”. So you will get the output as “Header file: 2”

from _jsp3.jsp and “This is main file” from _jsp2.jsp.

JSP Taglib Directive

● JSP taglib directive is used to define the tag library with “taglib” as the prefix, which

we can use in JSP.

● More detail will be covered in JSP Custom Tags section

● JSP taglib directive is used in the JSP pages using the JSP standard tag libraries

● It uses a set of custom tags, identifies the location of the library and provides means

of identifying custom tags in JSP page.

Syntax of taglib directive:

<%@ taglib uri="uri" prefix="value"%>

Here “uri” attribute is a unique identifier in tag library descriptor and “prefix” attribute is a

tag name.

Example:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

 <%@ taglib prefix="gurutag" uri="http://java.sun.com/jsp/jstl/core" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Guru Directive JSP</title>

https://www.guru99.com/jsp-tutorial.html

<gurutag:hello/>

</head>

<body>

</body>

</html>

Explanation of the code:

Code Line 3: Here “taglib” is defined with attributes uri and prefix.

Code Line 9: “gurutag” is the custom tag defined and it can be used anywhere

Example of JSP Custom Tag

In this example, we are going to create a custom tag that prints the current date and time.

We are performing action at the start of tag.

For creating any custom tag, we need to follow following steps:

1. Create the Tag handler class and perform action at the start or at the end of the tag.

2. Create the Tag Library Descriptor (TLD) file and define tags

3. Create the JSP file that uses the Custom tag defined in the TLD file

Understanding flow of custom tag in jsp

1) Create the Tag handler class

To create the Tag Handler, we are inheriting the TagSupport class and overriding its

method doStartTag().To write data for the jsp, we need to use the JspWriter class.

The PageContext class provides getOut() method that returns the instance of JspWriter class.

TagSupport class provides instance of pageContext bydefault.

File: MyTagHandler.java

package com.javatpoint.sonoo;

import java.util.Calendar;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.tagext.TagSupport;

public class MyTagHandler extends TagSupport{

public int doStartTag() throws JspException {

 JspWriter out=pageContext.getOut();//returns the instance of JspWriter

 try{

 out.print(Calendar.getInstance().getTime());//printing date and time using JspWriter

 }catch(Exception e){System.out.println(e);}

 return SKIP_BODY;//will not evaluate the body content of the tag

}

}

2) Create the TLD file

Tag Library Descriptor (TLD) file contains information of tag and Tag Hander classes. It

must be contained inside the WEB-INF directory.

File: mytags.tld

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>simple</short-name>

 <uri>http://tomcat.apache.org/example-taglib</uri>

<tag>

<name>today</name>

<tag-class>com.javatpoint.sonoo.MyTagHandler</tag-class>

</tag>

</taglib>

3) Create the JSP file

Let's use the tag in our jsp file. Here, we are specifying the path of tld file directly. But it is

recommended to use the uri name instead of full path of tld file. We will learn about uri later.

It uses taglib directive to use the tags defined in the tld file.

File: index.jsp

1. <%@ taglib uri="WEB-INF/mytags.tld" prefix="m" %>

2. Current Date and Time is: <m:today/>

download this example

https://static.javatpoint.com/src/jsp/cu1.zip

Output

UNIT-V

Spring Boot

Spring Boot is a Java framework that makes it easier to create and run Java applications. It

simplifies the configuration and setup process, allowing developers to focus more on writing

code for their applications.

Spring Boot, a module of the Spring framework, facilitates Rapid Application

Development (RAD) capabilities.

This Spring tutorial includes basic to advanced topics of Spring Boot, like Basics of Spring

Boot, Spring Boot core, Spring Boot REST API, Spring Boot with Microservices, Spring Boot

with Kafka, Spring Boot with Database and Data JPA, etc.

What is Spring Boot?

Spring Boot is an open-source Java framework used to create a Micro Service. Spring boot is

developed by Pivotal Team, and it provides a faster way to set up and an easier, configure, and

run both simple and web-based applications. It is a combination of Spring Framework and

Embedded Servers. The main goal of Spring Boot is to reduce development, unit test, and

integration test time and in Spring Boot, there is no requirement for XML configuration.

Hibernate Framework

Hibernate is a Java framework that simplifies the development of Java application to interact

with the database. It is an open source, lightweight, ORM (Object Relational Mapping) tool.

Hibernate implements the specifications of JPA (Java Persistence API) for data persistence.

ORM Tool

An ORM tool simplifies the data creation, data manipulation and data access. It is a

programming technique that maps the object to the data stored in the database.

The ORM tool internally uses the JDBC API to interact with the database.

What is JPA?

Java Persistence API (JPA) is a Java specification that provides certain functionality and

standard to ORM tools. The javax.persistence package contains the JPA classes and interfaces.

RECENT JAVA TOOLS 9

Spring Boot - Deploying a Spring-Boot application running with Java8 - Hibernate:

Introduction to Hibernate 3.0 - Hibernate Architecture - First Hibernate Application. Java

Server Faces - Installing application - writing - deploying and testing application - Request

Process life cycle - Basic JSF Tags - Expression Language.

Advantages of Hibernate Framework

Following are the advantages of hibernate framework:

1) Open Source and Lightweight

Hibernate framework is open source under the LGPL license and lightweight.

2) Fast Performance

The performance of hibernate framework is fast because cache is internally used in hibernate

framework. There are two types of cache in hibernate framework first level cache and second

level cache. First level cache is enabled by default.

3) Database Independent Query

HQL (Hibernate Query Language) is the object-oriented version of SQL. It generates the

database independent queries. So you don't need to write database specific queries. Before

Hibernate, if database is changed for the project, we need to change the SQL query as well that

leads to the maintenance problem.

4) Automatic Table Creation

Hibernate framework provides the facility to create the tables of the database automatically. So

there is no need to create tables in the database manually.

5) Simplifies Complex Join

Fetching data from multiple tables is easy in hibernate framework.

6) Provides Query Statistics and Database Status

Hibernate supports Query cache and provide statistics about query and database status.

Introduction to Hibernate ORM Framework

What is ORM?

ORM (Object-relational mapping) is a programming technique for mapping application

domain model objects to relational database tables. Hibernate is a Java-based ORM tool that

provides a framework for mapping application domain objects to relational database tables and

vice versa.

What is the Java Persistence API (JPA)?

The Java Persistence API (JPA) is a Java specification for accessing, persisting, and managing

data between Java objects/classes and a relational database. JPA acts as a bridge between

object-oriented domain models and relational database systems, making it easier for developers

to work with data in their applications.

JPA allows developers to map Java objects to database tables and vice versa using annotations

or XML configuration files. This abstracts the complexities in converting data between its

object-oriented form in the application and its relational form in the database.

JPA is not an implementation but a specification. Various ORM tools, such as Hibernate,

EclipseLink, and Apache OpenJPA, provide implementations of the JPA specification. This

allows developers to switch between these implementations if needed without changing the

application code that uses JPA.

What is the Hibernate Framework?

Hibernate is a Java-based ORM tool that provides a framework for mapping application domain

objects to relational database tables and vice versa.

Hibernate is the most popular JPA implementation and one of the most popular Java ORM

frameworks. Hibernate is an additional layer on top of JDBC and enables you to implement a

database-independent persistence layer. It provides an object-relational mapping

implementation that maps your database records to Java objects and generates the required

SQL statements to replicate all operations to the database.

Example: The diagram below shows an Object-Relational Mapping between the Student Java

class and the student's table in the database.

Key Features of Hibernate

Transparent Persistence: Hibernate manages the persistence of objects without requiring

significant changes to how those objects are designed.

Database Independence: Applications built with Hibernate are portable across databases with

minimal changes.

Performance Optimization: Features like caching and lazy loading help optimize performance

by reducing database access.

Powerful Query Language: Hibernate Query Language (HQL) offers an object-oriented

extension to SQL, easing data manipulation and retrieval.

Automatic Schema Generation: Hibernate can generate database schemas based on the object

model, simplifying initial setup and migrations

How does Hibernate relate to JDBC?

Hibernate internally uses JDBC for all database communications.

Hibernate acts as an additional layer on top of JDBC and enables you to implement a database-

independent persistence layer:

Hibernate Architecture

Hibernate architecture consists of several layers, including the Java application layer, Hibernate

framework, backhand API, and the database layer. Let's break down the core components:

The Hibernate architecture includes many objects such as persistent object, session factory,

transaction factory, connection factory, session, transaction etc.

The Hibernate architecture is categorized in four layers.

● Java application layer

● Hibernate framework layer

● Backhand api layer

● Database layer

Let's see the diagram of hibernate architecture:

This is the high level architecture of Hibernate with mapping file and configuration file.

Elements of Hibernate Architecture

For creating the first hibernate application, we must know the elements of Hibernate

architecture. They are as follows:

SessionFactory

A thread-safe, immutable cache of compiled mappings for a single database. SessionFactory is

a heavyweight object, usually created during application initialization and kept for later use.

Session

A single-threaded, short-lived object representing a conversation between the application and

the database. It acts as a factory for Transaction instances and holds a first-level cache of

retrieved data.

Transaction

A unit of work with the database represents an abstraction of the application from the

underlying transaction implementation (JTA or JDBC).

ConnectionProvider

Manages the database connections needed by Hibernate sessions. It abstracts the application

from underlying connection management mechanisms.

TransactionFactory

Creates Transaction instances, hiding the underlying transaction implementation details from

the application.

What are the important benefits of using the Hibernate Framework?

Code Efficiency: Hibernate significantly reduces boilerplate code associated with JDBC,

allowing developers to concentrate on business logic and speeding up development time.

Flexibility in Code: By supporting both XML configurations and JPA annotations, Hibernate

ensures code independence from the implementation, enhancing portability across different

database systems.

Advanced Query Capabilities: HQL (Hibernate Query Language) offers an object-oriented

alternative to SQL, seamlessly integrating with Java's object-oriented features like inheritance,

polymorphism, and associations.

Community and Documentation: As an open-source project backed by the Red Hat

Community, Hibernate benefits from widespread use, a shallow learning curve, extensive

documentation, and robust community support.

Integration with Java EE Frameworks: Hibernate's popularity and support make it easily

integrated with other Java EE frameworks, notably Spring, which offers built-in Hibernate

integration for seamless development.

Performance Optimization: Features like lazy loading, where database operations are deferred

until necessary, and caching mechanisms significantly improve application performance.

Vendor-Specific Features: Hibernate allows for native SQL queries, providing flexibility to

utilize database-specific optimizations and features when needed.

Comprehensive ORM Tool: With its extensive feature set addressing nearly all ORM tool

requirements, Hibernate stands out as a leading choice in the market for object-relational

mapping solutions.

What are the advantages of Hibernate over JDBC?

Simplified Code: Hibernate significantly reduces boilerplate code required in JDBC, making

the codebase cleaner and more readable.

Advanced Mapping Features: Unlike JDBC, Hibernate fully supports object-oriented features

such as inheritance, associations, and collections.

Transaction Management: Hibernate seamlessly handles transaction management, requiring

transactions for most operations, which contrasts with JDBC's manual transaction handling

through commit and rollback.

Exception Handling: Hibernate abstracts boilerplate try-catch blocks by converting JDBC's

checked SQLExceptions into unchecked JDBCException or HibernateException, simplifying

error handling.

Object-Oriented Query Language: HQL (Hibernate Query Language) offers an object-oriented

API, which aligns it more with Java programming concepts than JDBC's need for native SQL

queries.

Caching for Performance: Hibernate's support for caching enhances performance, a feature not

available with JDBC, where queries are directly executed without caching.

Database Synchronization: Hibernate can automatically generate database tables, offering

greater flexibility than JDBC, which requires pre-existing tables.

Flexible Connection Management: Hibernate allows for both JDBC-like connections and JNDI

DataSource connections with pooling, which is essential for enterprise applications and not

supported by JDBC.

ORM Tool Independence: By supporting JPA annotations, Hibernate-based applications are not

tightly bound to Hibernate and can switch ORM tools more easily than JDBC-based

applications, which are closely coupled with the database.

Hibernate Example using XML in Eclipse

Here, we are going to create a simple example of hibernate application using eclipse IDE. For

creating the first hibernate application in Eclipse IDE, we need to follow the following steps:

● Create the java project

● Add jar files for hibernate

● Create the Persistent class

● Create the mapping file for Persistent class

● Create the Configuration file

● Create the class that retrieves or stores the persistent object

● Run the application

1) Create the java project

Create the java project by File Menu - New - project - java project . Now specify the project

name e.g. firsthb then next - finish .

2) Add jar files for hibernate

To add the jar files Right click on your project - Build path - Add external archives. Now select

all the jar files as shown in the image given below then click open.

In this example, we are connecting the application with oracle database. So you must add the

ojdbc14.jar file.

3) Create the Persistent class

Here, we are creating the same persistent class which we have created in the previous topic. To

create the persistent class, Right click on src - New - Class - specify the class with package

name (e.g. com.javatpoint.mypackage) - finish .

Employee.java

package com.javatpoint.mypackage;

 public class Employee {

private int id;

private String firstName,lastName;

 public int getId() {

 return id;

}

public void setId(int id) {

 this.id = id;

}

public String getFirstName() {

 return firstName;

}

public void setFirstName(String firstName) {

 this.firstName = firstName;

}

public String getLastName() {

 return lastName;

}

public void setLastName(String lastName) {

 this.lastName = lastName;

} }

4) Create the mapping file for Persistent class

Here, we are creating the same mapping file as created in the previous topic. To create the

mapping file, Right click on src - new - file - specify the file name (e.g. employee.hbm.xml) -

ok. It must be outside the package.

employee.hbm.xml

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-mapping PUBLIC

 "-//Hibernate/Hibernate Mapping DTD 5.3//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-5.3.dtd">

 <hibernate-mapping>

 <class name="com.javatpoint.mypackage.Employee" table="emp1000">

 <id name="id">

 <generator class="assigned"></generator>

 </id>

 <property name="firstName"></property>

 <property name="lastName"></property>

 </class>

 </hibernate-mapping>

5) Create the Configuration file

The configuration file contains all the informations for the database such as connection_url,

driver_class, username, password etc. The hbm2ddl.auto property is used to create the table in

the database automatically. We will have in-depth learning about Dialect class in next topics.

To create the configuration file, right click on src - new - file. Now specify the configuration

file name e.g. hibernate.cfg.xml.

hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE hibernate-configuration PUBLIC

 "-//Hibernate/Hibernate Configuration DTD 5.3//EN"

 "http://hibernate.sourceforge.net/hibernate-configuration-5.3.dtd">

<hibernate-configuration>

 <session-factory>

 <property name="hbm2ddl.auto">update</property>

 <property name="dialect">org.hibernate.dialect.Oracle9Dialect</property>

 <property name="connection.url">jdbc:oracle:thin:@localhost:1521:xe</property>

 <property name="connection.username">system</property>

 <property name="connection.password">oracle</property>

 <property name="connection.driver_class">oracle.jdbc.driver.OracleDriver</property>

 <mapping resource="employee.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

6) Create the class that retrieves or stores the persistent object

In this class, we are simply storing the employee object to the database.

package com.javatpoint.mypackage;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.Transaction;

import org.hibernate.boot.Metadata;

import org.hibernate.boot.MetadataSources;

import org.hibernate.boot.registry.StandardServiceRegistry;

import org.hibernate.boot.registry.StandardServiceRegistryBuilder;

public class StoreData {

 public static void main(String[] args)

 {

 StandardServiceRegistry ssr = new

StandardServiceRegistryBuilder().configure("hibernate.cfg.xml").build();

 Metadata meta = new MetadataSources(ssr).getMetadataBuilder().build();

 SessionFactory factory = meta.getSessionFactoryBuilder().build();

 Session session = factory.openSession();

 Transaction t = session.beginTransaction();

 Employee e1=new Employee();

 e1.setId(1);

 e1.setFirstName("Gaurav");

 e1.setLastName("Chawla");

 session.save(e1);

 t.commit();

 System.out.println("successfully saved");

 factory.close();

 session.close();

 }

}

7) Run the application

Before running the application, determine that directory structure is like this.

To run the hibernate application, right click on the Store Data class - Run As - Java Application.

JAVASERVER FACES

It is a server side component based user interface framework. It is used to develop web

applications. It provides a well-defined programming model and consists of rich API and tag

libraries. The latest version JSF 2 uses Facelets as its default templating system. It is written in

Java.

The JSF API provides components (inputText, commandButton etc) and helps to manage their

states. It also provides server-side validation, data conversion, defining page navigation,

provides extensibility, supports for internationalization, accessibility etc.

The JSF Tag libraries are used to add components on the web pages and connect components

with objects on the server. It also contains tag handlers that implements the component tag.

With the help of these features and tools, you can easily and effortlessly create server-side user

interface.

JSF Features

Latest version of JSF 2.2 provides the following features.

Component Based Framework

Implements Facelets Technology

Integration with Expression Language

Support HTML5

Ease and Rapid web Development.

Support Internationalization

Bean Annotations

Default Exception Handling

Templating

Inbuilt AJAX Support

Security

Component Based Framework

JSF is a server side component-based framework. It provides inbuilt components to build web

application. You can use HTML5, Facelets tags to create web pages.

Facelets Technology

Facelets is an open source Web template system. It is a default view handler technology for

JavaServer Faces (JSF). The language requires valid input XML documents to work. Facelets

supports all of the JSF UI components and focuses completely on building the view for a JSF

application.

Expression Language

Expression Language provides an important mechanism for creating the user interface (web

pages) to communicate with the application logic (managed beans). The EL represents a union

of the expression languages offered by JavaServer Faces technology.

HTML 5

HTML5 is the new standard for writing web pages. JavaServer Faces version 2.2 offers an easy

way for including new attributes of HTML 5 to JSF components and provides HTML5 friendly

markup.

Ease and Rapid web Development.

JSF provides rich set of inbuilt tools and libraries so that you can easily and rapidly develop

we application.

Support Internationalization

JSF supports internationalization for creating World Class web application. You can create

applications in the different-different languages. With the help of JSF you can make the

application adaptable to various languages and regions.

Bean Annotations

JSF provides annotations facility in which you can perform validation related tasks in Managed

Bean. It is good because you can validate your data in bean rather than in HTML validation.

Exception Handling

JSF provide default Exception handling so you can develop exception and bug free web

application.

Templating

Introducing template in new version of JSF provides reusablity of components. In JSF

application, you can create new template, reuse template and treat it as component for

application.

AJAX Support

JSF provides inbuilt AJAX support. So, you can render application request to server side

without refreshing the web page. JSF also support partial rendering by using AJAX.

Security

JSF provides implicit protection against this when state is saved on the server and no stateless

views are used, since a post-back must then contain a valid javax.faces.ViewState hidden

parameter. Contrary to earlier versions, this value seems sufficiently random in modern JSF

implementations. Note that stateless views and saving state on the client does not have this

implicit protection.

JavaServer Faces Lifecycle

JavaServer Faces application framework manages lifecycle phases automatically for simple

applications and also allows you to manage that manually. The lifecycle of a JavaServer Faces

application begins when the client makes an HTTP request for a page and ends when the server

responds with the page.

The JSF lifecycle is divided into two main phases:

Execute Phase

Render Phase

1) Execute Phase

In execute phase, when first request is made, application view is built or restored. For other

subsequent requests other actions are performed like request parameter values are applied,

conversions and validations are performed for component values, managed beans are updated

with component values and application logic is invoked.

The execute phase is further divided into following subphases.

Restore View Phase

Apply Request Values Phase

Process Validations Phase

Update Model Values Phase

Invoke Application Phase

Render Response Phase

Restore View Phase

When a client requests for a JavaServer Faces page, the JavaServer Faces implementation

begins the restore view phase. In this phase, JSF builds the view of the requested page, wires

event handlers and validators to components in the view and saves the view in the FacesContext

instance.

If the request for the page is a postback, a view corresponding to this page already exists in the

FacesContext instance. During this phase, the JavaServer Faces implementation restores the

view by using the state information saved on the client or the server.

Apply Request Values Phase

In this phase, component tree is restored during a postback request. Component tree is a

collection of form elements.Each component in the tree extracts its new value from the request

parameters by using its decode (processDecodes()) method. After that value is stored locally

on each component.

If any decode methods or event listeners have called the renderResponse method on the current

FacesContext instance, the JavaServer Faces implementation skips to the Render Response

phase.

If any events have been queued during this phase, the JavaServer Faces implementation

broadcasts the events to interested listeners.

If the application needs to redirect to a different web application resource or generate a response

that does not contain any JavaServer Faces components, it can call the

FacesContext.responseComplete() method.

If the current request is identified as a partial request, the partial context is retrieved from the

FacesContext, and the partial processing method is applied.

Process Validations Phase

In this phase, the JavaServer Faces processes all validators registered on the components by

using its validate () method. It examines the component attributes that specify the rules for the

validation and compares these rules to the local value stored for the component. The JavaServer

Faces also completes conversions for input components that do not have the immediate

attribute set to true.

If any validate methods or event listeners have called the renderResponse method on the current

FacesContext, the JavaServer Faces implementation skips to the Render Response phase.

If the application needs to redirect to a different web application resource or generate a response

that does not contain any JavaServer Faces components, it can call the

FacesContext.responseComplete method.

If events have been queued during this phase, the JavaServer Faces implementation broadcasts

them to interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the

FacesContext, and the partial processing method is applied.

Update Model Values Phase

After ensuring that the data is valid, it traverses the component tree and sets the corresponding

server-side object properties to the components' local values. The JavaServer Faces

implementation updates only the bean properties pointed at by an input component's value

attribute. If the local data cannot be converted to the types specified by the bean properties, the

lifecycle advances directly to the Render Response phase so that the page is re-rendered with

errors displayed.

If any updateModels methods or any listeners have called the renderResponse() method on the

current FacesContext instance, the JavaServer Faces implementation skips to the Render

Response phase.

If the application needs to redirect to a different web application resource or generate a response

that does not contain any JavaServer Faces components, it can call the

FacesContext.responseComplete() method.

If any events have been queued during this phase, the JavaServer Faces implementation

broadcasts them to interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the

FacesContext, and the partial processing method is applied.

Invoke Application Phase

In this phase, JSF handles application-level events, such as submitting a form or linking to

another page.

Now, if the application needs to redirect to a different web application resource or generate a

response that does not contain any JSF components, it can call the

FacesContext.responseComplete() method.

After that, the JavaServer Faces implementation transfers control to the Render Response

phase.

Render Response Phase

This is last phase of JSF life cycle. In this phase, JSF builds the view and delegates authority

to the appropriate resource for rendering the pages.

If this is an initial request, the components that are represented on the page will be added to the

component tree.

If this is not an initial request, the components are already added to the tree and need not to be

added again.

If the request is a postback and errors were encountered during the Apply Request Values phase,

Process Validations phase, or Update Model Values phase, the original page is rendered again

during this phase.

If the pages contain h:message or h:messages tags, any queued error messages are displayed

on the page.

After rendering the content of the view, the state of the response is saved so that subsequent

requests can access it. The saved state is available to the Restore View phase.

2) Render

In this phase, the requested view is rendered as a response to the client browser. View rendering

is a process in which output is generated as HTML or XHTML. So, user can see it at the

browser.

The following steps are taken during the render process.

Application is compiled, when a client makes an initial request for the index.xhtml web page.

Application executes after compilation and a new component tree is constructed for the

application and placed in a FacesContext.

The component tree is populated with the component and the managed bean property

associated with it, represented by the EL expression.

Based on the component tree. A new view is built.

The view is rendered to the requesting client as a response.

The component tree is destroyed automatically.

On subsequent requests, the component tree is rebuilt, and the saved state is applied.

A Simple JavaServer Faces Application

To create a JSF application, we are using NetBeans IDE 8.2. You can also refer to other Java

IDEs.

Here, we are creating a project after that we will run to test it's configuration settings. So, let's

create a new project fist.

Step 1: Create a New Project

Go to file menu and select new Project.

Select Category Java Web and Project Web Application

Enter project name.

Select Server and Java EE Version.

Select JSF Framework

elect Preferred Page Language: Earlier versions of JSF framework are default to JSP for

presentation pages. Now, in latest version 2.0 and later JSF has included powerful tool

"Facelets". So, here we have selected page language as facelets. We will talk about facelets in

more details in next chapter.

Index.xhtml Page: After finishing, IDE creates a JSF project for you with a default index.xhtml

file. Xhtml is a extension of html and used to create facelets page.

Run: Now, you can run your application by selecting run option after right click on the project.

It will produce a default message "Hello from Facelets".

We have created JSF project successfully. This project includes following files:

index.xhtml: inside the Web Pages directory

web.xml: inside the WEB-INF directory

Whenever we run the project, it renders index.xhtml as output. Now, we will create an

application which contains two web pages, one bean class and a configuration file.

It requires the following steps in order to develop new application:

● Creating user interface

● Creating managed beans

● Configuring and managing FacesServlet

1) Create User Interface

We will use default page index.xhtml to render input web page. Modify your index.xhtml

source code as the given below.

// index.xhtml

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>

<title>User Form</title>

</h:head>

<h:body>

<h:form>

<h:outputLabel for="username">User Name</h:outputLabel>

<h:inputText id="username" value="#{user.name}" required="true" requiredMessage="User

Name is required" />

<h:commandButton id="submit-button" value="Submit" action="response.xhtml"/>

</h:form>

</h:body>

</html>

Create a second web page which produce the output.

After creating response.xhtml page. Now, modify it's source code as the given below.

// response.xhtml

<?xml version='1.0' encoding='UTF-8' ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>

<title>Welcome Page</title>

</h:head>

<h:body>

<h2>Hello, <h:outputText value="#{user.name}"></h:outputText></h2>

</h:body>

</html>

2) Create a Managed Bean

It is a Java class which contains properties and getter setter methods. JSF uses it as a Model.

So, you can use it to write your business logic also.

After creating a Java class put the below code into your User.java file.

// User.java

package managedbean;

Facelet Title

import javax.faces.bean.ManagedBean;

import javax.faces.bean.RequestScoped;

@ManagedBean

@RequestScoped

public class User {

String name;

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

} }

3) Configure Application

To configure application, project contains a web.xml file which helps to set FacesServlet

instances. You can also set your application welcome page and any more.

Below is the code of web.xml code for this application.

// web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">

<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>Development</param-value>

</context-param>

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapFacelet Titlep.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-pattern>

</servlet-mapping>

<session-config>

<session-timeout>

30

</session-timeout>

</session-config>

<welcome-file-list>

<welcome-file>faces/index.xhtml</welcome-file>

</welcome-file-list>

</web-app>

Well! All set. Now run the application.

Output:

This is index page of the application.

JSF - Basic Tags

SF provides a standard HTML tag library. These tags get rendered into corresponding html

output.

For these tags you need to use the following namespaces of URI in html node.

<html

 xmlns = "http://www.w3.org/1999/xhtml"

 xmlns:h = "http://java.sun.com/jsf/html">

Following are the important Basic Tags in JSF 2.0.

S.No Tag & Description

1
h:inputText

Renders a HTML input of type="text", text box.

2
h:inputSecret

Renders a HTML input of type="password", text box.

3
h:inputTextarea

Renders a HTML textarea field.

4
h:inputHidden

Renders a HTML input of type="hidden".

https://www.tutorialspoint.com/jsf/jsf_inputtext_tag.htm
https://www.tutorialspoint.com/jsf/jsf_inputsecret_tag.htm
https://www.tutorialspoint.com/jsf/jsf_inputtextarea_tag.htm
https://www.tutorialspoint.com/jsf/jsf_inputHidden_tag.htm

5
h:selectBooleanCheckbox

Renders a single HTML check box.

6
h:selectManyCheckbox

Renders a group of HTML check boxes.

7
h:selectOneRadio

Renders a single HTML radio button.

8
h:selectOneListbox

Renders a HTML single list box.

9
h:selectManyListbox

Renders a HTML multiple list box.

10
h:selectOneMenu

Renders a HTML combo box.

11
h:outputText

Renders a HTML text.

12
h:outputFormat

Renders a HTML text. It accepts parameters.

13
h:graphicImage

Renders an image.

14
h:outputStylesheet

Includes a CSS style sheet in HTML output.

15
h:outputScript

Includes a script in HTML output.

16
h:commandButton

Renders a HTML input of type="submit" button.

17
h:Link

Renders a HTML anchor.

18
h:commandLink

Renders a HTML anchor.

19
h:outputLink

Renders a HTML anchor.

20
h:panelGrid

Renders an HTML Table in form of grid.

21
h:message

Renders message for a JSF UI Component.

https://www.tutorialspoint.com/jsf/jsf_selectbooleancheckbox_tag.htm
https://www.tutorialspoint.com/jsf/jsf_selectmanycheckbox_tag.htm
https://www.tutorialspoint.com/jsf/jsf_selectoneradio_tag.htm
https://www.tutorialspoint.com/jsf/jsf_selectonelistbox_tag.htm
https://www.tutorialspoint.com/jsf/jsf_selectmanylistbox_tag.htm
https://www.tutorialspoint.com/jsf/jsf_selectonemenu_tag.htm
https://www.tutorialspoint.com/jsf/jsf_outputtext_tag.htm
https://www.tutorialspoint.com/jsf/jsf_outputformat_tag.htm
https://www.tutorialspoint.com/jsf/jsf_graphicimage_tag.htm
https://www.tutorialspoint.com/jsf/jsf_outputstylesheet_tag.htm
https://www.tutorialspoint.com/jsf/jsf_outputscript_tag.htm
https://www.tutorialspoint.com/jsf/jsf_commandbutton_tag.htm
https://www.tutorialspoint.com/jsf/jsf_link_tag.htm
https://www.tutorialspoint.com/jsf/jsf_commandlink_tag.htm
https://www.tutorialspoint.com/jsf/jsf_outputlink_tag.htm
https://www.tutorialspoint.com/jsf/jsf_panelgrid_tag.htm
https://www.tutorialspoint.com/jsf/jsf_message_tag.htm

22
h:messages

Renders all message for JSF UI Components.

23
f:param

Pass parameters to JSF UI Component.

24
f:attribute

Pass attribute to a JSF UI Component.

25
f:setPropertyActionListener

Sets value of a managed bean's property.

JSF - h:inputText

The h:inputText tag renders an HTML input element of the type "text".

JSF Tag

<h:inputText value = "Hello World!" />

Rendered Output

<input type = "text" name = "j_idt6:j_idt8" value = "Hello World!" />

Tag Attributes

S.N

o
Attribute & Description

1 id

Identifier for a component

2 binding

Reference to the component that can be used in a backing bean

3 rendered

A boolean; false suppresses rendering

4 styleClass

Cascading stylesheet (CSS) class name

5 value

A component’s value, typically a value binding

6 valueChangeListener

A method binding to a method that responds to value changes

7 converter

https://www.tutorialspoint.com/jsf/jsf_messages_tag.htm
https://www.tutorialspoint.com/jsf/jsf_param_tag.htm
https://www.tutorialspoint.com/jsf/jsf_attribute_tag.htm
https://www.tutorialspoint.com/jsf/jsf_setpropertyactionlistener_tag.htm
https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal
https://www.tutorialspoint.com/latest/courses?utm_source=tutorialspoint&utm_medium=tutorials_3p&utm_campaign=internal

Converter class name

8 validator

Class name of a validator that’s created and attached to a component

9 required

A boolean; if true, requires a value to be entered in the associated field

10 accesskey

A key, typically combined with a system-defined metakey, that gives focus to an element

11 accept

Comma-separated list of content types for a form

12
accept-charset

Comma- or space-separated list of character encodings for a form. The accept-charset attribute is

specified with the JSF HTML attribute named acceptcharset.

13 alt

Alternative text for nontextual elements such as images or applets

14 border

Pixel value for an element’s border width

15 charset

Character encoding for a linked resource

16 coords

Coordinates for an element whose shape is a rectangle, circle, or polygon

17 dir

Direction for text. Valid values are ltr (left to right) and rtl (right to left).

18 disabled

Disabled state of an input element or button

19
hreflang

Base language of a resource specified with the href attribute; hreflang may only be used

with href

20 lang

Base language of an element’s attributes and text

21 maxlength

Maximum number of characters for text fields

22 readonly

Read-only state of an input field; the text can be selected in a readonly field but not edited

23 style

Inline style information

24 tabindex

Numerical value specifying a tab index

25 target

The name of a frame in which a document is opened

26
title

A title, used for accessibility, that describes an element. Visual browsers typically create tooltips

for the title’s value

27 type

Type of a link; for example, stylesheet

28 width

Width of an element

29 onblur

Element loses focus

30 onchange

Element’s value changes

31 onclick

Mouse button is clicked over the element

32 ondblclick

Mouse button is double-clicked over the element

33 onfocus

Element receives focus

34 onkeydown

Key is pressed

35 onkeypress

Key is pressed and subsequently released

36 onkeyup

Key is released

37 onmousedown

Mouse button is pressed over the element

38 onmousemove

Mouse moves over the element

39 onmouseout

Mouse leaves the element’s area

40 onmouseover

Mouse moves onto an element

41 onmouseup

Mouse button is released

42 onreset

Form is reset

43 onselect

Text is selected in an input field

44 immediate

Process validation early in the life cycle

Example Application

Let us create a test JSF application to test the above tag.

Step Description

1
Create a project with a name helloworld under a package com.tutorialspoint.test as explained in

the JSF - First Application chapter.

2 Modify home.xhtml as explained below. Keep the rest of the files unchanged.

3 Compile and run the application to make sure business logic is working as per the requirements.

4 Finally, build the application in the form of war file and deploy it in Apache Tomcat Webserver.

5 Launch your web application using appropriate URL as explained below in the last step.

home.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title>JSF Tutorial!</title>

 </head>

 <body>

 <h2>h:inputText example</h2>

 <hr />

 <h:form>

 <h3>Read-Only input text box</h3>

 <h:inputText value = "Hello World!" readonly = "true"/>

 <h3>Read-Only input text box</h3>

 <h:inputText value = "Hello World"/>

 </h:form>

 </body>

</html>

Once you are ready with all the changes done, let us compile and run the application as we did

in JSF - First Application chapter. If everything is fine with your application, this will produce

the following result.

JSF EXPRESSION

JSF provides a rich expression language. We can write normal operations using #{operation-

expression} notation. Following are some of the advantages of JSF Expression languages.

● Can reference bean properties where bean can be an object stored in request, session or

application scope or is a managed bean.

● Provides easy access to elements of a collection which can be a list, map or an array.

● Provides easy access to predefined objects such as a request.

● Arithmetic, logical and relational operations can be done using expression language.

● Automatic type conversion.

● Shows missing values as empty strings instead of NullPointerException.

Example Application

Let us create a test JSF application to test expression language.

Step Description

1 Create a project with a name helloworld under a package com.tutorialspoint.test as

explained in the JSF - First Application chapter.

2 Modify UserData.java under package com.tutorialspoint.test as explained below.

3 Modify home.xhtml as explained below. Keep the rest of the files unchanged.

4 Compile and run the application to make sure the business logic is working as per the

requirements.

5 Finally, build the application in the form of war file and deploy it in Apache Tomcat

Webserver.

6 Launch your web application using appropriate URL as explained below in the last step.

UserData.java

package com.tutorialspoint.test;

import java.io.Serializable;

import java.util.Date;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

@ManagedBean(name = "userData", eager = true)

@SessionScoped

public class UserData implements Serializable {

 private static final long serialVersionUID = 1L;

 private Date createTime = new Date();

 private String message = "Hello World!";

 public Date getCreateTime() {

 return(createTime);

 }

 public String getMessage() {

 return(message);

 }

}

home.xhtml

<?xml version = "1.0" encoding = "UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml"

 xmlns:f = "http://java.sun.com/jsf/core"

 xmlns:h = "http://java.sun.com/jsf/html">

 <h:head>

 <title>JSF Tutorial!</title>

 </h:head>

 <h:body>

 <h2>Expression Language Example</h2>

 Creation time:

 <h:outputText value = "#{userData.createTime}"/>

 Message:

 <h:outputText value = "#{userData.message}"/>

 </h:body>

</html>

Once you are ready with all the changes done, let us compile and run the application as we did

in JSF - First Application chapter. If everything is fine with your application, this will produce

the following result.

JSF Expression Language Result

