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Aim: 
The purpose of this course is to provide an understanding of the theory behind various video 

processing tasks. The course will extend the concepts from still images (spatial) to dynamic imagery 

(spatio-temporal). 

Course Outcomes: The Students will be able to 

CO1: 
Summarize the difference between analog and digital video, usage of digital videos, how 
digital videos are acquired, stored, different video file formats and spatio-temporal imagery. 

CO2: 
Outline the concept of motion analysis such as motion detection, estimation and 
compensation. 

  

CO3: 
Choose different video processing techniques such as enhancement, restoration and different 
filtering techniques. 

CO4: List out the fundamentals of video segmentation techniques and their applications   

CO5: 
Examine the real world to Identify as well as apply segmentation and tracking techniques to 
solve real-world video applications and propose solutions for the same following the ethics. 

CO6: Construct different video compression techniques and unified framework.    

REPRESENTATION OF DIGITAL VIDEO      9 

Basics of Video – Analog Video – Digital Videos – Introduction to Digital Video Processing -Video Sampling 

and Interpolation. 

MOTION DETECTION AND ESTIMATION      9 

Notation and Preliminaries - Motion Detection- Motion Estimation - Practical Motion Estimation Algorithms – 
Perspectives. 

VIDEO ENHANCEMENT AND RESTORATION      9 

Spatiotemporal Noise Filtering - Coding Artifact Reduction - Blotch Detection and Removal - Vinegar 
Syndrome Removal - Kinescope Moire Removal - Scratch Removal. 

VIDEO SEGMENTATION MOTIONAND TRACKING      9 

Scene Change Detection- Spatiotemporal Change Detection- Motion Segmentation- Simultaneous Motion 

Estimation and Segmentation- Semantic Video Object Segmentation - Motion Tracking in Video- Rigid Object 
Tracking- Articulated Object Tracking. 
VIDEO COMPRESSION AND UNIFIED FRAMEWORK      9 

Introduction to Video Compression - Digital Video Signals and Formats -Video Compression Techniques - 

Transform Coding: Introduction to the Video Encoding Standards - MPEG-1 - MPEG-2 - H.261 - A Unified 

Framework for Video Indexing , Summarization , Browsing , and Retrieval. 
     Total Periods: 45 

Text Book: 

1. A. Murat Tekalp, “Digital Video Processing, Pearson Education”, Prentice Hall U.S., 2015, ISBN: 

9780133991109 
2. AlBovik, “Essential Guide to Video Processing”, Academic Press, 2009, ISBN 978-0-12-37445 
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Course 

Outcomes 
Program Outcomes (POs) 

Program Specific 

Outcomes (PSOs) 
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4 

CO1 3    2       2 2 3  1 

CO2 3 2 2         2 3 2 1  

CO3 3 2  2        2 3 2 1 1 

CO4 3 2 2         2 2 2  1 

CO5 3 2  2        2 3 2   

CO6 3 2 2         2 3 3  1 

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) 
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191CS72 - Image and Video Analytics 

 

Unit-I Notes: 

Basics of Video:  

Video refers to pictorial (visual) information, including still images and time-

varying images. A still image is a spatial distribution of intensity that is constant 

with respect to time. A time-varying image is such that the spatial intensity pattern 

changes with time. 

 

Analog Video: 

Today most video recording, storage, and transmission is still in analog form. For 

example, images that we see on TV are recorded in the form of analog electrical 

signals, transmitted on the air by means of analog amplitude modulation, and 

stored on magnetic tape using video casette recorders as analog signals. 

 

Analog Video Signal 

The analog video signal refers to a one-dimensional (1-D) electrical signal f(t) of 

time that is obtained by sampling s,(x1, x2, f(t)) in the vertical ~2 and temporal 

coordinates. This periodic sampling process is called scanning. The signal f(t), 

then, captures the time-varying image intensity only along the scan lines, such as 

those shown in Figure 1.1. It also contains the timing information and the blanking 

signals needed to align the pictures correctly. 
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Analog Video Standards 

 

In the previous section, we considered a monochromatic video signal. However, 

most video signals of interest are in color, which can be approximated by a 

superposition of three primary intensity distributions. The tri-stimulus theory of 

color states that almost any color can be reproduced by appropriately mixing the 

three additive primaries, red (R), green (G) and blue (B). 

 

There exist several analog video signal standards, which have different image 

parameters (e.g., spatial and temporal resolution) and differ in the way they handle 

color. These can be grouped as: 

 Component analog video 

 Composite video 

 S-video (Y/C video) 

 

Composite video signal formats encode the chrominance components on top of the 

luminance signal for distribution as a single signal which has the same bandwidth 

as the luminance signal. There are different composite video formats, such as 

NTSC (National Television Systems Committee), PAL (Phase Alternation Line), 

and SECAM (Systeme Electronique Color Avec Memoire), being used in different 

countries around the world. 

 

Analog Video Equipment 

 

Analog video equipment can be classified as broadcast-quality, professional-

quality, and consumer-quality. Broadcast-quality equipment has the best 

performance, but is the most expensive. For consumer-quality equipment, cost and 

ease of use are the highest priorities. 

 

DIGITAL VIDEO 

 

We have been experiencing a digital revolution in the last couple of decades. 

Digital data and voice communications have long been around. Recently, hi-fi 

digital audio with CD-quality sound has become readily available in almost any 

personal computer and workstation. Now, technology is ready for landing full-

motion digital video on the desktop. 
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Digital Video Signal 

 

Almost all digital video systems use component representation of the color signal. 

Most color video cameras provide RGB outputs which are individually digitized. 

Component representation avoids the artifacts that result from composite encoding, 

provided that the input RGB signal has not been composite-encoded before. In 

digital video, there is no need for blanking or sync pulses, since a computer knows 

exactly where a new line starts as long as it knows the number of pixels per line. 

 

Digital Video Standards 

 

Exchange of digital video between different applications and products requires 

digital video format standards. Video data needs to be exchanged in compressed 

form, which leads to compression standards. 
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Why Digital Video? 

 

New developments in digital imaging technology and hardware are bringing 

together the TV, computer, and communications industries at an ever-increasing 

rate. The days when the local telephone company and the local cable TV company, 

as well as TV manufactures and computer manufacturers, will become fierce 

competitors are near [Sut 921. The emergence of better image compression 

algorithms, optical fiber networks, faster computers, dedicated video boards, and 

digital recording promise a variety of digital video and image communication 

products. 

 

Digital Video Processing 

 

Digital video processing refers to manipulation of the digital video bit stream. All 

known applications of digital video today require digital processing for data 

compression, In addition, some applications may benefit from additional 

processing for motion analysis, standards conversion, enhancement, and restoration 

in order to obtain better-quality images or extract some specific information. 

 

Digital processing of still images has found use in military, commercial, and 

consumer applications since the early 1960s. Space missions, surveillance imaging, 

night vision, computed tomography, magnetic resonance imaging, and fax 

machines are just some examples. What makes digital video processing different 

from still image processing is that video imagery contains a significant amount of 

temporal correlation (redundancy) between the frames. One may attempt to process 

video imagery as a sequence of still images, where each frame is processed 

independently. 

 

However, utilization of existing temporal redundancy by means of multi-frame 

processing techniques enables us to develop more effective algorithms, such as 

motion compensated filtering and motion-compensated prediction. In addition, 

some tasks, such as motion estimation or the analysis of a time-varying scene, 

obviously cannot be performed on the basis of a single image. 

 

Introduction to Digital Video Processing 

 

Digital video processing is the study of algorithms for processing moving images 

that are represented in digital format. Here, we distinguish digital video from 

digital still images, which are images that do not change with time – basically, 

digital photographs. 
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A digital video is a moving picture, or movie, that has been converted into a 

computer readable binary format consisting of logical 0s and 1s. Since video is 

dynamic, the visual content evolves with time and generally contains moving 

and/or changing objects. 

 

Digital video is ordinarily a function of three dimensions – two in space and one in 

time, as depicted in 

Fig. 1.1. Because of this, digital video processing is data intensive: significant 

bandwidth, computational, and storage resources are required to handle video 

streams in digital format. 
 

 
 

The Essential Guide to Image Processing, a tutorial is given on the processes of 

digitization of images, or analog-to-digital conversion (A/D conversion). This 

conversion process consists of two distinct sub processes: sampling, or conversion 

of a continuous-space/time video signal into a discrete-space/time video signal, and 

quantization, which is the process of converting a continuous-valued video that has 

a continuous range (set of values that it can take) of intensities and/or colors into a 

discrete-valued video that has a discrete range of intensities and/or colors. 

 

Quantization is a necessary precursor to digital processing or display, since the 

image intensities and/or colors must be represented with a finite precision (limited 

by word length) in a digital video processor or 

display device. 
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Video Sampling and Interpolation 

 

We consider only scalar-valued images, such as the luminance or one of the RGB 

components of a color image. All the theory and results can be applied in a 

straightforward way to multicomponent (or vector-valued) signals, such as color 

video by treating the sampling and reconstruction of each scalar component 

independently. 

 

Three main sections. First, the sampling lattice, the basic tool in the analysis of 

spatiotemporal sampling, is introduced. The issues involved in the sampling and 

reconstruction of continuous time-varying imagery are then addressed. 

 

SPATIOTEMPORAL SAMPLING STRUCTURES 

 

A continuous time-varying image fc (x, y, t ) is a scalar real-valued function of two 

spatial dimensions x and y and time t , usually observed in a rectangular spatial 

window W over some time interval T . 

 

The spatiotemporal region W _T is denoted as WT. The spatial window is of 

dimension pw _ph, where pw is the picture width and ph is the picture height. 

Since the absolute physical size of an image depends on the display device used, 

and the sampling density for a particular video signal may be variable, we choose 

to adopt the picture height ph as the basic unit of spatial distance, as is common in 

the broadcast video industry. 

 

The mathematical structure most useful in describing sampling of time-varying 

images is the lattice. A discussion of lattices from the point of view of video 

sampling can be found in [1] and [2]. Some of the main properties are summarized 

here. 

 



PSR Engineering College  Dept. of CSE Sivakasi 
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SAMPLING STRUCTURE CONVERSION 

 

There are numerous spatiotemporal sampling structures used for the digital 

representation of time-varying imagery. However, the vast majority of those in use 

fall into one of two categories corresponding to progressive or interlaced scanning 

with aligned horizontal sampling. 

 

A three-dimensional view of these two sampling lattices is shown in Fig. 2.7. It can 

be observed how the odd numbered horizontal lines in each frame from the 

progressive lattice (y/Y odd) in Fig. 2.7(a) have been delayed temporally by T/2 for 

the interlaced lattice of Fig. 2.7(b). 
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This situation is illustrated in Fig. 2.8. The continuous signal fc (x) is acquired on 

the lattice _1 using a physical camera modeled as in Fig. 2.4 with impulse response 

ha(x) to yield f (x). It is desired to estimate the signal fo(x) that would have been 

obtained if fc (x) was sampled on the lattice _2 with an ideal or theoretical camera 

having impulse response hoa(x). Note that since this camera is theoretical, the 

impulse response hoa(x) does not have to be realizable with  any particular 

technology. It can be optimized to give the best displayed image on _2 [3]. A 

system H, which can be linear or nonlinear, is then required to estimate fo(x) from f 

(x). 
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Frame-rate Conversion 

 

Consider first the case of pure frame-rate conversion. This applies when both the 

input and the output sampling structures are separable in space and time with the 

same spatial sampling structure, and where spatial aliasing is assumed to be 

negligible. The temporal sampling period is to be changed from T1 to T2. 

 

Pure Temporal Interpolation 

 

The most straightforward approach is pure temporal interpolation, where a 

temporal resampling is performed independently at each spatial location x. A 

typical application for this is increasing the frame rate in motion picture film from 

24 frames/s to 48 or 60 frames/s, giving significantly better motion rendition. 

 

Motion-compensated Interpolation 

 

It is clear that to correctly deal with a situation, such as in Fig. 2.4(c), it is 

necessary to adapt the interpolation to the local orientation of the spectrum, and 

thus to the velocity, as suggested in Fig. 2.9(b). This is called motion-compensated 

interpolation. 
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Spatiotemporal Sampling Structure Conversion 

 

We consider the case where both the spatial and the temporal sampling structures 

are changed, and when one or both of the input and output sampling structures is 

not separable in space and time (usually because of interlace). If the input sampling 

structure _1 is separable in space and time (as in Eq. (2.18)) and spatial aliasing is 

minimal, then the methods of the previous section can be combined with pure 

spatial interpolation. 

 

Deinterlacing 

 

Deinterlacing generally refers to a 2:1 interpolation from an interlaced grid to a 

progressive grid with sampling lattices 
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Video acquisition: 

 

Video capture is the process of converting an analog video signal—such as that 

produced by a video camera, DVD player, or television tuner—to digital video and 

sending it to local storage or to external circuitry. The resulting digital data are 

referred to as a digital video stream, or more often, simply video stream. 

Depending on the application, a video stream may be recorded as computer files, 

or sent to a video display, or both. 

 

The video sensor in a camcorder (or digital camera) is what makes a digital 

camcorder "digital." Put simply, an image sensor transforms the light captured by 

your camcorder's lens and turns it into a digital signal.  

That digitized light is processed and stored in your camcorder's memory as a 

digital video file you can later view on your computer or TV. 

There are two main types of camcorder image sensors: charged coupled device 

(CCD) and complementary metal oxide semiconductor (CMOS).  

 

Both types of image sensor technology contain hundreds of thousands or even 

millions of pixels. 

 

In a CCD image sensor, pixels capture light and move it toward the edge of the 

chip, where it's converted into a digital signal. In a CMOS sensor, the light is 

converted at the pixel itself. No electrical conveyor belt required. 

 

CCD Sensor: 

 

A CCD camera is a video camera that contains a charged-coupled device (CCD), 

which is a transistorized light sensor on an integrated circuit. In plain English, 

CCD devices convert or manipulate an electrical signal into some kind of output, 

including digital values. In cameras, CCD enables them to take in visual 

information and convert it into an image or video. They are, in other words, digital 

cameras. 

In terms of the working principle of CCD cameras, these video cameras capture an 

image and transfer it to the camera’s memory system to record it as electronic data. 

CCD cameras’ main accomplishment is the production of quality images without 

any distortion. Basically, the camera turns light into electricity. A CCD camera 

https://en.wikipedia.org/wiki/Analog_video
https://en.wikipedia.org/wiki/Video_camera
https://en.wikipedia.org/wiki/Digital_video
https://en.wikipedia.org/wiki/Computer_file
https://www.lifewire.com/best-digital-cameras-under-100-3897833
https://www.lifewire.com/cmos-image-sensor-493271
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forms light sensitive elements called pixels which sit next to each other and form a 

particular image. CCD cameras have been in production for a long period of time 

and tend to have high quality pixels that produce a higher quality, low-noise image 

than any other camera. 

 

CMOS Sensor:  

 

A CMOS sensor is an electronic chip that converts photons to electrons for digital 

processing. CMOS (complementary metal oxide semiconductor) sensors are used 

to create images in digital cameras, digital video cameras and digital CCTV 

cameras. 

 

The CMOS cells are surrounded by transistors, which amplify the charge of the 

electrons gathered by the cells, sending them across the chip by tiny wires in the 

chip’s circuitry. A digital-to-analog converter at one corner of the device reads the 

electrons and translates the differing charges of individual cells into pixels of 

various colors.  

 

CMOS’ low manufacturing cost makes it possible to create low-cost consumer 

devices. Advances in CMOS technology have made it possible for them to 

approach their competitor in high-end digital cameras, charge-coupled devices 

(CCD). In contrast to CMOS, CCD cells are not surrounded by transistors and 

must actively use power to gather light. This makes them less power-efficient but 

also enables the benefits of a lower-noise image and greater light sensitivity. 

 

Acronym Charged Couple Devices Complimentary Metal Oxide Semiconductor 

Cost More expensive Cheaper 

Shutter type Global Rolling 

Skew No Yes 

Wobble No Yes 

Partial exposure No Yes 

Vertical smear Yes No 

Noise Less More 

Power efficiency Less efficient More efficient 

 

https://www.techtarget.com/whatis/definition/transistor
https://www.techtarget.com/whatis/definition/pixel
https://www.techtarget.com/searchstorage/definition/charge-coupled-device
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Unit-II Notes:  

Motion Detection and Estimation 

• Introduction 

• The success of video as a medium is primarily due to the capture of motion; a single 

image provides snapshot of a scene, whereas a sequence of images also records 

scene’s dynamics.  

• Motion is equally important for video processing and compression for two reasons. 

• First, motion carries information about spatiotemporal relationships between 

objects in the field of view of a camera. This information can be used in applications 

such as traffic monitoring or security surveillance (Chapter 19), for example, to 

identify objects that move or those entering/leaving the scene. 

• . Second, image properties, such as intensity or color, have a very high correlation in 

the direction of motion, that is, they do not change significantly when tracked over 

time (the color of a car does not change as it moves across the camera field of view).  

• Motion can also be used in temporal filtering of video (Chapters 2 and 4); one-

dimensional filter applied along a motion trajectory can reduce noise without 

spatially blurring a frame.  

NOTATION AND PRELIMINARIES 

• Let I : T → R+ be the intensity of image sequence defined over spatial domain and temporal 

domain T .  

• Let x = (x1,x2)T ∈ and t ∈ T denote spatial and temporal positions of a point in this sequence, 

respectively. 

Binary Hypothesis Testing – positive / Negative 

• Hypothesis testing is a formal procedure for investigating our ideas about the world using 

statistics. It is used by scientists to test specific predictions, called hypotheses, by calculating 

how likely it is that a pattern or relationship between variables could have arisen by chance.  

• Let y be an observation and let Y be the associated random variable. Suppose that there are 

two hypotheses H0 and H1 with corresponding probability distributions P(Y = y|H0) and P(Y 

=y|H1), respectively.  

• The goal is to decide from which of the two distributions a given y is more likely to have 

been drawn 

• Clearly, four possibilities exist (true hypothesis/decision): H0/H0, H0/H1, H1/H0, and H1/H1. 

Although H0/H0 and H1/H1 correspond to correct choices, H0/H1 and H1/H0 are erroneous 



• Under the Bayes criterion, two a priori probabilities 0 and 1  1  0 are assigned to the two 

hypotheses H0 and H1, respectively, and a cost is assigned to each of the four scenarios 

listed above. 

• The quantity on the left is called the likelihood ratio and  is a constant dependent on the 

costs of the four scenarios. Since these costs are determined in advance,  is a fixed constant. 

If 0 and 1 are predetermined as well, the above hypothesis test compares the likelihood 

ratio with a fixed threshold.  

Markov Random Fields – Distribution Pixel Based 

 A Markov Random Field (MRF) is a graphical model of a joint probability distribution. It 

consists of an undirected graph in which the nodes represent random variables. Let be the 

set of random variables associated with the set of nodes S. 

 The equivalence between Markov random fields and Gibbs distributions is provided through 

the important Hammersley-Clifford theorem, which states that is a MRF on  with respect to 

N if and only if its probability distribution is a Gibbs distribution with respect to  and N.  

MAP Estimation - an estimate of an unknown quantity, that equals the mode of the posterior 

distribution 

• Let Y be a random field of observations, and let be a random field modeling the quantity we 

want to estimate based on Y . 

• Let y, be their respective realizations. For example, y could be a difference between two 

images, and could be a field of motion detection labels. To compute based on y, a powerful 

tool is the (MAP) estimation.  

MOTION DETECTION 

• Motion detection is, arguably, the simplest of the three motion-related tasks, that is, 

detection, estimation and segmentation. 

Threshold 

• Global Threshold  

• Local / Fixed Threshold 

•  The simplest thresholding methods replace each pixel in an image with a black pixel 

if the image intensity is less than a fixed value called the threshold. , or a white pixel 

if the pixel intensity is greater than that threshold.  

• Adaptive Threshold 

• Adaptive thresholding is the method where the threshold value is calculated for 

smaller regions and therefore, there will be different threshold values for different 

regions. 

 



Hypothesis Testing with Fixed Threshold 

• Fixed-threshold hypothesis testing belongs to the simplest motion detection algorithms as it 

requires few arithmetic operations. Several early motion detection methods belong to this 

class, although originally they were not developed . 

• The above pixel-based hypothesis test is not robust to noise in the image. 

Experimental Comparison of Motion Detection Methods 

• Figure 3.1 shows motion detection results on a typical urban surveillance video for the 

variational formulation (Fig. 3.1(a), bottom), frame-difference hypothesis test (Fig. 3.1(b)), 

stationary-only hypothesis test (Fig. 3.1(c)), and stationary/moving hypothesis test (Fig. 

3.1(d)). The latter three results are shown without and with Markov model (bottom). 

• In each case, the addition of Markov prior clearly improves the detection accuracy by 

reducing both false positives and misses. The object tunnels shown in Fig. 3.1(e) confirm the 

accuracy of detections and also illustrate the dynamic evolution of individual objects’ masks. 

 

 

Hypothesis Testing with Adaptive Threshold 

• The motion detection methods presented thus far assumed no knowledge about intensities 

of the moving object; PM was considered uniform. However, one may hope for a 

performance gain should amore accurate model of moving pixels be allowed. 

• To build the local-in-space model at position n, ideally, one needs to identify all pixels of a 

moving object to which n belongs. Clearly, this labeling is not known in advance but since a 



typical motion detection algorithm is both causal and iterative, one can use motion labels 

from previous frame or previous iteration. Below the latter approach is outlined. 

MAP MRF Formulation 

• Image segmentation has recently been studied in a framework of maximum a posteriori 

estimation for the Markov random field, where the cost function representing pixel-wise 

likelihood and inter-pixel smoothness should be minimized. 

• The common drawback of these studies is the decrease in performance when a foreground 

object and the background have similar colors. 

• The first term measures how well each label at n explains the observation k [n]. The other 

terms measure how contiguous the labels are in the image plane (Vs ) and in time (Vt ). Both 

Vs and Vt can be specified similarly to (3.15), thus favoring spatial and temporal similarity of 

the labels.  

MAP Variational Formulation 

• Variational methods and partial differential equations (PDE) based methods [6,7] have been 

introduced to explicitly account for intrinsic geometry in a variety of problems including 

image segmentation, mathematical morphology and image denoising. 

• The motion detection problem has been formulated in discrete domain; pixels were 

explicitly labeled as moving or stationary. Alternatively, as mentioned before, moving areas 

can be defined implicitly by closed contours; the problem can be formulated and solved in 

continuous domain, and the final solution–discretized. One possible approach is through 

variational formulation 

Motion Estimation 

• The knowledge of motion is essential for both the compression and processing of image 

sequences. 

• Methods explicitly reducing the number of bits needed to represent a video sequence will 

be classified as video compression techniques. 

• In motion-compensated temporal interpolation (Fig. 3.2) the task is to compute new images 

located between existing images of a video sequence (e.g., video frame rate conversion 

between NTSC and PAL scanning standards). 

• To develop a motion estimation algorithm, three important elements need to be considered: 

models, estimation criteria, and search strategies.  



 

• There exist two fundamental models in motion estimation: 

1. A model relating motion parameters to image intensities called an observation model. 

2. The computation of motion is carried out indirectly by examining intensity changes in 

time. 

Spatial Motion Models 

• The goal is to estimate the motion of image points, that is, the 2D motion or apparent 

motion. Such motion is a combination of projections of the motion of objects in a 3D scene 

and of 3D camera motion. 

• This type of motion depends on the following: 

1. image formation model, for example, perspective, orthographic projection.  

2. motion model of 3D object, for example, rigid-body with 3D translation and rotation, 3D 

affine motion. 

3. surface model of 3D object, for example, planar, parabolic.  

Temporal Motion Models 

• The trajectories of individual image points drawn in the (x, y, t ) space of an image sequence 

can be fairly arbitrary since they depend on object motion.  

• The model is based on two velocity (linear) variables and two acceleration (quadratic) 

variables a  (a1,a2)T , thus accounting for second-order effects.  

• This model has been demonstrated to greatly benefit such motion-critical tasks as frame 

rate conversion [21] because of its improved handling of variable-speed motion present in 

typical videoconferencing images (e.g., hand gestures, facial expressions).  

Region of Support 

• The set of points x to which spatial and temporal motion models apply is called the region 

of support, denoted by R. 

•  The selection of a motion model and region of support is one of the major factors 

determining the precision of the resulting motion parameter estimates. 



• Typically, the region of support for a motion model belongs to one of the four types listed 

below. 

1. R = the whole image - A single motion model applies to all image points.( Single Object) 

2. R = one pixel - This model applies to a single image point.( Multiple Objects) 

3. R = rectangular block of pixels - This motion model applies to a rectangular (or square) block 

of image points.(Digital Video Compression Models – Spatial / Temporal) 

4. R = irregularly-shaped region - This model applies to all pixels in region R of arbitrary shape.( 

3D surface / 3D motion objects)  

 

 

Observation Models  

• Since the goal is to estimate motion based on intensity variations in time, the relationship 

between motion parameters and image intensities plays a very important role. 

• The usual, and reasonable, assumption made in this context is that objects do not change 

their appearance as they move, that is, image intensity remains constant along motion 

trajectory. 

Estimation Criteria 

• 1. Pixel-Domain Criteria - discrete version of the constant-intensity assumption.  

• 2. Frequency-Domain Criteria - (2D) Fourier transform of the intensity signal.  

• 3. Regularization - maintain motion resolution at the level of original images, the pixel-wise 

motion constraint.  

• 4. Bayesian Criteria - Bayesian criteria form a very powerful priori probability distribution.  

 

Practical Motion Estimation Algorithms 

Global Motion Estimation 

 Global motion estimation (GME) is a technique that attempts to map one image 

onto another with a simple four-corner pin. 



 This differs from local motion estimation (LME), which attempts to find where each 

individual pixel in the image is in the other image. 

 GME is much cheaper to compute than LME, but gives you less information about 

the image. 

 Nevertheless, it is still very powerful for a variety of applications. 

 translation - which allows the four corners to translate by the same amount, 

 rotation - which allows the corners to rotate about their center, 

 scale - which allows the size of the area defined by the corners to change, 

 perspective - which allows the angles at the corners to change, so that the area defined by 

them is no longer a rectangle. 

 Why do we want to estimate the global motion? 

  – Panoramic stitching  

 – Medical image registration  

 – Change detection  

 – Video stabilization  

 – Moving object detection  

Block Matching 

A block matching algorithm involves dividing the current frame of a video into macroblocks and 

comparing each of the macroblocks with a corresponding block and its adjacent neighbors in a 

nearby frame of the video (sometimes just the previous one). 

 

 

 



The block-based motion estimation algorithm is mainly aimed to estimate the motion (motion vector) 

between macro block of current frame and perfectly matched candidate block of reference frame. The 

simple matching criterion is sum of absolute difference (SAD). 

 

 

Phase Correlation 

• Phase correlation is an approach to estimate the relative translative offset between two 

similar images (digital image correlation) or other data sets. It is commonly used in image 

registration and relies on a frequency-domain representation of the data, usually calculated 

by fast Fourier transforms. 

 

 

 Divide 

 Compute 

 take the inverse FFT 

• Use the dominant peak coordinates as the candidate vectors for 1616-pixel block matching. 

 

 

 



Optical Flow via Regularization 

• Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges 

in a visual scene caused by the relative motion between an observer and a scene. Optical 

flow can also be defined as the distribution of apparent velocities of movement of 

brightness pattern in an image. 

• Optical flow, or motion estimation, is a fundamental method of calculating the motion of 

image intensities, which may be ascribed to the motion of objects in the scene. Optical 

flow is an extremely fundamental concept that is utilized in one form or another in most 

video-processing algorithms. 

MAP Estimation of Dense Motion 

• In Bayesian statistics, a maximum a posteriori probability (MAP) estimate is an estimate of 

an unknown quantity, that equals the mode of the posterior distribution. The MAP can be 

used to obtain a point estimate of an unobserved quantity on the basis of empirical data. 
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Unit-III Notes:  

Video Enhancement and Restoration 

Introduction:  

Even with the advancing camera and digital recording technology, there are many situations in which 
recorded image sequences—or video for short—may suffer from severe  degradations. The poor quality 
of recorded image sequences may be due to, for instance, the imperfect or uncontrollable recording 
conditions, such as one encounters in astronomy, forensic sciences, and medical imaging. Video 
enhancement and restoration has always been important in these application areas not only to improve 
the visual quality but also to increase the performance of subsequent tasks such as analysis and 
interpretation. 
 
Another important application of video enhancement and restoration is preserving motion pictures and 
video tapes recorded over the last century. These unique records of historic, artistic, and cultural 
developments are deteriorating rapidly due to aging effects of the physical reels of film and magnetic 
tapes that carry the information. The preservation of these fragile archives is of interest not only to 
professional archivists but also to broadcasters as a cheap alternative to fill the many television channels 
that have come available with digital broadcasting. 
 
An important difference between the enhancement and restoration of 2D images and video is the amount 
of data to be processed. While for the quality improvement of important images elaborate processing is 
still feasible, this is no longer true for the absolutely huge amounts of pictorial information encountered in 
medical sequences and film/video archives. 
 
The most common artifact encountered in the above-mentioned applications is noise. Over the last two 
decades, an enormous amount of research has focused on the problem of enhancing and restoring 2D 
images. Clearly, the resulting spatial methods are also applicable to image sequences, but such an 
approach implicitly assumes that the individual pictures of the image sequence, or frames, are temporally 
independent. By ignoring the temporal correlation that exists, suboptimal results may be obtained, and 
the spatial intra frame filters tend to introduce temporal artifacts in the restored image sequences. 
 
 

 
 
 
 
 
 
 
 



SPATIOTEMPORAL NOISE FILTERING 
 
Any recorded signal is affected by noise, no matter how precise the recording equipment. The sources of 
noise that can corrupt an image sequence are numerous (see Chapter 7 of The Essential Guide to Image 
Processing [1]). Examples of the more prevalent ones include camera noise, shot noise originating in 
electronic hardware and the storage on magnetic tape, thermal noise, and granular noise on film. 
 

The objective of noise reduction is to make an estimate ˆ f (n,k) of the original image sequence given only 

the observed noisy image sequence g (n,k). Many different approaches toward noise reduction are 
known, including optimal linear filtering, nonlinear filtering, scale-space processing, and Bayesian 
techniques. In this section, we discuss successively the class of linear image sequence filters, OS filters, 
and multiresolution filters. 
 

Linear Filters 
 
Temporally Averaging Filters 
 

 

 
 

 



Temporally Recursive Filters 
 
A disadvantage of the temporal filter (4.2) and spatiotemporal filter (4.7) is that they need to buffer several 
frames of an image sequence. Alternatively, a recursive filter structure can be used that generally needs 
to buffer fewer (usually only one) frames. 
 
More elaborate variations of (4.10) make use of a local estimate of the signal’s mean within a 
spatiotemporal neighborhood. Furthermore, Eq. (4.9) can also be cast into a formal 3D motion-

compensated Kalman estimator structure [12, 13]. In this case, the prediction ˆ fb(n,k) depends directly on 

the dynamic spatiotemporal state-space equations used for modeling the image sequence. 
 

Order-Statistic Filters 
 
Order-statistic filters are nonlinear variants of weighted-averaging filters. The distinction is that in OS 
filters the observed noisy data—usually taken from a small spatiotemporal window—is ordered before 
being used. Because of the ordering operation, correlation information is ignored in favor of magnitude 
information. Examples of simple OS filters are the minimum operator, maximum operator, and median 
operator. OS filters are often applied in directional filtering. 

 

 
 
An additional advantage of ordering the noisy observation prior to filtering is that outliers can easily be 
detected. For instance, with a statistical test—such as the rank order test [16]—the observed noisy values 
within the spatiotemporal window S that are significantly different from the intensity g (n,k) can be 
detected. 
 
 
 
 
 
 
 
 
 



 
 
Multiresolution Filters 
 
 
The multiresolution representation of 2D images has become quite popular for analysis and compression 
purposes [17]. This signal representation is also useful for image sequence restoration. The fundamental 
idea is that if an appropriate decomposition into bands of different spatial and temporal resolutions and 
orientations is carried out, the energy of the structured signal will locally be concentrated in selected 
bands, whereas the noise is spread out over all bands. 
 
The discrete wavelet transform has been widely used for decomposing one dimensional and 
multidimensional signal into bands. 
 

 
 
 
 
 
 
 
 



The Simoncelli pyramid gives a spatial decomposition of each frame into bands of different resolution and 
orientation. The extension to temporal dimension is obtained by temporally decomposing each of the 
spatial resolution and orientation bands using a regular wavelet transform. The low-pass and high-pass 
filters are operated along the motion trajectory to avoid blurring of moving objects. The resulting motion 
compensated spatiotemporal wavelet coefficients are filtered by one of the coring functions, followed by 
the reconstruction of the video frame by an inverse wavelet transformation and Simoncelli pyramid 
reconstruction. 
 

 

 
 

 



CODING ARTIFACT REDUCTION 
 
The call for coding artifact reduction started with the introduction of digital transmission and storage. 
Theoretically, digital transmission can be lossless, but in practice, the available channel bandwidth makes 
lossy compression necessary, which results in visible artifacts. 
 
The block-based DCT is among the most popular transform techniques and has been widely used in 
image and video compression. It is the core of several industry standards of image and video 
compression, such as JPEG, H.26x, and MPEG-x. But these block based codecs suffer from annoying 
blocking artifacts when they are applied in low bit rate coding to obtain a reasonable compression ratio. 
 
The quantization is the lossy stage because the original values of the DCT coefficients are permanently 
lost. Because each block is encoded separately, there may emerge visible discontinuities along block 
boundaries of the decoded image frame, commonly defined as blocking artifacts. Also ringing, blurring, 
and mosquito noise can be introduced as a consequence of omitting the high frequencies by truncating 
the DCT coefficients [21]. Generally speaking, increasing coding bit rate can improve the quality of the 
reconstructed image/video, but it is limited by channel bandwidth or storage capacity. 

 
Artifact Reduction in the Spatial Domain 
 
Due to horizontal and vertical “edges” or lines demarking the block grid, there are additional high 
frequencies in the spectrum of the decoded video signal. The simplest remedy would be the application of 
low-pass filtering to suppress those frequencies. Initially, Gaussian low-pass filtering with a high-
frequency emphasis has been proposed, or Gaussian filtering only applied to pixels near the block 
boundaries. The general drawback of these early methods is the loss of high frequencies and excessive 
blurring of true edges. 
 
To overcome these drawbacks, adaptive deblocking algorithms have been proposed.In general, adaptive 
filtering requires a classification step to determine whether a block is amonotone one or contains an edge, 
followed by a (non) linear filtering step. If a block is monotone, a 2D filtering is applied; otherwise 1D 
directional filtering is applied [23, 24]. 
 
Finally, we mention the so-called projection onto convex sets (POCS)-based methods for blocking 
artifacts reduction, originating from image restoration. One tries to use a priori information about the 
original image data to iteratively restore a degraded (sub)image. The convergence behavior can be 
explained by the theory of POCS. In blockiness reduction, the general assumption is that that the input 
image is highly correlated so that similar frequency characteristics are maintained between adjacent 
blocks. If we are able to detect the high-frequency components that are not present within blocks, we can 
consider them the result of the blocking artifact. Some of the popular constraints such as the intensity and 
the smoothness constraint as well as other information about the POCS technique can be found in [26]. 
The proposed method [27] shows that blocking artifacts can be significantly alleviated, while the original 
high-frequency components, such as  edges, are faithfully preserved. Although quite effective for still 
pictures, these POCS based methods are less practical for real-time video post processing 
implementations due to their computationally demanding iterative nature. 
 

Artifact Reduction in the Frequency Domain 
 
We have seen that spatial domain methods apply low-pass filtering and as such result in blurring of the 
picture. To alleviate this problem, we have discussed a few advanced methods as well. Relatively 
speaking, only a few approaches in the literature have tackled the problem of blockiness reduction in the 
frequency domain. These methods can either use coefficients available in the bit stream or re-compute 
DCT coefficients in the postprocessing. 
 
 



An early method for removing blocking effects is proposed in [28]. It exploits the correlation between 
intensity values of boundary pixels of two neighboring blocks. Specifically, it is based on the empirical 
observation that quantization of theDCT coefficients of two neighboring blocks increases the mean 
squared difference of slope (MSDS) between the neighboring pixels on their boundaries. Therefore, 
among all permissible inverse quantized coefficients, the set that minimizes this MSDS is most likely to 
decrease the blocking effect. This minimization problem can be formulated as a computationally 
intensive quadratic programming (QP) problem. 
 

BLOTCH DETECTION AND REMOVAL 
 
Blotches are artifacts that are typically related to film. Dirt particles covering the film introduce bright or 
dark spots on the frames, and the mishandling or aging of film causes loss of gelatin covering the film. 
Figure 4.9(a) shows a film frame containing dark and bright spots: 
 

 
 
Blotch Detection 
 
Blotches have three characteristic properties that are exploited by blotch detection algorithms. First, 
blotches are temporally independent and therefore hardly ever occur at the same spatial location in 
successive frames. Second, the intensity of a blotch is significantly different from its neighboring 
uncorrupted intensities. Finally, blotches form coherent regions in a frame, as opposed to, for instance, 
spatiotemporal shot noise. 
 
 
 
 
 



 
 
There are various blotch detectors that exploit these characteristics. The first is a pixel-based blotch 
detector known as the spike-detector index (SDI). This method detects temporal discontinuities by 
comparing pixel intensities in the current frame with motion compensated reference intensities in the 
previous and following frames: 
 

 
 
Motion Vector Repair and Interpolating Corrupted Intensities 
 
Block-based motion estimators will generally find the correct motion vectors even in the presence of 
blotches, provided that the blotches are small enough. The disturbing effect of blotches is usually 
confined to small areas of the frames. Hierarchical motion estimators will experience little influence of the 
blotches at the lower resolution levels. At higher resolution levels, blotches covering larger parts of (at 
those levels) small blocks will significantly influence the motion estimation result. 
 

 
 



 
 

 
 

Video Inpainting 
 
In the last decade, several types of blotch removal methods were proposed that are able to fill in large 
missing areas in still images [34–38] Initially, these spatial restoration algorithms could be classified 
mainly in two categories: smoothness-preserving and texture synthesis. The first category comprises 
various inpainting approaches which usually propagate isophotes (i.e., level lines), gradients, or 
curvatures inside the artifact by means of variational models. 
 
As their naming suggests, texture synthesis methods do a better reconstruction of the textural content. 
However, they do not preserve object edges properly. This is done better with smoothness-preserving 
methods, which, on their turn, do not reproduce textural content. To combine the advantages of both 
methods, a third category of algorithms has appeared comprising hybrid methods that combine structure 
and texture reconstruction 
 
 
 
 
 
 
 
 



Restoration in Conditions of Difficult Object Motion 
 
Due to various types of complicated object movements [54], wrong motion vectors are sometimes 
extracted from the sequence. As a result, the spatiotemporal restoration process that follows may 
introduce unnecessary errors that are visually more disturbing than the blotches themselves. The 
extracted temporal information becomes unreliable, and a source of errors by itself. This triggered 
research on situations in which the motion vectors cannot be used. 
 
An initial solution to the problem was to detect areas of “pathological” motion and protect them against 
any restoration [54]. This solution, however, preserves the artifacts which happen to lie in those areas. To 
restore these artifacts, too, several solutions have been proposed, which discard the temporal information 
and use only spatial information coming from the same frame. 
 

 
 

VINEGAR SYNDROME REMOVAL 
 
Content stored on acetate-based film rolls faces deterioration at a progressive pace. These rolls can be 
affected by dozens of types of film artifacts, each of them having its own properties and showing up in 
particular circumstances. One of the major problems of all film archives is the vinegar syndrome [38]. This 
syndrome appears when, in the course of their chemical breakdown, the acetate-based film bases start to 
release acetic-acid, giving a characteristic vinegar smell. It is an irreversible process, and from a certain 
moment on, it becomes auto-catalytic, progressively fuelling itself in the course of time. 
 
The vinegar syndrome has various appearances. It may show up as a partial loss of color, bright or dark 
tree-like branches, nonuniformly blurred images.Here, we only focus on one type of vinegar syndrome, 
namely the partial loss of color. 
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VIDEO SEGMENTATION AND TRACKING 

Introduction:  
 

Video segmentation refers to partitioning video into spatial, temporal, or spatiotemporal regions 
that are homogeneous in some feature space  

 
It is an integral part of many video analysis and coding problems, including (i) video summarization, 

indexing, and retrieval, (ii) advanced video coding, (iii) video authoring and editing, (iv) improved motion 
(optical flow) estimation, (v) 3D motion and structure estimation with multiple moving objects [1–3], and (vi) 
video surveillance/understanding. 

 
The first three applications concern multimedia services, which require temporal segmentation of 

video intoshots or groups of pictures (GoP). The latter three are computer vision applications, where 
spatiotemporal segmentation helps to identify foreground and background objects, as well as optical flow 
boundaries (motion edges) and occlusion regions. 

 
Factors that affect the choice of a specific segmentation method include the following: 

1) ■ Real-time performance 
2) Precision of segmentation 
3) Scene complexity 

 
SCENE CHANGE DETECTION 
 
     

Scene change or shot boundary detection is a relatively easy segmentation problem since it is one 
dimensional, along the temporal dimension. Shot boundary detection methods locate temporal 
discontinuities, that is, frames across which large differences are observed in some feature space, usually 
a combination of color and motion. 
Temporal discontinuities may be abrupt (cuts) or gradual (special effects, such as wipes and fades). It is 
easier to detect cuts than special effects. The simplest approach for detecting temporal discontinuities is 
to quantify frame differences in the pixel intensity domain. 
Videos are almost always stored and transmitted in compressed form. Detection of scene changes in real 
time poses a challenge in many applications since decompressing and processing video data sequentially 
requires significant computational resources. Hence, the need for scene segmentation algorithms in the 
compressed domain (without completely decoding the bit stream). 
 
SPATIOTEMPORAL CHANGE DETECTION 
 
Change detection methods segment each frame into two regions, namely changed and unchanged regions 
in the case of a static camera or global and local motion regions in the case of a moving camera [22]. This 
section deals only with the former case, where unchanged regions correspond to the background (null 
hypothesis) and changed regions to the foreground object(s) or uncovered (occlusion) areas. 
 
Various change detection methods in the literature differ according to (i) what features and background 
model are used, (ii) what distance metrics are used, and (iii) what kind of threshold and background model 
adaptation rules are used. 



The simplest method to detect changes between two registered frames would be to analyze the frame 
difference (FD) image, which is given by FDk,r(x) s(x,k) 
                                                                                                                                                                                           
s(x,r), (6.1) where x (x1,x2) denotes pixel location and s(x,k) stands for the intensity value at pixel x in 
frame k. FD image shows the pixel-by-pixel difference between the current image k and the reference 
image r. 
 

Temporal Integration:  
 
An important consideration is to add memory to the motion detection process to ensure both spatial and 
temporal continuity of the changed regions at each frame. This can be achieved in a number of different 
ways, including temporal filtering (integration) of the intensity values across multiple frames before 
thresholding and postprocessing of labels after thresholding. 
 
An alternative procedure that was adopted by MPEG-4 as a non-normative tool considers postprocessing 
of labels [25]. First, scene changes are detected. Within each scene (shot), an initial change detection 
mask is estimated between successive pairs of frames by global thresholding of the FD function. 
 
Combination with Spatial Segmentation 
 
Another consideration is to enforce consistency of the boundaries of the changed regions with spatial 
edge locations at each frame. This may be accomplished by first segmenting each frame into uniform color 
and/or texture regions. Next, each region resulting from the spatial segmentation is labeled as changed 
or unchanged as a whole as opposed to labeling each pixel independently. 
 
 

 MOTION SEGMENTATION 

 

Motion segmentation (also known as optical flow segmentation) methods label pixels (or optical flow 
vectors) at each frame that are associated with independently moving part of a part of a scene. The region 
boundaries may or may not be pixel-accurate or semantically meaningful. For example, a single object 
with articulated motion may be segmented into multiple regions. 
 
Motion segmentation is closely related to two other problems, motion (change) detection and motion 
estimation. Change detection is a special case of motion segmentation with only two regions, namely 
changed and unchanged regions (in the case of a static camera) or global and local motion regions (in the 
case of a moving camera). An important distinction between change detection and motion segmentation 
is that the former can be achieved without motion estimation if the scene is recorded with a static camera. 
Change detection in the case of a moving camera and general motion segmentation, on the other hand, 
requires some sort of global and/or local motion estimation either explicitly or implicitly. 
 
In general, application of standard image segmentation methods directly to estimated optical flow vectors 
may not yield meaningful results, since an object moving in 3D usually generates a spatially varying optical 
flow field [28]. For example, in the case of a rotating object, there is no flow at the center of the rotation, 
and the magnitude of the flow vectors grows as we move away from the center of rotation. Therefore, a 
parametric model-based approach, where we assume that the motion field can be described by a set of K 
parametric models, is usually adopted. In parametric motion segmentation, the model parameters are 
the motion features. Then, motion segmentation algorithms aim to determine the number of motion 



models that can adequately describe a scene, type/complexity of these motion models, and the spatial 
support of each motion model. Most commonly used types of parametric models are affine, perspective, 
and quadratic mappings, which assume a 3D planar surface in motion. In the case of a nonplanar object, 
the resulting optical flow can be modeled by a piecewise affine, perspective, or quadratic flow field if we 
approximate the object surface by a union of a small number of planar patches. Since each independently 
moving object and/or planar patch will best fit a different parametric model, the parametric approach 
may lead to over segmentation of motion in the case of nonplanar objects. 
 

 Dominant Motion Segmentation 
 

Segmentation by dominant motion analysis refers to extracting one object (with the dominant motion) 
from the scene at a time [24, 29, 30, 38]. Dominant motion segmentation can be considered a 
hierarchically structured top-down approach, which starts by fitting a single parametric motion model to 
the entire frame and then partitions the frame into two regions, those pixels which are well represented 
by this dominant motion model and those that are not. The process converges to the dominant motion 
model in a few iterations, each time fitting a new model to only those pixels that are well represented by 
the motion model in the previous iteration. The dominant motion may correspond to the camera 
(background) motion or a foreground object motion, whichever occupies a larger area in the frame. 
 
Segmentation Using Two Frames 
 
Motion estimation in the presence of more than one moving objects with unknown supports is a difficult 
problem. It was Burt et al. [29] who first showed that the motion of a 2D translating object can be 
accurately estimated using a multiresolution iterative approach even in the presence of other 
independently moving objects without prior knowledge of their supports. This is, however, not always 
possible with more sophisticated motion models (e.g., affine and perspective), which are more sensitive 
to presence of other moving objects in the region of analysis. 
 
To this effect, Irani et al. [24] proposed multistage parametric modeling of dominant motion. In this 
approach, first a translational motion model is employed over the whole image to obtain a rough estimate 
of the support of the dominant motion. The complexity of the model is then gradually increased to affine 
and projective models with refinement of the support of the object in between. The parameters of each 
model are estimated only over the support of the object based on the previously used model. 
 
Temporal Integration 
 
Temporal continuity of the estimated dominant objects can be facilitated by extending the temporal 
integration scheme introduced in Section 6.3.2. To this effect, we define an internal representation image  
 
Multiple Motions 
 
Multiple object segmentation can be achieved by repeating the same procedure on the residual image 
after each object is extracted. Once the first dominant object is segmented and tracked, the procedure 
can be repeated recursively to segment and track the next dominant object after excluding all pixels 
belonging to the first object from the region of analysis. Hence, the method is capable of segmenting 
multiple moving objects in a top-down fashion if a dominant motion exists at each stage. 
 
Multiple Motion Segmentation 



 
Multiple motion segmentation methods let multiple motion models compete against each other at each 
decision site. They consist of three basic steps, which are strongly interrelated: estimation of the number 
K of independent motions, estimation of model parameters for each motion, and determination of 
support of each model (segmentation labels). If we assume that we know the number K of motions and 
the K sets of motion parameters, then we can determine the support of each model. The segmentation 
procedure then assigns the label of the parametric motion vector that is closest to the estimated flow 
vector at each site. Alternatively, if we assume that we know the value of K and a segmentation map 
consisting of K regions, the parameters for each model can be computed in the least squares sense (either 
from estimated flow vectors or from spatiotemporal intensity values) over the support of the respective 
region. But since both the parameters and supports are unknown in reality, we have a chicken-egg 
problem; that is, we need to know the motion model parameters to find the segmentation labels, and the 
segmentation labels are needed to find the motion model parameters. 
 
 
 

Simultaneous Motion Estimation and Segmentation 
 

 
Up to now, we discussed methods to compute the segmentation labels from either precomputed optical 
flow or directly from intensity values but did not address how to compute an improved dense motion field 
along with the segmentation map. It is clear that the success of optical flow segmentation is closely related 
to the accuracy of the estimated optical flow field (in the case of using precomputed flow values) and vice 
versa. 

 
 It follows that optical flow estimation and segmentation should be addressed simulta-neously for best 
results. Here, we present a simultaneous Bayesian approach based on are presentation of the motion field 
as the sum of a parametric field and a residual field. The interdependence of optical flow and 
segmentation fields is expressed in terms of a Gibbs distribution within the MAP framework. The resulting 
optimization problem, to find estimates of a dense set of motion vectors, a set of segmentation labels, 
and a set of mapping parameters, is solved using the highest confidence first (HCF) and iterated 
conditional mode (ICM) algorithms. 
 

 Motion-Field Model and MAP Framework 
 

We model the optical flow field v(x) as the sum of a parametric flow field v (̃x) and a nonparametric 
residual field vr(x), which accounts for local motion and other modeling errors; that is, 
                              

 
with respect to the optical flow v1, v2, and the segmentation labels z, where v1 andv2 denote the 

lexicographic ordering of the first and second components of the flow vectors v(x)  [v1(x) v2(x)] T at each 



pixel x. Through careful modeling of these pdfs, we can express an interrelated set of constraints that help 

improve both optical flow and segmentation estimates.   

The first conditional pdf p(gk1 | gk ,v1,v2, z) provides a measure of how well the present displacement 

and segmentation estimates conform with the observed frame k  1 given frame k. It is modeled by a Gibbs 

distribution as 

 

is called the Gibbs potential. Here, the Gibbs potential corresponds to the norm square of the displaced 

FD (DFD) between the frames gk and gk1. Thus, maximization of  imposes the constraint that v(x) 

minimizes the DFD. 

The second term in the numerator in is the conditional pdf of the displacement field given the motion 

segmentation and the search image. It is also modeled by a Gibbs distribution, 

 

 

is the corresponding Gibbs potential, || · || denotes the Euclidian distance, and Nx is the set of neighbors 

of site x. The first term in  enforces a minimum norm estimate of the residual motion field vr(x); that is, it 

aims to minimize the deviation of the motion field v(x) from the parametric motion field v (̃x) while 

minimizing the DFD. 

 

Note that the parametric motion field v (̃x) is calculated from the set of model para-meters ai, i  1,...,K, 

which in turn is a function of v(x) and z(x). The second term in (6.48) imposes a piecewise local smoothness 



constraint on the optical flow estimates without introducing any extra variables such as line fields. 

Observe that this term is active only for those pixels in the neighborhood Nx, which share the same 

segmentation label with the site x. Thus, spatial smoothness is enforced only on the flow vectorsgenerated 

by a single object. The parameters  and allow for relative scaling of the two terms. 

 

The third term in (6.44) models the a priori probability of the segmentation field in a manner similar to 

that in MAP segmentation. It is given by 

 

where  denotes the sample space of the discrete-valued random vector z, and Q3 and U3(z) are as defined 

in  and, respectively. The dependence of the labels on the image intensity is usually neglected, although 

region boundaries generally coincide with intensity edges. 

 Two-Step Iteration Algorithm 

Maximizing the a posteriori pdf is equivalent to minimizing the cost function, 

                       E= U1(gk+1 | gk ,v1,v2, z)= U2(v1,v2 | z) + U3(z) 

that is composed of the potential functions .Direct minimization of with respect to all unknowns is an 

exceedingly difficult prob-lem, because the motion and segmentation fields constitute a large set of 

unknowns.To this effect, we perform the minimization of through the following two-step iterations [48]: 

1) Given the best available estimates of the parameters ai, i  1,...,K, and z, update the optical flow field v1, 

v2. This step involves the minimization of a modified cost function 

which is composed of all terms in  that contain v(x). Although the first term indicates how well v(x) explains 

our observations, the second and third terms impose prior constraints on the motion estimates that they 

should conform with the parametric flow model and that they should vary smoothly within each region. 

To minimize this energy function, we employ the HCF method recently proposed by Chou and Brown [49]. 

HCF is a deterministic method designed to efficiently handle the optimization of multivariable problems 

with neighborhood interactions. 

2) Update the segmentation field z, assuming that the optical flow field v(x)is known. This step involves 

the minimization of all the terms in (6.50), which contain z as well as v (̃x) 

The first term in (6.52) quantifies the consistency of v (̃x) and v(x). The second termis related to the a priori 

probability of the present configuration of the segmentation labels. We use an ICM procedure to optimize 

E2 [48]. The mapping parameters ai are updated by least squares estimation within each region. 



An initial estimate of the optical flow field can be found by using the Bayesian approach with a global 
smoothness constraint. Given this estimate, the segmentation labels can be initialized by a procedure 
similar to Wang and Adelson’s [37]. The determi- nation of the free parameters , and is a design problem. 
One strategy is to choose them to provide a dynamic range correction so that each term in the cost 
function  has equal emphasis. However, because the optimization is implemented in two steps, theratio 
/also becomes consequent. We recommend to select 1/5, depending on how well the motion field can be 
represented by a piecewise-parametric model andwhether we have a sufficient number of classes. 

 

A hierarchical implementation of this algorithm is also possible by forming successive low-pass filtered 

versions of the images gk and gk1. Thus, the quantities v1, v2, and z can be estimated at different 

resolutions. The results of each hierarchy are used to initialize the next lower level. Note that the Gibbsian 

model for the segmentation labels has been extended to include neighbors in scale by Kato et al. 

[53].Several other motion analysis approaches can be formulated as special cases of this framework. If we 

retain only the first and the third terms in (6.50) and assume that all sites possess the same segmentation 

label, then we have Bayesian motion estimation with a global smoothness constraint. The motion 

estimation algorithm proposed by Iu [47] uses the same two terms but replaces the (·) function by a local 

outlier rejection function. The motion estimation and region labeling algorithm proposed by Stiller [52] 

involve all terms in (6.50) except the first term in (6.48). Furthermore, the segmentation labels in Stiller’s 

algorithm are used merely as tokens to allow for a piecewise smoothness constraint on the flow field and 

do not attempt to enforce consistency of the flow vectors with a parametric component. We also note 

that the motion estimation method of Konrad and Dubois [51], which use line fields, are fundamentally 

different in that they model discontinuities in the motion field rather than modeling regions that 

correspond to different parametric motions. On the other hand, the motion segmentation algorithm of 

Murray and Buxton [34] (Section 6.4.2.3) employs only the second term in  and third term in (6.50) to 

model the conditional and prior pdf, respectively. Wang and Adelson [37] relies on the first term in (6.48) 

to compute the motion segmentation (Section 6.4.2.2). However, they also take the DFD of the parametric 

motion vectors into consideration when the closest match between the estimated and parametric motion 

vectors, represented by the second term, exceeds a threshold. 

SEMANTIC VIDEO OBJECT SEGMENTATION 

So far, we discussed methods for automatic motion segmentation. However, it is difficult to 
achieve semantically meaningful object segmentation using fully automatic methods based on 
low-level features such as motion, color, and texture. This is because a semantic object may 
contain multiple motions, colors, textures, and so on, and definition of seman- tic objects may 
depend on the context, which may not be possible to capture by low-level features. Thus, in this 
section, we present two approaches that can extract semantically meaningful objects using 
capture-specific information or user interaction. 

 

Chroma-Keying 



Chroma-keying is an object-based video capture technology where each video object is recorded 
individually in a special studio against a key color. The key color is selected such that it does not 
appear on the object to be captured. Then, the problem of extracting the object from each frame 
of video becomes one of color segmentation. Chroma-keyed video capture requires special 
attention to avoid shadows and other nonuniformity in the key color within a frame; otherwise, 
segmentation of key color may become a nontrivial problem. 

 

 

Semiautomatic Segmentation 

Because chroma-keying requires special studios and/or equipment to capture video objects, an 
alternative approach is interactive segmentation using automated tools to aid a human operator. To this 
effect, we assume that the contour of the first occurrence of the semantic object of interest is marked 
interactively by a human operator. Although detection of moving regions (by change detection methods) 
may result in semantically meaningful objects in well-constrained settings, in an unconstrained 
environment, user interaction is indeed the only way to define a semantically meaningful object 
unambigu-ously because only the user can know what is semantically meaningful in the context of an 
application. For example, if we have the video clip of a person carrying a ball, whether the ball and the 
person are two separate objects or a single object may depend on the application. Once the boundary of 
the object of interest is interactively determined in one or more key frames, its boundary in all other 
frames can be automatically computed by 2D motion tracking until the object exits the field of view. 

2D object tracking is closely related to the problem of spatiotemporal segmentation in the sense it 
provides temporally linked spatial segmentation maps. The general approach can be summarized as 
projecting the current segmentation map into the next frame using 2D motion information. The projected 
region can be updated by morphological or other operators using the color and edge information in the 
next frame. This update step allows fine tuning of the segmentation map to alleviate motion estimation 
errors as well as including newly uncovered regions in the segmentation map. Object tracking methods 
can be classified as feature-point-based, contour-based, and region-based track-ing methods[4]. Feature 
points are points on the object (current segmentation map) that can be used as markers, such as corner 
points. Motion of these points can be found by gradient-based (e.g., Lukas–Kanade) or matching-based 
(e.g., block matching) methods. Goodness of tracking results at each feature point can be evaluated at 
each frame and some feature points can be removed and others may be added [54]. In contour-based 
methods, the tracking step defines a polygonal or spline approximation of the boundary of the video 
object, which may be further refined automatically or interactively using appropriate software tools [55, 
56]. In region-based methods, the object region is repar-titioned into color- and/or motion-homogeneous 
subregions, and each subpartition isprojected into the next frame individually with or without using 
subregion connectivity constraints [57, 58]. 

 

Motion Tracking in Video 

 INTRODUCTION 



Motion tracking in digital video aims at deriving the trajectory over time of moving objects or, in certain 
cases, the trajectory of the camera. Tracking should be distinguished from object detection, that aims at 
estimating an object’s position and/or orientation in a certain image. However, detection and tracking are 
not totally unrelated. As a matter of fact, detection is involved in one of the two major approaches that 
one can adopt to devise a tracking algorithm [1]. According to this approach, object detection is per- 
formed on each frame of a video sequence and, subsequently, correspondences between objects 
detected in successive frames are sought. Thus, the trajectory of each object is established. According to 
the second approach, that essentially combines the detection and correspondence finding steps, the 
objects positions, and/or orientations in the next frame(s) are predicted, rather than detected, using 
information derived from the current (or previous) frames. The output of an object tracking algorithm 
depends on the application and the rep- resentation used to describe the object that is being tracked over 
time. Thus, this output can be, for example, the contour (silhouette) of the object, the 2D image 
coordinates of its center of mass, its 3D position in world coordinates, the posture of an articulated object 
(i.e., the set of joint angles that define the configuration in space of an articulated structure), and so 
forth.Object tracking has received considerable attention in the past few years mainly due to the wide 
range of its potential applications. One important application domainis advanced human–machine 
interfaces, where tracking, along with human motionanalysis and behavior understanding, plays a role 
complementary to speech recogni-tion and natural language understanding [2]. In this context, gesture 
recognition, body and face pose estimation, facial expression analysis and recognition are employed in an 
effort to enable machines to interact more cleverly with their users and also with their environment. In 
all these tasks, tracking constitutes an essential part of the overall process. 

 

RIGID OBJECT TRACKING 

 2D Rigid Object Tracking 

2D rigid object tracking tries to determine the motion of the projection of one or more rigid objects on 
the image plane. This motion is induced by the relative motion between the camera and the observed 
scene. A basic assumption behind 2D rigid motion tracking is that there is only one, rigid, relative motion 
between the camera and the observed scene [29]. This is the case of for example a moving car. This 
assumption rules out articulated objects, like a moving human body, or deformable objects like a piece of 
cloth. Methods for 2D rigid object tracking can be classified in different categories according to the tools 
that are used in tracking: 

■ region-based methods, 

■ contour-based methods, 

■ feature point-based methods, 

■ template-based methods. 

2D rigid object tracking methods sometimes constitute the basic building blocks for other categories of 
tracking algorithms. For example, an articulated object tracking algorithm may include a rigid object 
tracking module in order to track the rigid parts that make up the articulated structure. In the following, 
we will review the basic principles of the main categories of 2D rigid object tracking algorithms, describe 
the Bayesian framework frequently employed in object tracking algorithms and discuss the crucialtopic of 
occlusion handling. 



 

 3D Rigid Object Tracking 
 

3D rigid object tracking can be defined as the estimation of the position and orientation of a rigid object 
in 3D space from video data obtained from one or more video cameras. The location of a rigid object in 
the 3D space is determined by the position of its center of mass with respect to a world coordinate system, 
as well as the relative orientation of a coordinate system attached to its center of mass with respect to 
the world coordinate  system. Thus, 3D rigid object tracking has to estimate a total of six parameters 
although  in certain applications determining only the position (i.e., considering the object as a point mass) 
or only the orientation parameters might suffice. One of the most important applications of 3D rigid object 
tracking is 3D head tracking (often referred to as head pose estimation) which is being used as a 
preprocessing step or a building block in face recognition and verification, facial expression analysis, 
avatar animation, human- computer interaction, and model-based coding systems. Although the human 
head is not a rigid object, considering (and tracking) it as such (i.e., considering only the global head 
motion) is sufficient in a number of cases. Alternatively, head deformations can be taken into account in 
the tracking algorithm [142]. Other methods focus on tracking the facial features and expressions in two 
or three dimensions [143–148] but these fall outside the scope of this Section. 3D vehicle tracking is 
another application of 3D rigid object tracking [149]. Apart from its obvious importance as a stand-alone 
task, 3D rigid object tracking often constitutes a basic building block of 3D articulated object tracking 
methods, where one needs to estimate the position of rigid objects (links) that make up the articulated 
structure. 

Certain methods (e.g., [150]) use 2D tracking techniques to derive the 2D image- plane motion of the 
object of interest and then a Kalman filter for deriving the 3D motion parameters. Another approach for 
head pose estimation [90] employs tracking in 2D of salient facial features (eye corners and nose). 
Projective invariance of the cross- ratios of the eye corners and anthropometric statistics are subsequently 
used to compute orientation relative to the camera plane. A similar approach in [86] locates robust facial 
features (eyebrows, eyes, nostrils, mouth, cheeks, and chin) and uses the symmetric properties of certain 
facial features and rules of projective geometry to determine the direction of gaze. 

An approach for estimating 3D head orientation (i.e., the pan, tilt, and roll angles) in single-view video 
sequences is presented in [151]. Following initialization by a face detector, a variant of the tracking 
technique [103] (see Section 7.2.1.3) is used to track the face in the video sequence. The difference with 
[103] is that, for face tracking, the deformable surface model is used to approximate the image intensity 
surface of the entire face area. The generalized displacement vector (which, as already mentioned in 
Section 7.2.1.3, is involved in the equations that govern the deformation of the surface model) is used for 
face tracking. This vector is also used for head pose estimation. In more detail, the generalized 
displacement vector of a certain frame is provided, along with the head angles estimates from the 
previous frame, as input to three RBF interpolation networks that are trained off-line to estimate the pan, 
tilt, and roll angles. Training of the RBF networks (i.e., estimation of their parameters) is performed using 
example image sequences for which the head pose angles of each frame have been evaluated through 
the use of a magnetic head tracker. 

 



 

 

In [153], the automatic adaptation of the CANDIDE face model [156] to video data is presented. 
Matching is performed by finding the main facial features (eyes, mouth) using deformable templates. 
Then, the model is fit using global and local adaptation. The global adaptation step estimates 3D eye 
and mouth center positions of the face model and uses them to perform scaling, rotation, and 
translation of the face model in the 3D world. The system presented in [152] also involves finding the 
main facial features and performing global and local adaptation. Geometrical considerations are used 
to perform the adap-tation. The method involves a geometric model that is more detailed than 
CANDIDE and does not restrict the initialization images to depict the subject in a certain facial 
expression (e.g., with mouth closed). The two methods presented earlier are applied to head and 
shoulders image sequences as they aim at the initialization of coding algorithms for videophone 
sequences. 

                      

 

 

 

ARTICULATED OBJECT TRACKING 

A number of physical entities in real-world environments can only be represented using articulated 
structures, that is, structures composed of rigid parts (links) connected by joints, typically described 
through a tree-like kinematic hierarchy (Fig. 7.7). Living beings, such as humans or animals, exhibit 
such attributes. To be able to extract higher level information about the behavior of such entities (e.g., 



gesture recognition, understanding animal behavior, etc.), precise tracking of the corresponding 
articulated structures in 3D is necessary. Therefore, most of the articulated tracking algorithms 
attempt object tracking in a 3D space. Furthermore, even if the goal is to track an articulated object 
in 2D (i.e., in the frames of a video sequence), the methodology is similar to that of 3D articulated 
tracking algorithms. Moreover, many 2D articulated object tracking algorithms employ a 3D model of 
the articulated object. For all these reasons, most of this section covers 3D articulated object tracking, 
followed by a brief discussion on 2D articulated object tracking. 

3D Articulated Object Tracking 

3D articulated object tracking approaches can be model-free or model-based. In the former case, no 
model of the articulated structure is used. Instead, a bottom-up approach is used to combine image 
information extracted locally (edges, corners, etc.), to create coherent structures, such as the limbs 
of the human body. Obviously, this approach requires that the structures reconstructed are constantly 
visible in the images. 

 

Motion Tracking in Video 

FIGURE 7.7  A tree-like hierarchical representation of the human body. 

subset of model-free approaches for 3D human body (or human body parts) pose estimation and 
tracking are based on learning [159]. These methods often utilize the fact that the set of typical human 
poses is considerably smaller than the set of kinematically possible ones. Thus, these approaches try 
to devise methods for recovering the 3D body pose directly from image observations. A subcategory 
of learning-based approaches are the so-called example-based methods [160–163]. These methods 



store in an explicit way a large number of training images for which the corresponding 3D poses of 
the human body (or parts of it) are known. For given frame of an image sequence, stored images that 
are similar to this frame are retrieved and the pose in this frame is estimated by interpolating between 
the poses corresponding to the retrieved images. Some of these methods, for example [162, 163], are 
actually 3D pose estimation methods applicable to single images. However, one can easily incorporate 
them in a tracking framework, for example by applying them in each frame of a video sequence. In 
model-based approaches, a model of the articulated object is employed. The com-plexity of the model 
depends on the accuracy required in a specific application. The human body, for instance, is 
represented by rigid parts (resembling limbs) connected to each other at joints. Even such a minimal 
representation has around 30 degrees of freedom (DOF). 
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                                                VIDEO COMPRESSION AND UNIFIED FRAMEWORK 

Introduction to Video Compression  

Video or visual communications require significant amounts of information transmission. Video 

compression as considered here involves the bit rate reduction of the digital video signal carrying 

visual information. Traditional video-based compression, like other information compression 

techniques, focuses on eliminating redundancy and unimportant elements of the source. The degree 

to which the encoder reduces the bit rate is called its coding efficiency, or equivalently its inverse is 

termed the compression ratio, that is, 

                   coding efficiency (compression ratio)-1 encoded bit rate/decoded bit rate. 

 Compression can be a lossless or lossy operation. Due to the immense volume of video information, 

lossy operations are a key element used in video compression algorithms. The loss of information or 

distortion measure is usually evaluated using the mean square error (MSE), mean absolute error 

(MAE) criteria, or peak signal-to-reconstruction noise (PSNR),                                         

Video compression application requirements 

A wide variety of digital video applications currently exist. They range from simple low-resolution and 

bandwidth applications (multimedia, Picture Phone) to very high-resolution and bandwidth (HDTV) 

demands. This section will present requirements of current and future digital video applications and 

the demands they place on the video compression system. To demonstrate the importance of video 

compression, the transmission of digital video television signals is presented. The bandwidth required 

by a digital television signal is approximately one-half the number of picture elements (pixels) 

displayed per second. The analog video monitor pixel size in the vertical dimension is the distance 

between scanning lines, and the horizontal dimension is the distance the scanning spot moves during 

half cycle of the highest video signal transmission frequency. The video signal bandwidth is given by 

Eq. 8.3, 

                                         BW  =(cycles/frame)(FR) 

                                                 = (cycles/line)(NL)(FR) (8.3) 

                                                 = (0.5)(aspect ratio)(FR)(NL)(RH )/0.84, 

                                                 = (0.8)(FR)(NL)(RH ) 

where BW  video signal system bandwidth, FR  number of frames transmitted per second (fps), NL  

number of scanning lines per frame, and RH  horizontal resolution (lines), proportional to pixel 

resolution. 

The National Television Systems Committee (NTSC) picture aspect ratio is 4/3, the constant 0.5 is the 

ratio of the number of cycles to the number of lines, and the factor 0.84 is the fraction of the horizontal 

scanning interval that is devoted to signal transmission. 

The NTSC transmission standard used for television broadcasts in the United States has the following 

parameter values: FR  29.97 fps, NL  525 lines, and RH  340 lines. 

 



This yields an analog video system bandwidth BW of 4.2 MHz for the NTSC broadcast system. To 

transmit a color digital video signal, the digital pixel format must be defined. The digital color pixel is 

made of three components: one luminance (Y) component occupying 8 bits and two color difference 

components (U and V) each requiring 8 bits. The NTSC picture frame has 720  480  2 total luminance 

and color pixels. To transmit this information for an NTSC broadcast system at 29.97 fps, the following 

bandwidth is required: 

   Digital BW≅ 1/2 bit rate = 1/2(29.97 fps)* (24 bits/pixel)*  (720 *480  *2 pixels/frame)  =249MHz.   

                         This represents an increase of approximately 59 times the required NTSC system 

bandwidth and about 41 times the full transmission channel bandwidth (6 MHz) for current NTSC 

signals. HDTV picture resolution requires up to three times more raw bandwidth than this example! 

(Two transmission channels totaling 12 MHz are allocated for terrestrial HDTV transmissions.) It is 

clear from this example that terrestrial television broadcast systems have to use digital transmission 

and digital video compression to achieve the overall bit rate reduction and image quality required for 

HDTV signals. 

                         The example not only points out the significant system bandwidth requirements 

fordigital video information but also indirectly brings up the issue of digital video quality  

requirements. The trade-off between bit rate and quality or distortion is a fundamental issue facing 

the design of video compression systems. To this end, it is important to fully characterize an 

application’s video communications requirements before designing or selecting an appropriate video 

compression system. Factors that should be considered in the design and selection of a video 

compression system include the following items: 

                     ■ Video characteristics—Video parameters such as the dynamic range, source statistics, 

pixel resolution, and noise content can affect the performance of the compression system. 

                     ■ Transmission requirements—Transmission bit rate requirements determine the power 

of the compression system. Very high-transmission bandwidth, storage capacity, or quality 

requirements may necessitate lossless compression. Conversely,extremely low bit rate requirements 

may dictate compression systems that trade-off image quality for a large compression ratio. 

Progressive transmission is a key issue for selection of the compression system. It is generally used 

when the transmission bandwidth exceeds the compressed video bandwidth. Progressive coding 

refers to a multiresolution, hierarchical, or subband encoding of the video information. It allows for 

transmission and reconstruction of each resolution independently from low to high resolution. 

                            Channel errors affect system performance and the quality of the reconstructedvideo. 

Channel errors can affect the bit stream randomly or in burst fashion. The channel error characteristics 

can have different effects on different encoders and can range from local to global anomalies. In 

general, transmission error correction codes (ECCs) are used to mitigate the effect of channel errors, 

but awareness and knowledge of this issue is important. 

                             ■ Compression system characteristics and performance.The nature of video 

applications makes many demands on the video compression system. Interactive video applications 

such as videoconferencing demand that the video compression systems have symmetric capabilities. 

That is, each participant in the interactive video session must have the same video encoding and 

decoding capabilities, and that the system performance requirements must be met by both the 

encoder and decoder. On the other hand, television broadcast video has significantly greater 

performance requirements at the transmitter because it has the responsibility of providing real-time 

high-quality compressed video that meets the transmission channel capacity. 



                          Digital video system implementation requirements can vary significantly. Desktop 

televideo conferencing can be implemented using software encoding and decoding or may require 

specialized hardware and transmission capabilities to provide high-quality performance. The 

characteristics of the application will dictate the suitability of the video compression algorithm for 

particular system implementations. The importance of the encoder and system implementation 

decision cannot be overstated; system architectures and performance capabilities are changing at a 

rapid pace, and the choice of the best solution requires careful analysis of the all possible system and 

encoder alternatives. 

                          ■ Rate-distortion requirements—The rate-distortion requirement is a basic 

consideration in the selection of the video encoder. The video encoder must be able to provide the 

bit rate(s) and video fidelity (or range of video fidelity) required by the application. Otherwise, any 

aspect of the system may not meet specifications. For example, if the bit rate specification is exceeded 

to support a lower MSE, a larger than expected transmission error rate may cause a catastrophic 

system failure. 

                     ■ Standards requirements—Video encoder compatibility with existing and future 

standards is an important consideration if the digital video system is required to inter-operate with 

existing and/or future systems. A good example is that of a desktop videoconferencing application 

supporting a number of legacy video compression standards. This requires support of the older video 

encoding standards on new equipment designed for a newer incompatible standard. 

Videoconferencing equipment not supporting the old standards would not be capable or as capable 

to work in environments supporting older standards. These factors are shown in Table 8.1 to 

demonstrate video compression system requirements for some common video communications 

applications. The video 

 

 
Application 

 
Bit rate 
requirement 

 
Distortion 
requirements 

 
Transmission 
requirements 

 
Computationl 
requirements 

 
Standards 
requirements 

Network video 
on demand 

1.5 Mbps, 
10 Mbps 

High, 
medium 

Internet, 100 
Mbps LAN 

MPEG-1, 
MPEG-2/4 

MPEG-1, 
MPEG-2/4, 
MPEG-7 

Video phone 64 kbps High 
distortion 

ISDN p  64 H.261 
encoder, 
H.261 
decoder 

H.261 

Desktop 
multimedia 
video CDROM 

1.5 Mbps High 
Distortion to 
Medium 
  

PC channel MPEG-1 
decoder 

MPEG-1, 
MPEG-2, 
MPEG-7 

Desktop LAN 
videoconference 

10 Mbps Medium 
distortion 

Fast Ethernet 
100 Mbps 

Hardware 
encoders 
decoders 

MPEG-2/4, 
H.261 

Desktop WAN 
videoconference 

1.5 Mbps High 
distortion 

Ethernet Hardware 
encoders 
decoders 

MPEG-1, 
MPEG-4, 
H.263 



Desktop dial-up 
videoconference 

64 kbps Very High 
distortion 

POTS and 
Internet 

Software 
encoders 
decoders 

MPEG-4, 
H.263 

Digital satellite 
television 

 
10 Mbps 

Low 
distortion 

Fixed service 
satellites FSS 

MPEG-2 
decoder 

MPEG-2 
 

     
HDTV 

 
20  Mbps 

Low 
distortion 

12 MHz 
terrestrial 
link 

MPEG-2/4 
encoder 
decoder 

MPEG-2, 
MPEG-4 

HD DVD, DVD 36.5 Mbps 
20 Mbps 

Low 
distortion 

PC channel H.264, 
MPEG-2 
decoder 

H.264, 
MPEG-2 

 

compression system designer as a minimum should consider these factors in making a determination 

about the choice of video encoding algorithms and technology to implement. 

 

DIGITAL VIDEO SIGNALS AND FORMATS 

                         Video compression techniques make use of signal models to be able to use the body of 

digital signal analysis/processing theory and techniques that have been developed over the past 50 or 

so years. The design of a video compression system as represented by the generalized model 

introduced in Section 8.1 requires knowledge of the signal characteristics and the digital processes 

that are used to create the digital video signal. It is also highly desirable to understand video display 

systems and the behavior of the HVS. 

Sampling of Analog Video Signals 

                         Digital video information is generated by sampling the intensity of the original 

continuous analog video signal I(x, y,t) in three dimensions. The spatial component of the video signal 

is sampled in the horizontal and vertical dimensions (x, y), and the temporal component is sampled in 

the time dimension (t). This generates a series of digital images or image sequence I(i,j,k). Video signals 

that contain colorized information are usually decomposed into three parameters (YCrCb,YUV, RGB, 

etc.) whose intensities are likewise sampled in three dimensions. The sampling process inherently 

quantizes the video signal due to the digital word precision used to represent the intensity values. 

Therefore, the original analog signal can never be reproduced exactly, but for all intents and purposes, 

a high-quality digital video representation can be reproduced with arbitrary closeness to the original 

analog video signal. The topic of video sampling and interpolation is discussed in Chapter 2. 

                          An important result of sampling theory is the Nyquist Sampling Theorem. This theorem 

defines the conditions under which sampled analog signals can be “perfectly” reconstructed. If these 

conditions are not met, the resulting digital signal will contain aliased components, which introduce 

artifacts into the reconstruction. The Nyquist conditions are depicted graphically for the one-

dimensional (1D) case in Fig. 8.2. 

                          The 1D signal l is sampled at rate fs. It is band limited (as are all real world signals) in 

the frequency domain with an upper frequency bound of fB. According to the Nyquist Sampling 

Theorem, if a band-limited signal is sampled, the resulting Fourier spectrum is made up of the original 

signal spectrum |L| plus replicates of  the original spectrum spaced at integer multiples of the 

sampling frequency fs. Figure 8.2(a) depicts the magnitude |L| of the Fourier spectrum forl. The 



magnitude of the Fourier spectrum |Ls| for the sampled signal ls is shown for two cases. Figure 8.2(b) 

presents the case where the original signal l can be reconstructed by recovering the central spectral 

island. Figure 8.2(c) shows the case where the Nyquist sampling criteria has not been met and spectral 

overlap occurs. 

                         The spectral overlap is termed aliasing and occurs when fs < 2fB. When fs > 2fB, the 

original signal can be reconstructed by using a low-pass digital filter whose pass band is 

 

 

designed to recover |L|. These relationships provide a basic framework for the analysis and design of 

digital signal processing systems. 2D or spatial sampling is a simple extension of the 1D case. The 

Nyquist criteria have to be obeyed in both dimensions, that is, the sampling rate in the horizontal 

direction must be two times greater than the upper frequency bound in the horizontal direction, and 

the sampling rate in the vertical direction must be two times greater than the upper frequency bound 

in the vertical direction. In practice, spatial sampling grids are square so that an equal number of 

samples per unit length in each direction are collected. Charge coupled devices (CCDs) are typically 

used to spatially sample analog imagery and video 8.3 Digital Video Signals and Formats 243 The 

sampling grid spacing of these devices is more than sufficient to meet the Nyquist criteria for most 



resolution and application requirements. The electrical characteristics of CCDs have a greater effect 

on the image or video quality than its sampling grid size. 

Digital Video Formats 

                      Sampling is the process used to create the image sequences used for video and 

digitalvideo applications. Spatial sampling and quantization of a natural video signal digitizes the 

image plane into a 2D set of digital pixels that define a digital image. Temporal sampling of a natural 

video signal creates a sequence image frames typically used for motion pictures and television. The 

combination of spatial and temporal sampling creates a sequence of digital images termed digital 

video. As described earlier, the digital video signal intensity is defined as I (i, j, k), where 0 

                                                                                                                                                                                             

i 

                                                                                                                                                                                             

M , 0 

                                                                                                                                                                                             

j 

                                                                                                                                                                                             

N are the horizontal and vertical spatial coordinates, and 0 

                                                                                                                                                                                             

k is the temporal coordinate. The standard digital video formats introduced here are used in the 

broadcast for both analog and digital television, as well as computer video applications. Composite 

television signal digital broadcasting formats are included here due to their use in video compression 

standards, digital broadcasting, and standards format conversion applications. Knowledge of these 

digital video formats provides background for understanding the international video compression 

standards developed by the ITU and the ISO. These standards contain specific recommendations for 

use of the digital video formats described here. 

        Digital composite television parameters 

 

VIDEO COMPRESSION TECHNIQUES 

                      Video compression systems generally comprise two modes that reduce information 

redundancy in the spatial and the temporal domains. Spatial compression and quantization operates 

on a single image block, making use of the local image characteristics to reduce the bit rate. The spatial 

encoder also includes a VLC inserted after the quantization stage. The VLC stage generates a lossless 



encoding of the quantized image block. Temporal domain compression makes use of optical flow 

models (generally in the form of block-matching motion estimation methods) to identify and mitigate 

temporal redundancy. 

                       This section presents an overview of some widely accepted encoding techniques used in 

video compression systems. Entropy Encoders are lossless encoders that are used in the VLC stage of 

a video compression system. They are best used for information sources that are memoryless (sources 

in which each value is independently generated), and try to minimize the bit rate by assigning variable 

length codes for the input values according to the input probability density function (pdf). Predictive 

Coders are suited to information sources that have memory, that is, a source in which each value has 

a statistical dependency on some number of previous and/or adjacent values. Predictive coders can 

produce a new source pdf with significantly less statistical variation and entropy than the original. The 

transformed source can then be fed to a VLC to reduce the bit rate. Entropy and predictive coding are 

good examples for presenting the basic concepts of statistical coding theory. Block transformations 

are the major technique for representing spatial information in a format that is highly conducive to 

quantization and VLC encoding. Block transforms can provide a coding gain by packing most of the 

block energy into a fewer number of coefficients. The quantization stage of the video encoder is the 

central factor in determining the rate-distortion characteristics of a video compression system. It 

quantizes the block TCOEFF according to the bit rate and distortion specifications. MC takes advantage 

of the significant information redundancy in the temporal domain by creating current frame 

predictions based on block matching motion estimates between the current and previous image 

frames. MC generally achieves a significant increase in the video coding efficiency over pure spatial 

encoding. 

Entropy and Predictive Coding 

                         Entropy coding is an excellent starting point in the discussion of coding techniques 

because it makes use of many of the basic concepts introduced in the discipline of Information Theory 

or Statistical Communications Theory [11]. The discussion of VLC and predictive coders requires the 

use of information source models to lay the statistical foundation for the development of this class of 

encoder. An information source can be viewed as a process that generates a sequence of symbols 

from a finite alphabet. Video sources are generated from a sequence of image blocks that are 

generated from a “pixel” alphabet. The number of possible pixels that can be generated is 2n, when n 

is the number of bits per pixel. The order in which the image symbols are generated depends on how 

the image block is arranged or scanned into a sequence of symbols. Spatial encoders transform the 

statistical nature of the original image so that the resulting coefficient matrix can be scanned in a 

manner such that the resulting source or sequence of symbols contains significantly less information 

content. Two useful information sources are used in modeling video encoders: the Discrete 

Memoryless Source (DMS) and Markov sources. VLC coding is based on the DMS model, and the 

predictive coders are based on the Markov source models. The DMS is simply a source in which each 

symbol is generated independently. The symbols are statistically independent and the source is 

completely defined by its symbols/events and the set of probabilities for the occurrence for each 

symbol, that is, E  {e1,e2,...,en} and the set {p(e1),p(e2),...,p(en)}, where n is the number of symbols in 

the alphabet. It is useful to introduce the concept of entropy at this point. Entropy is defined as the 

average information content of the information source. The information content of a single event or 

symbol is defined as 

                                                 



The base of the logarithm is determined by the number of states used to represent the information 

source. Digital information sources use base 2 to define the information content using the number of 

bits per symbol or bit rate. The entropy of a digital source is further defined as the average information 

content of the source, that is, 

                                                            

     

This relationship suggests that the average number of bits per symbol required to represent the 

information content of the source is the entropy. The Noiseless Source Coding Theorem states that a 

source can be encoded with an average number of bits per source symbol that is arbitrarily close to 

the source entropy. So-called entropy encoders seek to find codes that perform close to the entropy 

of the source. Huffman and Arithmetic encoders are examples of entropy encoders. 

Block Transform Coding—The DCT        

       Block transform coding is widely used in image and video compression systems. The transforms 

used in video encoders are unitary, which means that the transform operation has an inverse 

operation that uniquely reconstructs the original input. The DCT successively operates on 8 8 image 

blocks and is used in the H.261, H.262, H.263, MPEG-1, MPEG-2, and MPEG-4 standards. Block 

transforms make use of the high degree of correlation between adjacent image pixels to provide 

energy compaction or coding gain in the transformed domain. The block transform coding gain G TC 

is defined as the logarithmic ratio of the arithmetic and geometric means of the transformed block 
variances (VAR), that is,    

                                          

Where the transformed image block is divided into N subbands, and o-2i is the variance of each 

subband i, for 0 ≤ i ≤ N - 1. GTC also measures the gain of block transform coding over pulse code 

modulation coding. The coding gain generated by a block transform is realized by packing most the 

original signal energy content into a small number of TCOEFF. This results in a lossless representation 

of the original signal that is more suitable for quantization. That is, there may be many TCOEFF 

containing little or no energy that can be completely eliminated. Spatial transforms should also be 

orthonormal, that is, generate uncorrelated coefficients, so that simple scalar quantization can be 

used to quantize the coefficients independently. 

The DCT is the most widely used block transform for digital image and video encoding. It is an 

orthonormal transform and has been found to perform close to the KLT [14] for first-order Markov 

sources. The DCT is defined on an 8 * 8 array of pixels, 

 



     

                                          

where i and j are the horizontal and vertical indices of the 8*8 spatial array, and u and v are the 

horizontal and vertical indices of the 8 8 coefficient array. The DCT is the chosen method for image 

transforms for a couple of important reasons. The DCT has fast O(n log n) implementations using real 

calculations. It is even simpler to compute than the DFT because it does not require the use of complex 

numbers. 

 

 

Quantization 

                    The quantization stage of the video encoder creates a lossy representation of the input. 

The input as discussed earlier should be conditioned with a particular method of quantization in mind. 

And vice versa, the quantizer should be well matched to the characteristicsof the input to meet or 

exceed the rate-distortion performance requirements. As always is the case, the quantizer has an 

effect on system performance that must be taken under consideration. Simple scalar versus VQ 

implementations can have significant system performance implications. 

 

 



MC and Estimation 

                       MC [17] is a technique created in the 1960s, which is used to increase the efficiency of 

video encoders. Motion compensated video encoders are implemented in three stages.The first stage 

estimates objective motion (motion estimation) between the previously reconstructed frame and the 

current frame. The second stage creates the current frame prediction (MC) using the motion estimates 

and the previously reconstructed frame. The final stage differentially encodes the prediction and the 

actual current frame as the prediction error. Therefore, the receiver reconstructs the current image 

only using the VLC encoded motion estimates and the spatially and VLC encoded prediction error. 

 

where k is the frame index, l is the temporal displacement in frames, M is the number of pixels in the 

horizontal direction, N is the number of pixels in the vertical direction of the image block, i and j are 

the pixel indices within the image block, and m and n are the indices of the search neighborhood in 

the horizontal and vertical directions. Therefore, the best match motion vector estimate MV (m = x, n 

= y) is the pixel displacement between the block Ik (i, j) in frame k and the best matched block I k-1 (i 

+x, j + y) in the displaced frame k – l. 

 

 

TRANSFORM CODING: INTRODUCTION TO THE VIDEO ENCODING STANDARDS 

                               The major internationally recognized video compression standards have been 

developed by the ISO, the International Electrotechnical Commission (IEC), and the ITU standards 

organizations. The Moving Pictures Experts Group (MPEG) is a working group operating within ISO and 



IEC. Since starting its activity in 1988, MPEG has produced ISO/IEC 11172 (MPEG-1, 1992), ISO/IEC 

13818 (MPEG-2, 1994), ISO/IEC 14496 (MPEG-4,1999), ISO/IEC 15938 (MPEG-7, 2001), and ISO/IEC 

21000 (MPEG-21, 2002). The ITU adopted the original CCITT Recommendation H.261: “Video Codec 

for Audio Visual Services at p  64 kbps,” in 1990, followed by the ITU-T SG 15 WP 15/1 Draft 

Recommendation H.262 (Infrastructure of audiovisual services—Coding of moving video) 1995, ITU-T 

SG 15 WP 15/1 Draft Recommendation H.263 (Video coding for low bit rate communications) 1995, 

and lastly the latest ITU Recommendation H.264: “Advanced Video Coding (AVC),” in 2002. H.264 and 

MPEG-4 Part 10 are equivalent video coding specifications as are H.262 and MPEG-2. 

                              The MPEG-1 specification was motivated by T1 network transmission speeds, the CD-

ROM, and the early multimedia capabilities of the desktop computer. It is intended for video coding 

up to the rate of 1.5 Mbps and is composed of five sections: System Configurations, Video Coding, 

Audio Coding, Compliance Testing, and Software for MPEG-1 Coding. The standard does not specify 

the actual video coding process, but only the syntax and semantics of the bit stream, and the video 

generation at the receiver. It does not accommodate interlaced video and only supports CIF quality 

format at 25 or 30 fps. 

Transform Coding Standard Example: The H.261 Video Encoder 

A brief description of the H261 video coding standard is offered in this section as an introduction to 

the techniques used in the transform-based video coding standards. The H.261 recommendation [4] 

is targeted at the videophone and videoconferencing application market running on connection-based 

ISDN at p  64 kbps, p  1,...,30. It explicitly defines the encoded bit-stream syntax and decoder, while 

leaving the encoder design to be compatible with the decoder specification. The video encoder is 

required to carry a delay of less than 150 ms so that it can operate in real-time bidirectional video-

conferencing applications. H.261 is part of a group of related ITU Recommendations that define Visual 

Telephony Systems. This group includes as follows: 

H.221 – Defines the frame structure for an audiovisual channel supporting 64–1920 kbps. 

H.230 – Defines frame control signals for audiovisual systems. 

H.242 – Defines audiovisual communications protocol for channels supporting up to 2 Mbps. 

H.261 – Defines the video encoder/decoder for audiovisual services at p  64 kbps. 

H.320 – Defines narrow-band audiovisual terminal equipment for p  64 kbps transmission. 

 



 

 

MPEG-1 Target Applications and Requirements 

                           The MPEG standard is a generic standard, which means that it is not limited to a 

particular application. A variety of digital storage media applications of MPEG-1 have been proposed 

based on the assumptions that acceptable video and audio quality can be obtained for a total 

bandwidth of about 1.5 Mbps. Typical storage media for these applications include VCD, digital audio 

tape (DAT), Winchester-type computer disks, and writable optical disks. The target applications are 

asymmetric applications where the compression process is performed once and the decompression 

process is required often. Examples of the asymmetric applications include VCD, video on demand 

(VOD), and video games.In these asymmetric applications, the encoding delay is not a concern. The 

encoders are needed only in small quantities while the decoders are needed in large volumes. Thus, 

the encoder complexity is not a concern while the decoder complexity needs to be low to result in 

low-cost decoders. 

                        The requirements for compressed video in digital storage media mandate several 

important features of the MPEG-1 compression algorithm. The important features include normal 

playback, frame-based random access and editing of video, reverse playback, fast forward/reverse 

play, encoding high-resolution still frames, robustness to uncorrectable errors, etc. The applications 

also require MPEG-1 to support flexible picture sizes and frame rates. Another requirement is that the 

encoding process can be performed in reasonable speed using existing hardware technologies and the 

decoder can be implemented in low cost. 

                       Since the MPEG-1 video coding algorithm was developed based on H.261, in the following  

sections, we will focus only on those parts that are different from H.261. 

 



 

Motion-Compensated Prediction with Half-Pixel Accuracy 

The motion estimation in H.261 is restricted to only integer-pixel accuracy. However, a moving object 

often moves to a position that is not on the pixel grid but between the pixels. MPEG-1 allows half-

pixel accuracy motion vectors. By estimating the displacement at a finer resolution, we can expect 

improved prediction and, thus, better performance than motion estimation with integer-pixel 

accuracy. As shown in Fig. 9.2, since there is no pixel value at the half-pixel locations, interpolation is 

required to produce the pixel values at the half-pixel positions. Bilinear interpolation is used in MPEG-

1 for its simplicity. As in H.261, the motion estimation is performed only on luminance blocks. The 

resulting motion vector is scaled by 2 and applied to the chrominance blocks. Motion vectors are 

differentially encoded with respect to the motion vector in the preceding adjacent macroblock. The 

reason is that the motion vectors of adjacent regions are highly correlated, as it is quite common to 

have relatively uniform motion over areas of the picture. 

 

 

 

 

 

 



MPEG-2 VIDEO CODING Standard 

Target Applications and Requirements 

                              MPEG-2 is primarily targeted at coding high-quality video at 4–15 Mbps for VOD, 

standard definition (SD) and high-definition (HD) digital television broadcasting, and digital storage 

media such as digital versatile disc (DVD). The requirements from MPEG-2 applications mandate 

several important features of the compression algorithm. Regarding picture quality, MPEG-2 needs to 

be able to provide good NTSC quality video at a bit rate of about 4–6 Mbps and transparent NTSC 

quality video at a bit rate of about 8–10 Mbps. It also needs to provide the capability of random access 

and quick channel switching by means of I-pictures in GOPs. Low-delay mode is specified for delay-

sensitive visual communications applications. MPEG-2 has scalable coding modes to support multiple 

grades of video quality, spatial resolutions, and frame rates for various applications. Error resilience 

options include intramotion vector, data partitioning, and scalable coding. Compatibility with the 

existing MPEG-1 video standard is another prominent feature provided by MPEG-2. For example, 

MPEG-2 decoders should be able to decode MPEG-1 bit streams. If scalable coding is used, the base 

layer of MPEG-2 signals can be decoded by a MPEG-1 decoder. Finally, it should allow reasonable 

complexity encoders and low-cost decoders be built with mature technology. Since MPEG-2 video is 

based heavily on MPEG-1, in the following sections, we will focus only on those features which are 

different from MPEG-1 video. 

 



 

A UNIFIED FRAMEWORK FOR INDEXING, SUMMARIZATION, BROWSING, AND RETRIEVAL 

                       The above two subsections described video browsing (using ToC generation and 

highlights extraction) and retrieval techniques separately. In this section, we integrate them into a 

unified framework to enable a user to go “back and forth” between browsing and retrieval. Going 

from the Index to the ToC or the Highlights, a user can get the context where the indexed entity is 

located. Going from the ToC or the Highlights to the Index, a user can pinpoint specific queries. Figure 

15.12 illustrates the unified framework. 

                        An essential part of the unified framework is composed of the weighted links. The links 

can be established between Index entities and scenes, groups, shots, and key frames 

 



 

 

 

in the ToC structure for scripted content and between Index entities and finer-resolution highlights, 

highlight candidates, audiovisual markers and plays/breaks. For scripted content, as a first step, in this 

article, we focus our attention on the links between Index entities and shots. Shots are the building 

blocks of the ToC. Other links are generalizable from the shot link. To link shots and the visual Index, 

we propose the following techniques. As we mentioned before, a cluster may contain frames from 

multiple shots. The frames from a particular shot form a subcluster. This subcluster’s centroid is 

denoted as “csub” and the centroid of the whole cluster is denoted as “c.” This is illustrated in Fig. 

15.13. Here, c is a representative of the whole cluster (and thus the visual Index) and csub is a 

representative of the frames from a given shot in this cluster. 
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